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Site percolation in randomly packed syherea
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Three-dimensional structures of equal-sized randomly packed hard spheres (RPHS) have been built on a
computer, and the site-percolation threshold has been calculated. The mean coordination of RPHS is 6 and
we find a site-percolation threshold of 0.310 (+0.00S). This value of the percolation threshold is the same
as the simple cubic lattice, which has an exact coordination of 6. Expressing the percolation threshold for
randomly packed hard spheres, in terms of the volume of occupied space, gives a critical-volume fraction
of 0.1S3 (+0.003).

In recent years the ideas and results of per-
colation theory have found wide application in the
physics of disordered and inhomogeneous systems.
'The classical results of percolation theory have
been related to associated conductivity problems
and used in interpreting transport phenomena, in
amorphous semiconductors, ' metal ammonia
solutions, ' conducting particles embedded in a
continuous insulating medium, ' conduction in
mixtures of continuous insulating and conducting
media, ' and conduction in powder or particulate
mixtures' (for a more complete list of references
see papers cited in Refs. 5 and 6). Of all these,
the problem that most easily relates to classical
percolation theory is the electrical conduction in
particle mixtures, and as a result, this problem
has found favor as an illustrative model experi-
ment. ' However, this system is more important
than for mere tutorial purposes. 'There are many
solid-state devices that are made from powders,
and we a,re often concerned with conduction
mechanisms, an important aspect of which is the
role of the percolative nature of the current flow.

The classical problem of site percolation is
formulated as follows: If we consider a regular
lattice, where each lattice point is considered to
be connected to each nearest-neighbor lattice site,
then electrical contact or simply connectivity
exists from any lattice site to any other site via
the bonds between sites. If we nQw consider a
fraction of sites P, selected randomly, to be con-
ducting and the remainder nonconducting, then
there exists a critical fraction of sites If)„below
which there is zero probability of finding a con-
necting path of infinite extent.

The calculation of p, has been made for a num-
ber of the common regular lattices and the results
are shown in Table I. It was noted by Scher and
Zallen' that if we represent the critical percolation
in terms of a critical-volume fraction (CVF) in-
stead of a critical site occupation, i.e., by multi-

plying the critical site occupation (p, ) by the pack-
ing density of the lattice, then the common lattices
have a CVF that varies by 6/p [0.154 (+0.01)] com-
pared to p, that varies by a factor of 2. 'This re-
sult was the basis of a proposed empirical rule
that stated for site percolation there exists a CVF
that depends only on the dimensionality and not on
lattice structure. Scher and Zallen' proposed
therefore that the empirical rule should have valid-
ity for random systems even to the extent of con-
ducting particles in a continuous medium. 'The

latter application has been contested strongly by
Seager and Pike, ' who nevertheless conceded the
likelihood that the empirical rule would be appli-
cable to random mixtures of two media having a
hard-core interaction" such as powder mixtures.
In this paper we examine this possibility in more

detail by calculating the site-percolation threshold
in three-dimensional structures built by random
packing of hard spheres (RPHS).

Randomly packed structures of equal sized hard
spheres can be built using ball bearings or some
other spherical material to construct a physical
model (for a recent review see Ref. 10) or they
can be simulated on a computer. "" The ball-
bearing models have a well-defined packing den-
sity, "but the models built by shaking stacks of
ball bearings have a degree of order and are more
accurately referred to as random mixtures of
highly ordered microdomains. "

Random packing of hard spheres built with a com-
puter are in some senses a better representation
of truly random packing. " They also have a well
defined density but more importantly they have a
well defined distribution of nearest-neighbor
touching contacts. The distribution of touching
contacts for ball-bearing assemblies has been
measured by immersion in various fluids to mark
the contacts, ""but these methods are not good
at distinguishing touching contacts from near con-
tacts.
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TABLE I. Site-percolation threshold and critical-volume fraction for the common three-
dimensional lattices and for random-packed hard spheres.

Coordination Packing dens ity
CVF"

diamond
sc
sc
bcc
fcc
hcp

4
6
6
8

12
12

0.425
0.307
0 3115c
0.243
0.'1 95
0.204

0.34
0.52
0.52
0,68
0.74
0.74

0.146
0.160
0.163
0.163
0.144
0.151

RPHS 0.310 0.59 0.183

I Reference 21.
"Reference 9.

Reference 22.

The computer-generated randomly packed hard-
sphere structures used in this paper were built
by a method similar to that used by Matheson" and
'Tory et al." Spheres are placed one at a time in
a randomly chosen, locally close-packed site,
such that the new sphere makes contact with three
other spheres already in place. The coordinates
of the spheres are recorded and three-dimensional
structures are built up from an initial two-dimen-
sional layer, which in the first instance is a plane
surface and thereafter is a section of spheres from
a previously constructed model. The plane sur-
face is used merely to start the process and the
region near this plane surface would be excluded
f rom the percolation calculations. During the
building, periodic boundary conditions are in-
corporated, such that any sphere placed at
Cartesian coordinates (x, y, z) is also placed at
(x+L„y+L„,z). As the model is built up the com-
puter program assigns a number to each sphere
and records the numbers of all the other spheres
in contact with it, and thus the entire intercon-
necting network for the assembly of spheres is
stored.

We can summarize this information in the form
of a distribution curve of the number of contacts
per sphere as shown in Fig. 1. 'The distribution
has a mean of six contacts per sphere and a small
but finite amplitude at three contacts and nine
contacts, in agreement with the observations of
Tory et al."

'The percolation problem for the RPHS model is
formulated in a manner identical to that of the
regular lattices, i.e., the spheres are equivalent
to the lattice sites and the contactsbetween spheres
are the bonds. The advantage of studying the per-
colation threshold in this system compared to
mixtures of conducting and nonconducting balls"
is that wg have an accurate measure of the actual

contacts for each sphere and by definition these
contacts (or bonds) determine the connecting paths.

'The method we have used for determining the
critical percolation threshold is similar to Pike
and Seager" and I evinshtein et al. ,

"which is a
form directly related to the conductivity problem.
Boundary regions are established at two opposite
faces of a' cube of side l, and percolation is de-
tected by finding a connecting path from a site in
one boundary region to a site in the opposite
boundary region. To begin with, we consider all
the spheres to be removed from the structure.
The spheres are then replaced in a random order
one at a time. Each sphere replaced is given a
cluster identification number. If the new sphere is
connected to any other spheres which have also
been replaced then these spheres are given a
common identification number. Any spheres which

0.5-

+ 0.4

0
0 0.5
Z

0.2
0
C0

0.1

U

3 4 5 6 7 8 9
No. of contacts per sphere

FIG. 1. The distribution of the number of touching
contacts pe'r sphere in RPHS.
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are replaced and situated in one of the boundary
regions are given a cluster identification number
of 1; the other boundary region is given a cluster
identification number of 2. Whenever a new

sphere is replaced which connects two or more
existing clusters, then the whole of the new large
cluster is assigned the lowest cluster identifica-
tion number. In this way all those spheres which
are connected to one boundary region have a
cluster identification number of 1 and those con-
nected to the other boundary region have a cluster
identification number of 2. The structure is said
to percolate when a sphere is replaced which
connects a cluster with identification number 1
with a cluster of identification number 2 and thus
the first connecting path is formed from one face
of the cube to the opposite face.

The value'of p, which is determined in this way
has a range of values due to the finite size of the
cube and the smearing of the critical point in such
a system. This size dependence has been dis-
cussed by Roussenq et al."for two dimensions
and illustrated by Levinshtein et al."for the
three-dimensional simple cubic lattice and can
be described in terms of a correlation length.

In order to check our computer program and

especially to check the suitability of the method
to BPHS of rather limited size, we first applied
the method in an identical manner to simple cubic
lattices of size varying between 4 x 4 X4 and
20 && 20 & 20 and compared the results obtained
with more accurate determinations in the litera-
ture.

In Fig. 2, we show the results we have calculated
for the simple cubic lattice. The percolation
threshold is measured 60 times for a cube of side
l = 4 and E= 10 and 30 times for l = 20, and we have
plotted the number of connected configurations as

a function of the fractional occupation of sites p.
The width of the transition region is greater for
the smaller sized cubes. 'The low end of the
transition region can be identified with the finite
probability that even below p, a cluster with linear
dimension greater than l exists. The upper end
of the transition region can be identified with the
finite probability that above p, the sample will not
be connected. In this case the infinite cluster has
a ' superlattice" or "macromesh"' with a mesh
size greater than l.

In Fig. 3, we have plotted for the simple cubic
lattice the mean value of P, (which is the same as
the median value within experimental error) as a
function of l for cubes with and without periodic
boundary conditions connecting the faces per-
pendicular to the boundary region faces. Our re-
sults without periodic boundary conditions agree
with Levinshtein et al." and show a stronger de-
pendence on l than those with periodic boundary
conditions. We therefore associate this effect with
the decreasing ratio of surface sites to bulk sites
with increasing l and the influence of these sur-
face sites which, have a lower coordination (5 in-
stead of 5) on the measured p, . The results with
periodic boundary conditions show a dependence
on size which is small compared to the uncer-
tainty in p, and compares well with the best values
from the series expansion method, p, = 0.307
(+0.01)," and the Monte Carlo determination of
cluster size, P, = 0.3115 (+0.0005)."

We now turn to the results for R PHS, which
have periodic boundaries built in during the con-
struction. Owing to the computational effort in-
volved, we have limited our RPHS to a size 10
&&10 && 10 (in units of sphere diameters). However,
since each realization of a RPHS structure is
different, we have constructed nine different

0

~ 30-
C0

~20—

C
o 10-
0
8
E 005
Z

0.15 0.25 0.35 0.45 0.55
P

C0

60 ~~

U)

C0
40 cn

20 ~o

0

E
Z

P.36-

P.34-
C

0.32-

O. 30
4 6 8 10 12 14 16 18 20 22 24

Dimension of cube l

FIG. 2. The number of connected configuration out of
a total of 60 measured (30 for i =20) as a function of the
fraction of occupied sites (p) for a simple cubic lattice
of side l=4 (+), l=l0 (x), and i=20 (o).

FIG. 3. The percolation threshold (p~) as a function
of the size of the sample cube; o—without periodic
boundaries, x —with periodic boundaries, *—BPHS for
i=10, g—Ref. 18.
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structures and measured the percolation thresh-
old 60 times on each in the same way as for
the regular lattice. In addition we have con-
structed RPHS of size 6&&6x6 and 8 &8 &&8.

We find that the size dependence of p, and the value
of p, itself is the same, within experimental error,
as the simple cubic lattice with periodic bound-
aries. We can conclude therefore that reasonable
values for p, can be obtained for RPHS of size
10& 10&10. In practice, we find that our calcu-
lated values for. the simple cubic lattice of size
10x 10x10 are 2% larger than the more accurate
values of Sur et al. ," and so we have corrected
the RPHS values by a similar factor before quoting
the final result. Thus we conclude that for RPHS
P, =0.310 (+0.005). If we express this result in
terms of the critical-volume fraction, which we
can measure either by multiplying p, by the pack-
ing fraction f (0.58-0.60) or summing directly
the volume of the spheres as they are replaced in
the structure (the result is the same within ex-
perimental error), then we find x, =0.183 (+0.003).
This critical-volume fraction is larger than any
of the common lattices (see Table I), and thus the
empirical rule is not so well obeyed for com-
puter-generated RPHS.

In Fig. 4 we reproduce the measured percola-
tion threshold p, as a function of the reciprocal of
the .coordination number of the lattice. All the
common lattices fit onto a common trend line. In
addition, if we consider bonds to exist to next-
nearest neighbors and 3rd-nearest neighbors, then
the increased coordination of the lattices gives a
new value of p„which fits onto another trend
line which passes through the origin" (this
figure can be contrasted with Ref. 8). The em-
pirical rule of Scher and Zallen' arises owing
to the canceling trend of the packing density as a
function of the coordination number. However,
the RPHS has a mean coordination and packing den-
sity which does not fit into the trend of the regular
lattices; the mean coordination is 6 contacts and
the packing density is between 0.58 and 0.60. If
we identify the mean number of contacts with z,
then the RPHS fit onto the curve of Fig. 4, but less
well to the CVF rule. One further po int can be
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FIG. 4. The percolation threshold as a function of the
reciprocal of the coordination. The numbers 2 and 3
after the lattice type indicate coordination to 2nd- and
3rd-nearest neighbors.

made as an objection to the use of the CVF em-
pirical rule applied to RPHS. In RPHS there are
a large number of near contacts as well as touch-
ing contacts. An application of some deforming
pressure will make near contacts into good ones,
and a resulting change in the percolation threshold
will be observed for a negligible change in pack-
ing density.

Our results for RPHS support the suggestion'
that Fig. 4 could be used to determine the mean
coordination number f'rom a measurement of the
percolation threshold p, in random particulate
systems.
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