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Study of the yhase diagrams of the two-component electron-hole liquid in stressed germanium
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We present a theoretical study of the -phase equilibria of the electron-hole drop (EHD) containing two
inequivalent electron species ("hot" and "cold" electrons) in $111)-stressed Ge. We assume that
transitions between the hot and cold electron states can be ignored and that the exchange-correlation energy
density of the EHD depends only on the total density of the two electron species. We predict that for
intermediate values of the stress at T = 0 the EHD separates into two phases if the concentration of hot
electrons in the EHD is not too high. One phase consists entirely of cold electrons and holes while the
other phase contains both hot and cold electrons. We also discuss the phase diagrams of this system at
finite temperatures. A variety of phase diagrams is predicted, different ones for different stress values. If our
predictions are verified experimentally the two-component EHD would be a unique laboratory system whose
closest analog is the fluid of neutrons and protons in neutrons stars.

I. INTRODUCTION

The electron-hole drop (EHD) phenomenon in
highly excited semiconductors has during recent
years received a great deal of attention both the-
oretica, lly and experimentally. ' The EHD is a
Fermi liquid consisting of electrons and holes.
Until recently, in all known cases its thermody-
namic behavior was that of a one-component sys-
tem because of the charge neutrality constraint
that the numbers of electrons and holes should be
equal. Recent experiments' have shown that in
the case of the EHD in a Ge crystal which has been
stressed along the (111) axis it is possible for
there to be present two inequivalent types of elec-
tron so that the EHD then becomes effectively a
two-component system. The (111)uniaxial stress
raises the energy of three of the conduction valleys
of the Ge crystal while lowering that of the fourth
valley. Because of the large change in crystal
momentum involved in transferring an electron
from one valley to another in Ge, EHD electrons
can remain trapped for times -1 p,sec in the three
upper valleys before decaying into the lower val-
ley. ' This is a sufficient time for the electrons
in the upper valleys (which we will refer to as
"hot" electrons) to thermalize within the upper
valleys, although their Fermi level need not be
the same as that of the 'cold" electrons in the
lower valley. If one ignores the slow transfer of
electrons between valleys, one can treat the hot
and cold electrons as two separate species in
quasiequilibrium with each other and with the
holes. This approa, ch will be adopted in the pres-
ent paper. The nature of our idealization is simi-

lar to that which has been widely made in EHD
calculations when only one electron species is
present. That idealization has been to ignore the
decay of the conduction electrons into the valence
band and thus to treat the electrons and holes a,s
two distinct species in equilibrium with ea.ch
other. ' ' We expect our present assumption to be
equally realistic because the measured electron
intervalley scattering time' in pure crystals is
comparable with (although shorter than) the time
it takes for a,n EHD electron to decay into the
valence band, i.e., if the intravalley electron
thermalization time is much shorter than the time
which it takes for an electron to decay into the
valence band, then it should also be much shorter
than the intervalley scattering time.

By va.rying the experimental conditions it is pos-
sible to vary the relative numbers of "hot" and
"cold" electrons in the EHD. Thus, the EHD in
stressed many-valley semiconductors provides a
unique opportunity to study the thermodynamics of
a degenerate two-component Coulomb Fermi
liquid.

While the two-component quantum fluid 'He- He
has been studied extensively in the laboratory and
its pha. se diagram is phenomenologically under-
stood, '" the only two-component degenerate Fer-
mi system which has been studied in detail even
theoretically has been the fluid of neutrons and
protons in neutron stars. " At T=0 this system
is believed to contain nuclei in a, sea of neutrons,
and at higher tempera, tures to consist of one or
two phases with different neutron-proton density
ratios. " The details of its phase diagra, m are
important to the theory of stellar collapse. "
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The EHD is a somewhat simpler system theo-
retically because the Coulomb interaction is not
only known exactly but is simpler than the nuclear
forces, and because in the case of the EHD we do
not need to consider surface effects since all of
the phases are macroscopic. The main difficulty
is in estimating the exchlnge-correlation energy.
This is complicated by the involved band structure
of stressed Ge. However, the details of the band
structure do not influence 'strongly the exchange-
correlation energy of the EHD. The exchange-
correlation energy appears to have a strong de-
pendence only on the total density of electrons in
the system Bnd not, for instance, on the way in
which the electrons are distributed among the dif-
ferent valleys. (In the cases in which such "band
structure" effects have been evaluated numerical-
ly, it has been found that the exchange Bnd corre-
lation energies can each depend quite strongly on
the number of valleys occupied by electrons, and
on the degree of band anisotropy, but that their
sum does not. "'" Thus, we choose to approxi-
mate the exchange-correlation energy of the EHD
in stressed Ge by the exchange-correlation energy
of the EHD for a model system with a simpler band
structure, i.e., we approximate the exchange-cor-
relation energy of the EHD for a given total density
n of hot and cold electrons (irresPective of how the
electrons are distributed among the different val-
leys) by the exchange-correlation energy of the
EHD for the model system at the same density n.
We will discuss two different model band struc-
tures:

(i) A "zero stress" model band structure with
four equivalent spherically symmetrical conduc-
tion valleys and two decoupled spherical valence
bands of equal mass e'qually populated with elec-
trons and holes, respectively. This is model I
in the notation of Bh3ttacharyya et al.' and we use
the numerical correlation energies which they
label SPH (self-consistent particle-hole approxi-
mation). We denote this choice of exchange-cor-
relation energy E„',.

(ii) A model band structure which corresponds
to the limiting Ge band structure at large (111)
stress, i.e., only one ellipsoidal conduction band
and one ellipoidal valence band are populated.
For this model we use the numerical correlation
energy listed by Vashishta et al.' as "Ge (111)
fully self-consistent anisotropic. " We denote this
model exchange-correlation energy by E„",.

It is important to use with each of the above cor-
relation energies the exchange energy which cor-
responds to exactly the same model band struc-
ture for which the correlation energy was calcu-
lated, i.e., exactly those band structure features
which are included in the correlation energy cal-

culntion should be included in the exchange. This
point has been discussed in Ref. 14 Bnd we shall
discuss it further in the final section of this paper.

The hole kinetic energy is calculated in the
Pikus and Bir" k 'p formalism using the valence
band parameters measured by Hensel and Suzuki. "
Such a detailed treatment of the hole kinetic en-
ergy is essential. This is because the effect of the
stress-induced splitting and associated nonpara-
bolicity of the valence bmnd on the hole kinetic en-
'ergy has a decisive role in determining the nature
of the phase diagrams of this system. Full account
is taken of the distribution of electrons among the
hot and cold valleys in calculating the electron
kinetic energy.

A brief account of some of our results has al-
ready been published. ' '" Our calculations predict
that this EHD system has some interesting simi-
larities with the above astrophysical one. At cer-
tain values of the stress, at T = 0, if the concen-
tration of hot electrons in the EHD is low enough,
we predict that the EHD should separate into two
phases, one consisting of cold electrons (and
holes) while the other contains both hot and cold
electrons. Thus, the hot and cold electrons in the
EHD have a role analogous to that of the protons
and neutrons respectively in the neutron star.
This phase separation at T=0 was found for both
of the model exchange-correlation energies de-
scribed above and also for 311 other model ex-
change-correlation energies which we examined.

From the point of view of experimental verifica-
tion of this predicted phase separation it is very
important to have some idea as to how the system
should behave for T & 0. We studied this problem
for three different values of the stress using the
exchange correlation energy E„', and a generaliza-
tion of the method first used by Combescot" to
calculate the EHD critical point in the one-com-
ponent case. That method has been found to work
very well at zero stress. ' It has also been used
with good results for stressed Ge in the case
where only one conduction valley and one valence
band are populated. " The numerical values E„',
of the exchange-correlation energy were chosen
for this calculation because this choice results in
very good agreement with available experimental
data in the limiting case (which we call the "equi-
librium limit" ) where the hot electrons have re-
laxed by intervalley scattering to the point where
either the hot and cold electron Fermi levels have
become equal or no electrons remain in the upper
val] eys

Vfe find that in the T & 0 range under suitable
conditions it is possible to have two liquid phases
in equilibrium with each other and with the vapor
phase. The two liquid phases both contain hot and
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cold electrons and holes. They differ from each
other in that they have different ratios of hot to
cold electrons and different total electron number
densities. The vapor phase also consists of hot
and cold electrons and holes (which may or may
not combine into excitons and other complexes).
Our main aim was to determine under which con-
ditions the simultaneous presence of the two
liquid phases and vapor is possible since this is
the information of greatest experimental interest.
This information is contained in the coexistence
curves for three-phase equilibrium. These curves
give the total density n =n„+n, of hot and cold
electrons and the concentration x = n„/n, of,hot
electrons as a function of temperature in each of
the three pha, ses when all three phases are present
in the system. We denote the densities of hot and
cold electrons by n„and n, respectively. (At any
fixed temperature, if all three phases are present,
the value of n and of x in each phase is uniquely
determined according to the Gibbs phase rule

f= C P+2. —

Here the number of components C is 2, the number
of phases P equals 3 and thus f=1. This one
available degree of freedom is taken up by speci-
fying the temperature. )

Our calculations yield qualitatively different co-
existence curves for each of the three values of
stress studied. This implies that a, remarkable
variety of phase diagrams is possible in this
system.

A particularly interesting case was found at low
stress. There the two different liquid phases are
found to coexist with each other and with the vapor
in two different temperature ranges which are
separated by a, region where only one liquid phase
is possible. To check how sensitive this phenome-
non is to the choice of the exchange-correlation
energy, we repeated the calculation at low stress
using the exchange-correlation energy correspond-
ing to the model band structure (i) above but taking
the numerical correlation energy values which
correspond to the Hubba, rd approximation' instead
of the SPH. We denote this exchange-correlation
energy F.„,(Hubbard). (The Hubbard and SPH
correlation energies differ by about 10/p. ) The
reappearance of the pha, se separation of the elec-
tron-hole liquid in a, higher temperature range
was found in this case a,s well.

II. THERMODYNAMICS

To study the pha. se equilibria, of the EHD com-
posed of hot electrons, cold electrons, and holes
we need to know the hot and cold pair chemical
potentials p.„and p, and the pressure p which a,re

defined in terms of the free energy F(N„, N„N„,
V, T)by

(NH=N +NI, )

(2)

H=Nc+N~ )

Pl~ dIJ, I + fE dg = 0 (5)

holds on a, thermodynamic surface of constant p
and T, where n = N/V Writing x. =N„/N, and inte-
grating (5) at constant P and T yields

(

(6)

i.e. , if one plots p, „versus x at constant p and T
a Maxwell construction immediately shows whether
or not two phases can exist in equilibrium. If g„
versus x is monotonic increasing then there is no
phase separation. In Fig. 1 in case (a) if x,' &x
=N„/N, & x," (where x,' and x," are chosen so that
the two shaded areas are equal) a separation oc-
curs into two phases, one with x=x,' the other with
x=x,". Case (b) represents a situation which we
find to be chara, cteristic of T= 0 in an intermediate
stress range. If x &x, (where x, is given by the
equal-area construction) the EHD is uniform and
there is no, phase separation. If x &x, a separa-
tion occurs into two pha. ses: I where x= 0 and II
where x=x,. Equation (6) guarantees that p, (II)
= g,(I), although p,„(I)& p„(II). This inequality is
consistent with phase equilibrium since phase I
(x= 0) contains no hot electrons.

p=— aF
av

where &» &» &„and Vare the numbers of
holes, hot electrons, cold electrons, and the vol-
ume respectively. The.derivatives of F are taken
varying the number of holes together with the num-
ber of electrons in such a way that the electron-
hole liquid is kept neutral, i.e., &„+&,=&H and
6N„+ 6N, = 6N„. With this convention we will (ex-
cept where there is danger of confusion) suppress
N„and write F(N„,N„V, T). Then the standard
thermodynamic results for a, two-component sys-
tem will apply.

If S is the entropy, the equality

Sd T —Vdp + N~ d p, ~ +Ncd ~c = 0
&

which holds for a, two-component system, prov. 'des
a simple way of determining whether a phase
separation is possible for given values of p and T.
From (4) the relation"
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of electrons (a.s discussed in Sec. I) ensures the
correct n„'~' (n', t') dependence of p,„(p,,) on n, (n, )
in the limit of small n„(n,) (see the Appendix). In
this way we avoid the qualitative errors made by
the HFA in these limiting cases. We still find
that under certain conditions the EHD should phase
separate. However, in contrast with the HFA
resuits, our choice of exchange -correlation ener-
gy does not result in a phase separation in the
limit of large N„/N, . Also, for small and moder-
ate values of N„/N, we find that the phase separa-
tion is expected only in a certain range of stress
values. As will be explained below, the situations
in which we predict the phase separation to occur
are those in which it is particularly favored by
kinetic energy considerations.

At T=O, the free energy of the EHD equals
FIG. 1. Schematic plots of pI, versus x at constant

temperature and pressure.

The result (5) is exact and it should be possible
to deduce all of the quantities n„, n„p.„, p, , which
it contains from the experimental EHD recom-
bination spectra. For example, if the time evolu-
tion of the EHD created by a laser pulse is fol-
lowed, the ratio x= N„/N, will decrease with time
because of the decay of the hot electrons into the
cold valley. This means that p,~ and !~, will change
with time. Then, assuming that there is only one
phase present and T and P are time independent,
the incremental changes of p,„and p., with time
should obey Eq. (5). At sufficiently low tempera-
tures, in such a time-resolved experiment, P will
be very nearly time independent since it is equal
to the pressure of the exciton vapor surrounding
the EHD and, thus, always nearly equal to zero.

0 0
P,~

—P,~ + P, H+ P.»

0 0
P, =P, +PH+)U,

p pQ pg pQ p»g p

where

(8)

for i=h, c, or &

where Ekhi. Eki, EkHi, and E„,are, respectively
the kinetic energy of the hot electrons, cold elec-
trons, and of the holes and the exchange-correla-
tion energy. Define N=N„+N, and n=N/V to be
the total electron number and number density of
the EHD. Then if E„,/N is taken to be a function
only of the total density n, it follows that

III. CALCULATIONS AND RESULTS AT T = 0

Whether or not a phase separation of the two-
component electron-hole liquid occurs under given
conditions is a delicate question.

For example, it can be shown that within the
Hartree-Fock approximation (HFA) at T=O a
phase separation of the liquid always occurs in two
limiting cases, viz. , when N„/N, is either very
large or very small. However (as explained in the
Appendix), the special feature of the HFA energy
which -results in the phase separation in these two
limiting cases does not persist when correlations
are properly included. Thus, a more careful
treatment such as the one which we present in this
paper is necessary in order to address meaning-
fully the question whether the phase separation
should in fact occur. The fact that the model ex-
change-correlation energy densities which we use
in our calculations depend only on the total density

(io)

To calculate g'H and P'„we use the results of
Ref. 15 which relate the hole density n H

=n and
hole kinetic energy e"=E~"„/N„ to the hole Fermi
energy E~(H) in (111)-stressed Ge. The relations
between these quantities [as given by Eqs. (16)-
(18) of Ref. 15] are

e =E~(H)f,(R),
n = [E,(H)]'t 2f„(R),

where

R =E~(H)/S„

(»)
(i2)

and SH is the magnitude of the stress-induced
valence band splitting at the center of the Brillouin
zone. The functions f, and f„are evaluated nu-
merically for the nonparabolic stress-split valence
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band within the Pikus and Bir k 'p formalism"
using the valence band parameters of Hensel and
Suzuki" as described in Ref. 15. We numerically
invert (12) to obtain E»(H) and thus, via (11), e"
as a function of e. Then using

and n, for the model exchange-correlation energies
E„', and E„",are shown in Figs. 2 and 3 respective-
ly. p„and p, are given in exciton Rydbergs
(1 By=2. 655 meV) and are measured. from the
respective stressed band gaps.

p, o» = EF(H) (14)
2.0

0
Exc

p».——n(p» —P) ~

-l.9
we obtain Ij.'„and P~ as a function of n.

For the electron kinetic energies we have

l.5

n&

(10 cm )3 S2

10 mq

-2, l

(Ry)
(16)

1.0

3 82e'=Z' /X =— (8»'n )'"
kin c yp m c

mff
(17)

0.5where m~= (m, m', )'~', m, =0.082, m, = 1.58.
Then

-2.5

(18)e
I

0.5 I.O
0

l.5and
X = nh/n

where e stands for h or c and p,,' is measured from
the bottom of the respective stressed conduction
band.

In order to obtain p„, and p„, it is necessary to
interpolate and differentiate the correlation energy
numerically. To do this, the published correla-
tion energies" were smoothed and then interpo-
lated by a cubic spline method. The derivatives
were obtained from the spline coefficients. The
main source of numerical error in our calculation
is the limited accuracy to which the correlation
energies are known. The exchange energies,
which are also needed in order to obtain p,„and
p„, from (10), were calculated in the standard way'
for the two model band structures described in
Sec. I.

As noted in Sec. II, in order to determine wheth-
er a phase separation of the EHD should occur it
is convenient to plot p,„and p, , versus x=n„/n, at
constant temperature and pressure. We calculate
LU, „and p, , making the "naive assumption'- of a
homogeneous EHD. We then infer from the results
of this calculation the conditions under which the
phase separation should occur and the properties
of thephases. At T=O the vapor phase which is in
contact with the EHD is the vacuum (since no ex-
citons are present). Thus we a,re interested in the
case p=p.

For a fixed value of x we found numerically the
value of the total density, n for which P =0. Then
for this value of n and x we calculated p,„and g,.
This procedure was repeated for different values
of x. The resultingP=O isobars of p.» p„&»

I.O

nc

(IOI7 c~ 5)

Pc
(Ry)

0.5

-I 7

I

0.5
0-l.90 I.O

X=nh /~,

FIG. 2. (a) pI, in exciton Rydbergs (solid curves) and

n& (broken curves) versus x at T=O and p='0, for the
model exchange-correlation energy E„~ at different
values of stress. Each curve is labeled by the value of
the stress splitting (in meV) of the valence band at the
center of the Brillouin zone. The stress values label-
ing the p& curves are near the left-hand side of the
figure while those labeling the nI, curves are on the
right: 1 Ry=2. 655 meV. (b) p~ (solid curves) and n~
(broken curves) versus x at T = 0 and p = 0, for the
model exchange-correlation energy E„~. Each curve
is labeled by the value of the stress splitting (in meV)
of the valence band at the zone center. The stress labels
of the p, curves are near the left side of the figure and

those of the n~ curves are on the right.

STUDY OF THE PHASE DIAGRAMS OF THE TWO-COMPONENT. . .



4176 G. KIB, CZEN0% AND K. S. SING%I 20

2.0

l.5

(Ry)

-2.5

Ah

(lo cm')

l.o

0.5

- 3.0
0

X= nh/n

l.o
'0

l.5

—l.3
Exc

—l. 5

- l.5

Pc
(Ry)

nc

(lo" cm')

l.0

- l.7

0.5

-l .9
0 0.5 1.0

X=nh /nc
l.5

FIG. 3. {a) pI, and n& versus x at T = 0 and p = 0 for
the model exchange-correlation energy E" . ' Notation as
in Fig. 2{a). {b) p~ andy~ versus x at T=O andp=0 for
the model exchange-correlation energy E„~. Notation
as in Fig. 2{b).

All of the curves for p„shown are of the type (b)
of Fig. 1, i.e., all of them exhibit a minimum a.s
a function of x so that a phase separation of the
EHD is predicted. The corresponding chemical
potential curves for the two different exchange-
correlation energy models are very similar. They
differ by a nearly rigid shift in energy. The small
"lip" in each of the p,„curves near x=0 is due to
the n„' ' contribution from the hot e1.'ectron kinetic
energy as discussed in the Appendix. The mini-
mum in the hot pair chemical potential which is
responsible for the phase separation of the EHD
is most pronounced at intermediate stress values.
It becomes very shallow at high and low stress.

At very high stresses not shown in the figures it
disappears completely and there is no phase sepa-
ration. At very low stress we were not able to
establish conclusively whether the minimum disap-
pears completely or just becomes extremely shal-
l.ow. The behavior of the hot and cold electron
densities is also qualitatively very similar in the
two models. These densities are somewhat higher
for the model E„",than for E„,.

From the discussion in Sec. II it follows that if
the ratio»„/», of hot to cold electrons in the sys-
tem is less than x, (where x, is a critical concen-
tration depending on the stress) the EHD separates
into two phases which we will label I and II. Phase
I has concentration x = 0 (i.e., it contains no hot
electrons) while in phase II the concentration equals
x,. The electron densities and chemical potentials
in the two phases for any given stress can be read
off a.t x=0 and x=x, in Figs. 2 a,nd 3.

If the ratio»„/», of hot to cold electrons in the
system is greater than x, then the EHD is uniform,
there is no phase separation, and its hot and cold
electron densities and chemical potentials are
those shown for the value of x equal to»„/», . (Of
course the curves in Figs. 2 and 3 apply only when
the EHD does not fill the entire crystal, since
otherwise the condition P = 0 need not be satisfied. )

To find the value of x, for any given stress one
may apply to p,„ the Maxwell construction discussed
in Sec. II. Or, equivalently, one may just use the
condition u, (x=x,)= iL,(x=O), with the chemical
potentials evaluated at p = 0. [It is not necessary
to consider g„explicitly so long as p„(x=0)
& g„(x=x,).]

In Table I we list values of x, for various values
of stress and also the total electron density n in
phases I and II for the two model exchange-cor-
relation energies. [The Gibbs phase rule implies
that if the two liquid phases are in equilibrium
with ea.ch other and the temperature and pressure
are fixed (e.g. , T=0, p= 0) then the total electron
density and concentration of each pha. se are unique-
ly determined. ]

Note that the density &, of phase I is just the
density at 7= 0 of the EHD which does not contain
any hot electrons. In the range of stress values
given in Table I this is the sa,me a,s the density of
the EHD in the "equilibrium limit" discussed in
Ref. 15.

The qualitative aspects of the phase separation
of the EHD can be understood intuitively in terms
of the influence of the band structure of (111)-
stressed Ge on the electron and hole kinetic ener-
gy. If we consider a uniform EHD (consisting of
a single phase) in which there are many more cold
electrons than hot electrons, the equilibrium den-
sity of such a uniform drop (and thus the exchange-
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TABLE I. Total electron density {sum of hot and cold
electron densities) ng of phase I and n~l of phase II, and
concentrations, =ah/I, for phase II of the EHD at T =0.
The concentration x of phase I is zero. Sz is the stress-
induced splitting of the valence band at k= 0. It is as-
sumed that the EHD does not occupy the entire crystal
so that p =0. The numerical accuracy of x~ and n~~
depends on how pronounced the minimum in the ph curve
is (Figs. 2 and 3), but is typically -10%. The numerical
accuracy of z~ is much better than this because a less
delicate calculation is i.nvolved.

~e
(me V)

&xc

SI S[l
(10"cm ')

0
+XC

+II
(10~6 cm 3)

1.5
2.0
2.5
3.0
3.5
4 0
4 5
5.0

0.31
0.38
0.46
0 54
0.60
0.60
0.46
0.45

8.7
8.0
7.1
6.2
5.7
5.3
4.9
4 5

16.6 0.28
17.6 0.37
18.5 0.47
19.0 0.54
18.6 0.54
16.9 0.48
12.3 0.50
11.4 0.53

6.4 11.8
5.6 12.5
4.7 13.1
4.2 12.8
3.8 11.3
3.4 9.4
3.1 8.8
2.8 8.3

correlation energy per electron-hole pair) will be
determined primarily by the properties of the cold
electrons. However, the hot electrons are dis-
tributed among three different conduction valleys
while the cold electrons are confined to a, single
one. This reduces the hot electron kinetic energy
in comparison with that of the cold electrons. If
the number of hot electrons in the EHD is relative-
ly small this tends to favor condensation of the hot
electrons into a volume which is smaller than that
which is "optimal" for the cold electrons. %hether
a, condensation of the hot electrons into a restricted
part of the region occupied by the cold electrons
is actually to occur is determined by a balancing
of the contributions of the hot and cold electron
kinetic energy, the hole kinetic energy, and the
exchange-correlation energy. Our results indi-
cate that the hole kinetic energy, which is the only
one of these contributions which we take to be ex-
plicitly stress dependent, ' is the deciding factor.
At very large and very small stresses the extra
hole kinetic energy which would be gained is suf-
ficient (or very nearly sufficient in the low stress
case) to prevent such a condensation from taking
place. However, at intermediate stresses where
the hole Fermi level is close to the valence band
splitting, the hole density of stateS near to the
Fermi level is strongly enhanced by the stress-
induced valence-band nonparabolicity and by the
presence of the deeper stress split valence band.
This effect (which is absent at very large and very
small stress) reduces the hole kinetic energy cost
of condensation making the phase separation pos-

20—
0

Exc
SH = 5meV

L
l5—

k)

E
O

CO

O IO—

IC

0

n, (iO~' cm ')

FIG. 4. Phase diagram of the two-component electron-
hole liquid at T= 0 and for a valence-band stress split-
ting of 3 meV. The model exchange-correlation energy
E„~was used. nh and K~ are the densities of hot and
cold electrons respectively averaged over the entire
crystal. For an explanation of the nature of the various
regions see text.

sible. The strong enhancement by valence band
nonparabolicity of the density and binding energy
of the EHD when no hot electrons are present was
pointed out by Liu. " The underlying importance
of the low kinetic energy of the hot electrons ex-
plains why in the present calculation (unlike the
Hartree-Fock case) the phase separation occurs at
T= 0 only when the number of hot electrons in the
system is smaller than the number of cold elec-
trons.

Further insight into the nature of this two-com-
ponent EHD system can be gained by plotting its
T=O pha, se diagram. Let n„and n, be the hot and
cold electron densities averaged ove~ the entire
cxystaE. If the crystal contains two liquid pha, ses
I and II and a vapor phase (which we will label v),
let the volumes occupied by these three phases be
0', 0", and 0".respectively, and let the hot and
cold electrons densities in the three phases be
labeled n,', n„", n„", n,', n", and n",. Then

n'0'+ n "u"+ n~kP
h h h

0 +0 +0"
nr 0' + nrr~ri + n

0 +0 +0"
Since n„and n, are proportional to the total num-
bers of hot and cold electrons present in the sys-
tem, it is useful to classify n, -n„space into re-
gions in which different combinations of phases
can coexist. This is done for T= 0 and a, valenee-
band stress splitting SH of 3 MeV in Fig. 4. The
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values plotted are for E„',.
From (20) it follows that the region in n, -n„

space in which the three phases I, II, and v coexist
is a triangle whose vertices have the coordinates
(n"„n„"), (n'„n„'), and (n,",n„"). In Fig. 4 we label
these vertices v, I, and II respectively. Since at
T=0 the vapor is the vacuum (by which we mean
that there are no electrons or holes present), v is
the point (0, 0). For thermodynamic states within
the triangle v-I-II the EHD in its lowest-energy
state consists of the two liquid phases and does not
occupy the entire crystal. The densities and con-
centrations of the two liquid phases are those given
in Table I. In the region bounded by the curve I -II
and the straight line v-II, the EHD consists of a
single liquid phase II in contact with vacuum. In
the region bounded by the straight line I-II and the
curve I-M-LI the EHD consists of two liquid phases
Land II and fills the entire crystal, i.e.„. the pres-
sure is &0. In this region each of the liquid phases
contains both hot and cold electrons, and in such
cases we refer to the phase with the smaller value
of x as phase I. The remainder of the phase dia-
gram corresponds to the crystal completely filled
with a homogeneous electron-hole liquid. In this
region of the phase diagram it is possible to move
from the point II to the point I by continuously
varying the EHD density and concentration.

In the region bounded by the straight lines v -E
and v-II, and by the curve II-.h. , it is also possible
for the system to be in a metastable state. This
state corresponds to a homogeneous EHD occupy-
ing part of the crystal, the remainder of the crys-
tal being occupied by the vacuum. The possible
densities of the hot electrons (n„) and of the cold
electrons (n, ) in this metastable homogeneous
liquid phase are given by the coordinates (n„n„)
of the points of the curve LL-K. Since this me-
tastable region corresponds to zero pressure, the
hot and cold electron densities and pair chemical
potentials of the liquid phase which is present are
given by portions of the S~= 3 meV curves plotted
in Figs. 2(a) and 2(b). The values of x which can
be taken by the metastable liquid phase range
from x =x „=0, 36 (where the curve of g„versus
x has its minimum) to x =- x, =- 0. 54. For x & x„
the homogeneous liquid at P =-0 is stable since no
separation into two liquid phases is possible. For
x (x „,(B u„/Bx)&.0 r.o (0 (except when x is very
close to zero). This violates the thermodynamic
stability conditions for a two-component system. '
If a homogeneous electron-hole droplet is in some
way prepared in the crystal in the range where
(B g„/Bx)~ r (0, then any arbitrarily small fluctua-
tion in local concentration x„„,within the drop
will grow rapidly, resulting in a. spontaneous phase
separation of the EHD. On the other hand, in the

metastable region where (B p,„/Bx)~ r & 0, very
small fluctuations in the local concentration x„„,
tend to damp out, so that a nucleation process
must take place before the phase separation can
occur, i.e., in the region where (Bg„/Bx)~ r & 0
only a concentration fluctuation greater than a
certain critical magnitude can lead to a spontan-
eous phase separation of an EHD which has been
prepared initially as a homogeneous liquid. How
such a situation may arise experimentally will be
discussed below. There is another very small
region located close to the n, axis in the phase
diagram where metastable states can occur. This
is related to the region of very small values of x
in Fig. (a) where (Bp.„/Bx)~., r., is positive. We
do not depict that region explicitly in Fig. 4.
Thus, in most of the triangular region v-W-I of
the phase diagram, even a metastable EHD con-
sisting of a single phase cannot occur. If a uni-
form EHD with parameters corresponding to this
region were prepared it would be unstable and any
arbitrarily small fluctuation would grow and lead
to a phase separation.

We now apply this discussion to a possible ex-
perimental situation. Consider a stressed Ge
crystal at a temperature which is low enough that
the T = 0 results apply. Suppose that this system
is excited by a short laser pulse and that the
photon frequency v of the pulse is such that kv is
considerably larger than the band gap. Then most
of the electrons which are excited into the conduc-
tion band by this laser pulse will appear in the
conduction band at an energy well above the con-
duction band minimum. Thus, they will be equally
].ikely to decay by emitting phonons into each of
the four Ge conduction valleys, i.e., very soon
after the laser pulse, the electron-, hole system
will be characterized by a concentration x= &„/N,
=3. Then over a longer period of time lasting
several micr'oseconds the hot electrons will decay
into the cold valley, i.e., we can think of the EHD
forming with a concentration x near 3, this being
followed by a period during which the value x de-
creases to near zero. This means that the EHD
will be formed in the region labeled II+ v in Fig.
4 (and fairly close to the origin unless the EHD
fills a large fraction of the crystal). In this re-
gion the electron-hole liquid consists of a single
phase. Then, as the hot electrons decay into the
cold valley, the system will cross the line v-II
and enter into the region of the phase diagram
where, although the most stable state of the sys-
tem is an EHD separated into the phases I and II,
a uniform EHD can exist in a metastable state.
In this region the transition from the uniform drop
to the phase-separated one must proceed via a
.nucleation process. It is at present not known
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how long such a, process would take. It is possible
that the uniform metastable EHD may persist long
enough that the system crosses the line v-8' of the
pha, se dia, gra, m, because of the continuing decrease
in the value of x. If this happens the uniform
EHD ceases to be even metastable, and the time
which it takes for the EHD to pha, se-separate will
no longer be determined by a nucleation time but

by the relatively short time it takes for the elec-
trons to diffuse into the pha, se -separated configura-
tion. "

Actual experimental identification of the phase
separation could be ca,rried out by the fitting of
the EHD luminescence spectra to thy line shapes
which one would expect for a homogeneous and a.

pha, se-separated EHD. Alternatively, because of
the large difference in density predicted for the
two liquid phases (see Table I), one could look for
two lines in the EHD plasmon absorption spec-
trum. Another method, which is a difficult but
very direct one, would be to form a. large EHD
containing both hot and cold electrons and to at-
tempt to observe the phase boundary directly by
means of a spatial scan.

IV. BEHAVIOR AT FINITE TEMPERATURES

+F„,(Ã„,N„N„, V, T), (21)

where F, is the free energy of noninteracting par-
ticles of species i, and F„,is the exchange-cor-
relation free energy. We approximate F„,by its
zero-temperature value E„,. This approximation
has been found to work very well in the case of
the one-component EHD, both in unstressed semi-
conductors' '" and in (111)-stressed Ge. ' As in
the zero-temperature case, we take E„,/(N„+ N, )

to depend only on the total density of hot and cold
electrons. Then the expressions (8) for the hot
and cold pair chemical potentials and for the pres-
sure remain valid for» 0 if we extend to finite
temperatures our definition of p, ,

' and P,' through

(22)

In eva, lua, ting p,
&

and P,' we do not make the com-
monly used approximation of replacing I", by the
leading terms of a low-temperature expansion in
powers of ~. Such an approximation should not

We generalize the treatment of the preceding
section to the finite-temperature case as follows.
The free energy of the electron-hole liquid can
be written in the form

F(Nq, N„NH, V, T)

=F0(N„, V, T)+ F0(N„V, T) +F0 (Ã„, V, T)

0 &e 2m' 3/2 OO z 3/2

3m' 52 exp Z p, +1

(24)
where P= 1/kT, the subscript e stands for k or c,
and n„= 3, n, = 1. By inverting (23) numerically
we obtain p,,' as a function of n, and T and then
from (24) we have po as a function of n, and T.

Our choice of approximation for the exchange-
correlation energy together with the use of the
exact finite-temperature expressions (23) and (24)
guarantees that the chemical potentials g„and
which we calculate behave in a, reasonable way
even in the limit when the concentration of either
the hot or cold electrons in the EHD becomes very
low, provided that the density of the other electron
species remains in the metallic range. For ex-
ample, in the limit when N„/N, - 0 the correct
asymptotic behavior of dilute solutions" that

g„-kTln N +g(p, T)
Nq

C

is ensured.
Expressions (23) and (24) are correct for para, —

bolic bands. For the holes we use the correspond-
ing finite T expressions for nonpa, rabolic bands
which can be written as

"E"'f.(E/SH)exp[P(E —V&)]«
(exp[~(E —~H)]+ I)'

E3&2f (E/$ )dE
exp[P(E —pop )]+ 1

(27)

The particular form given here is convenient to
use because the same function f„as was used in
Sec. 111 [Eq. (12)] is involved. For the special

be used for the present system for two main rea, -
sons:

(i) It results in an unphysical singular behavior
of the pair chemical potentials when the EHD den-
sity is such that the hole Fermi energy is close in
ma, gnitude to the size of stress-induced splitting
of the valence band a.t k= 0.

(ii) It also fails when x =N„/N, is small, since
then the degeneracy condition for the hot electrons
that kT/Ez(k) «1, where Ez(k) is the hot electron
Fermi energy, is not satisfied.

We are interested in both of these situations in
which the T' expansion fails. Thus we evaluate
]Lt,

&
and P& exactly taking full account of the finite-

temperature Fermi distribution.
For the electrons we use the exact finite-tem-

perature Fermi expressions

Z /2dZe d -3/2
2m' k', exp(Z —Pp,')+ I '
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case of parabolic bands f„ is a constant and in that
case (26) and (27) reduce to expressions having the
same form as (23) and (24).

We calculate p,„,and p„, as in Sec. III. We would
like to use as realistic a model for the exchange-
correlation energy as we can, and for this reason
we will work with the model E,, Experiments
have been done measuring the electron-hole liquid
densities in Ge as a function of stress at low tem-
peratures in the equilibrium limit [which is ex-
plained in Sec. I (Refs. 21 and 22)j. The theo-
retical densities calculated from the model E„,
for T = 0 are in very good agreement with these
experimental values throughout the entire range
of stress values, whereas the densities obtained
from E„",are consistently too high. " The other
available experimental tests of the model are the
values of the critical temperature of the electron-
hole liquid which have been measured at zero
stress and at finite stress in the equilibrium limit.
At zero stress we find an EHD critical tempera. —

ture for the model E„', of approximately 8.7'K
which is in satisfactory agreement with both ex-
periment and other computational values. '

Only
a single measurement of the critical temperature
of the EHD in the equilibrium limit is available for
uniformly (111)-stressed Ge, and the value ob-
tained involved a considerable amount of extra-
polation. " We find that the model E„', for the ex-
change correlation energy yields good agreement
with experiment in this case also.

At finite temperatures it is possible to have two
electron-hole liquid phases and a vapor phase
simultaneousLy present and in equilibrium with
each other'. We will refer to such a situation as
three-phase equilibrium. Our major aim is to
predict under what conditions three-phase equi-
librium is expected to occur. The method which
we use depends on the temperature range which is
being considered because the nature of the vapor
phase is different at high and low temperatures.

(a) At low temperatures the vapor phase consists
of excitons containing electrons of the two species.
Neither the binding energy of the "hot" and "cold"
free excitons nor their dispersion (i.e., the k
dependence of their translational masses) in
stressed Ge is known theoretically, and only rather
approximate binding energies are availabLe experi-
mentally. For this reason it is not possible at
present to calculate meaningful values for the
density and concentration of the vapor which is in
equilibrium with the two liquid pha, ses in this tem-
perature regime. However, the properties of the
two liquid phases under conditions of three-phage
equilibrium can still be calculated. This is be-
cause at low temperatures the pressure of the
vapor phase is very low so that we can set it equal

to zero. Thus, at low temperatures we calculate
p» )L(.„and n as a function of x at p = 0 and at
fixed temperature &. This is done by the same
procedure as described in See. III for the T= 0
case, but using the finite T expressions (23), (24),
(26), and (27). For values of stress at which the
phase separation of the EHD is predicted to occur
at zero temperature, the curves of p,„versus x
at constant P(=0) and T obtained in this way are of
the type (a) of Fig. 1, for low temperatures T.
As the temperature is increased, the nonmonoton-
ieity of these curves becomes less pronounced.
In some cases the p, „versus x curve becomes
monotonic while the temperature is still in the
range in which the p = 0 approximation is valid.
Having evaluated g„, p.„and n as a function of x
at p = 0 and constant T, it is easy to find the val-
ues of x and n in the two coexisting liquid phases
I and II by solving

subject to the constraint p =0, at any temperature
at which such solutions exist.

The validity of the p = 0 approximation can be
checked by estimating the actual pressure of the
exeiton vapor from the classicaL expression

(26)

where g, is the degeneracy and m, the transla-
tional mass of the exciton of species i, and P, is
the binding energy of the EHD relative to the free
exciton of species i. We estimated (28) as
follows: In practical situations the quantity Q,
is much larger for exeitons involving hot elec-
trons than cold electrons because of the much
higher Fermi energy of the cold electrons in the
EHD. For this reason at low temperatures as a
first approximation the contribution of hot free ex-
citons to the exciton pressure can be neglected.
Thus we calculated only the contribution of the
cold free exeitons to the exeiton pressure using
(28). The experimental value" of P for cold free
excitons relative to the EHD at x=0 and &=2.08'K
was used as'a reference point in calculating the
value of P for cold free excitons at other values
of T and x. A rough estimate was made for m&,
noting that p„~,«„ is not very sensitive to this
parameter. The values of g„, p,„n, and x in the
two coexisting liquid phases were recalculated
setting p =p„„„„,instead of p = 0. Since p, , en-
ters into the expression for p„„„,through P,P„„„,and p, , were calculated self-consistently.
It was found as expected that in the low-tempera-
ture regime replacing the ansatz p = 0 by p
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!
has no significant effect on the valuesPel assi eal

of x and n obtained for the two coexisting liquid
pha. ses.

(b) At higher temperatures as pointed out by
Gombescot, "the vapor phase which is in conta, ct
with the electron-hole liquid becomes metallic,
and is thus correctly described by the same ap-
proximations which are used to treat the liquid
phases. Thus we calculate p» p, „and pnd for both
liquid phases and for the vapor from the expres-
sions (8), (10), (23), (24), (26), and (27). This
approa, ch is believed to be valid provided that the
density of the vapor is not too low.' A crude esti-
mate of the density above which the method is ex-
pected to be meaningful is given by equating the
Debye-Huckel screening length in the vapor to the
exciton Bohr radius. This yields a, density

1 kT
$6/ Ryg~g

(29)

where Ry is the exciton Rydberg and a, the exciton
Bohr radius. n» depends on the temperature but
is yplca yt ' ll s10"/cm' if we take a, to be 177 A.
This density is considerably lower than the vapor
den 'ties with which we work at high tempera, -
tures.

As the temperature increases, the calculation
becomes progressively a. more delicate one. This
is beca,use the features of the curves of p.„and p,
versus x at constant P and T' which are responsible
for the phase separations are much less pro-
nounced at high temperatures than at low tempera-
tures. For this reason the detailed results ob-
tained from our simplified exchange correlation
energy a zgt h' h temperatures can be expected to
be less reliable than our zero-temperature pre-
dictions. However, a,s has already been men-
tioned in the Introduction, comparison of the re-
sults obtained from the two different' choices of
correlation energy (SPH and Hubbard) which we
studied is somewhat encouraging.

There is also the separate matter of numerica 1

quantities are evaluated quite accurately with a.n
estimated numerical error 0. 1/o. However p„
and p.„,are obtained by the procedure given in
Sec. HI. This involves numerically interpola, ing
and differentiating the correlation energy which
enters zn 0 „,at ' t E and which is known numerically
onl with a limited accuracy. Because of this,
the numerical values which we obtain in e ig-
ony wl

in the hi h-
temperature region are sensitive to the choice of
interpolation procedure for the correlation energy.
However, the qualitative features of the phase dia-
grams which we obtain a.re not.

The method which we use to solve for three-

n g0, = P,
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X = Ah /r)c

0.6 0.8

FIG. 5. pz versus x at constant temperature and
pressure for T = 5 K S = 3 meV and the exchange-cor-

r E . The curves are labeled by therelation ene gy
value of the pressure in units of 10 Rym . re
occurs in some of the curves because we only plot states

&0. The scale of p& valuesfor which (8p/8 V) &„,N, ~, z
shown applied to the curve labeled p = 0.065. The re-
maining curves have been displaced successively to
lower energies by increments o . y

'f 0.01 H in order to
them. Three-phase equilibrium occurs at p

ith h othe—0.082. States which are in equilibrium with eac
are indicated by solid circles joined by dashed lines.

phase equilibrium at high temperatures l.s illus-
trated in Fig. 5, where we show some typical
plots of g„versus x at constant T and p. The

ks in the p. curves are due to unstable states
VI & 0. The(which are not showh) for which (aP/aV ~ . e

corresponding plots of p, , versus x are very simi-
lar qua. litatively to the g„curves except that all of
the lines have slopes of the opposite sign so that
the curves appear inverted. The density n which
corresponds to a particular isobar generally in-
creases with increasing x so that the portions of
the curves in Fig. 5 which occur to the left of the
break can be identified as corresponding to the
vapor while those to the right correspond to the
liquid.

To establish whether phase equilibrium is pos-
sible between two or more phases at a given value
f T d p one must determine whether it is pos-

l thesible for p,„as well as p, , to be simultaneous y e
same in all phases. Ne begin by solving iterative-
ly the equations
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for equilibrium between two phases & and P at a
given pressure and then determine whether a third
phase y can coexist with o' and P. We find, as ex-
pected from the Gibbs phase rule, that at a given
(not too large) value of T, there is a continuum of
values of P for which two phases can coexist, but
that three phases can coexist only at a unique val-
ue of P. In Fig. 5 we indicate examples of coex-
isting phases by solid circles joined by dashed
lines. At p=0. 065 and 0.075 only coexistence be-
tween the vapor and one liquid phase is possible.
At P = 0.090 only two liquid phases (filling the en-
tire crystal) can coexist. At p =0.082 the vapor
(v) can coexist simultaneously with the two liquid
phases I and II. That the two liquid phases can
coexist at p = 0.082 and 0.090 is obvious from
Fig. 5 by itself since the Maxwell construction in
g„-x space can be carried out. The liquid-vapor
equilibrium can also be obtained from the Maxwell
construction if the entire p.~-versus-x curve is
computed.

In Fig. 6 we give a more detailed map of the
phase equilibria which can occur under the same
conditions of temperature and stress as are con-
sidered in Fig. 5. The concentrations x of the
pairs of phases which can coexist at any value of
P can be read from Fig. 6 in the following way.
Points on the lines F-J and corresponding points
(at the same pressure) on line K Lgive resp-ec-
tively the concentrations of the vapor and liquid
phase II which can coexist with the vapor. In the
same way lines Q-R and Q-S correspond respec-
tively to the coexisting vapor and liquid phase I.
Lines I-N and M-0 give respectively the coex-
isting liquid phases I and II when the liquid fills
the entire crystal. The points labeled v, I, and
II give the vapor and liquid phases I and II respec-

tively at three-phase equilibrium. The line seg-
ments F-v, v-R, N-I, I-S, E-II, and II-0 appear
to correspond to metastable states. The p-n
diagram related to the p-x diagram in Fig. 6 can
also be drawn. Its general appearance is very
similar to Fig. 6, but we do not give it here,
since a more transparent way of presenting the
behavior of the system at fixed temperature is
available.

In Fig. 7 we show the fixed-temperature sec-
tion through the n, -n„-T-space phase diagram of
the two-component electron-hole system, for T
= 5' K and S„=3 meV. This figure should be com-
pared with Fig. 4 which is a similar section
through the phase diagram but taken at T= 0. The
main qualitative difference between the two figures
is that at 5'K the triangle v-I-II (in which we have
three-phase equilibrium) has moved away from the
n, axis and from the origin so that the vapor phase
v is no longer the vacuum. Also a new region
v-I-Q has appeared in which we have vapor in
equilibrium with liquid phase I. We do not show
the regions in which metastable states are possi-
ble in Fig. 7. The boundary of region II+ v has
not been closed since part of it corresponds to
vapor densities which are too low to be handled
meaningfully by the present methods. In the re-
gion below the curve LII-M-I-Q-v-J it is possible
to go continuously from liquid phase II to liquid
phase I to vapor.

0
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FIG. 6. The concentration x of the phases which can
coexist at various pressures p (in units of 10 Ry m )
at a stress SH= 3 meV and temperatures 5'K. The ex-
change-correlation model used is E„~. Three-phase
equilibrium occurs at p=p, . The meaning of the various
line segments is explained in the text.

FIG. 7. Constant temperature section through the
phase diagram of the two-component electron-hole sys-
tem for T=5'K, Sz=3 meV and the model E„~. Cor-
responding states of Fig. 6 and Fig. 7 are labeled by the
same symbols. The regions of the phase diagram are
labeled according to the phases which they contain. The
entire boundary of the region containing vapor (v) and
liquid phase II in contact with each other is not shown
in the figure (i.e., the way in which the curve J'-v-II-L,
should close is not shown) because this wouM invol. ve
extending the calculation to too low a vapor density.
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FIG. 8. The pressure p~ {units of 10 Rym ) at
which three-phase equilibrium occurs as a function of
temperature. a: SH=3 meV, E„„b:SH=1.5 meV,
E„,; c: Sz= 3 meV, Hubbard; d: Sz= 2 meV, Hubbard.
The exchange-correlation energies E„~ and Hubbard
refer to the SPH and Hubbard values for the model band
structure (i) described in the Introduction.

As the temperature is varied, the region of the

n, -n„plane in which three-phase equilibrium is
found changes, as does the pressure p, at which
three-phase equilibrium occurs. Plots of P, ver-
sus temperature for different values of stress and
for two choices of the exchange-correlation energy
are given in Fig. 8.

The information which is required to delineate
the region of the phase diagram in which three-
phase coexistence occurs is contained in a corn-
pact form in the coexistence curves for three-
phase equilibrium. These are given for three dif-
ferent values of stress for the exchange-correla-
tion energy Eo, in Figs. 9(a), 9(b), and 9(c). We

have plotted as a function of T the values of x and
n which the two liquid phases and the vapor have
when all three phases are in equilibrium. The
values for the vapor are plotted only in the higher
temperature region in which method (b) above is
used for the calculation. The dotted lines are a
smooth interpolation between the high and low T
regions. Since in Fig. 9 we are concerned only
with three-phase equilibrium, some of the lines
which we have plotted terminate abruptly when
the temperature rises into a range in which three-
phase equilibrium is not possible. Given x and n

for each of the three phases in equilibrium as a
function of the temperature, the region of the phase
diagram in n, -n„-T space in which three-phase co-
existence occurs can be found by constructing its
constant-T sections according to the method in
Sec. GI.

Figures 9(a), 9(b), and 9(c) show that the system
behaves differently as the temperature rises for
different values of stress. In Fig. 9(a) (S„=4
meV) we have two liquid phases I and II at low
temperatures which dissolve in each other at a
critical temperature of solution between 3 and 4 K.
In the language of Fig. 7 this can be viewed as fol-

lows: The side I-II of the triangle in n, -n„space
which forms the constant-temperature cross sec-
tion of the three-phase region of the phase dia-
gram degenerates into a point as the temperature
rises. Thus, the triangle degenerates into a line
2nd the three-phase region disappears as the tem-
perature rises through the critical point of solu-
tion.

In Fig. 9(b) where the stress is lower (S„=3
meV) the behavior is quite different as the temper-
ature is raised. As the temperature increases the
liquid phase II continues to exist as a separate
phase while the less dense liqujd phase I and the
vapor merge. At this stress as the temperature
rises it is the side v-I of the triangle of Fig. 7
which degenerates into a point where the three-
phase coexistence region terminates. The liquid-
vapor critical point (6—7'K) is difficult to study
numerically and for that reason parts of the lines
in Fig. 9(b) have been dashed.

At a stress Sz —l. 5 meV [Fig. 9(c)] the behavior
of the coexistence curves is particularly interest-
ing. At low temperatures we find two coexisting
liquid phases which dissolve in each other at T

O'K. For T~ O'K we again find coexistence of
two liquid phases and the vapor. As the tempera-
ture rises further the less dense liquid phase I and
the vapor eventually merge. In the temperature
range approximately 2—5 "K it is not possible to
have two liquid phases simultaneously present,
i.e., all of the g„ isobnrs in this temperature range
are monotonic functions of x in the entire region
associated with the electron-hole liquid so that
two liquid phases cannot coexist.

This remarkable low-stress behavior can be
physically interpreted as follows. At very low
temperatures the chemical potential p,„as a func-
tion of x has a minimum which is responsible for
the phase separation. As the temperature in-
creases, this minimum becomes shallower due to
the contributions to g„.of its temperature-depen-
dent part which is roughly proportional to T'/n„'~'-
and is a rapidly increasing function of x. Thus,
the minimum in the p,„versus x isobar eventually
disappears as the temperature increases, and the
two liquid phases coalesce. With further increase
of temperature the EHL density begins to decrease
rapidly. When the density has fallen to a point
where the hole Fermi level is close to the valence
band separation, the valence band nonparabolicity
at the hold Fermi level is particularly strong.
The stronger nonparabolicity of the valence band
near to the hole Fermi level favors the phase
separation of the EHD as explained in Sec. III. It
appears that this effect offsets the contribution of
the temperature-dependent part of g„which was
described above, and the phase separation of the
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FIG. 9 (a) Coexistence curves for three phases in equilibrium, for a stress-induced valence band splitting at the zone
center S&=4 meV. The values of the concentration x and total density z for each coexisting phase are plotted at various
temperatures. E„, is the exchange correlation energy used. The liquid phases are labeled I and II, and ~ denotes the
vapor. The vapor phase is not plotted at low temperatures. Dotted lines are a smooth interpolation between the low and

high T regions. The dot-dashed line denotes the density +DH at which the Debye-Huckel screening length equals the ex-
citon Bohr radius —see Eq. (29). (b) Coexistence curves for three phases in equilibrium for a valence band splitting p&
=3 meV and the exchange-correlation energy E„,. Notation as in (a). For explanation of the dashed lines see text. (c)
Coexistence curves for three phases in equilibrium for a valence band splitting 8+=1.5 meV and the exchange-correla-
tion energy E„. Notation as in (a).

EHD reappears.
The information in Figs. 9(a)—9(c) can be pre-

sented in an alternative form by drawing the region
of the phase diagram in n, -n„-T space in which
three-phase coexistence occurs. This has been
done for $„=3 meV and 1.5 meV in Figs. 10(a)

and 10(b), respectively. The tI..ree-phase region
of the phase diagram for SH =4 meV is similar to
the lower part of Fig. 10(b).

In order to see how sensitive the remarkable
behavior which we found at low stress is to the
choice of the exchange-correlation energy we
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IIIa
SH = &meV

Exc

SH = l.5meV

Exc

FIG. 10. Pictorial representation of the regions of the phase diagram in nj,-g;T space in which the two liquid phases
and the vapor coexist. This is an alternative representation of the same information as is contained in the coexistence
curves f(b) and (e)]. Because of the difficulties inherent in depicting solids in two dimensions, a detailed description is
necessary: (a) The case of a valence band splitting of 3 meV for the model. exchange correlation energy E„~. At each
fixed temperature the three-phase coexistence region is a triangle contained in a plane parallel to the gI,-g~ plane. These
triangles are shown explicitly for a number of arbritarily chosen temperatures. The positions of three vertices (denoted
o.", P', and p') of triangle i correspond to the entire system containing only the vapor or only the liquid phase II or only
the liquid phase I respectively. As the temperature increases the vertices n' and p' come closer together and finally
merge into each other at the point &, at the temperature at which the liquid phase I and the vapor become indistinguish-
able. At that temperature the triangle &'P'y' degenerates into the line «. The line « is parallel to the gI,-g, plane. (b)
The case of a valence-band splitting of 1.5 meV for the model exchange-correlation energy E„,. The coexistence of three
phases occurs in two disjoint regions. As in case (a), at each fixed temperature the three-phase coexistence region is a
triangle with vertices n, p', p'. In the lower temperature region of the phase diagram we begin at T = 0 with a triangular
cross section &-P-y of the three-phase coexistence region. As the temperature increases, the vertices P; and p; of the
triangle i (which represent the liquid phases II and I respectively) come closer together in &I,-&, space and eventually
merge at the point &. At the temperature at which this takes place the triangle &'P'y' degenerates into the line «which
is parallel to the gl;g~ plane. In the intermediate temperature range the simultaneous presence of all three phases is
not possible. In the higher temperature range the three-phase coexistence region again has a triangular cross section
at each fixed temperature. Such a representative triangle at one particular temperature T"' is labeled "'p"'y" in the
figure. As the temperature rises above 7"' the vertices &' and y~ of the triangle come together and merge at the point

while the vertex P' approaches the point &", so that the triangle &'P'y' degenerates into the line &"~" which is parallel
to the &I,-&, plane, ie. , the liquid phase I and vapor merge. At temperature below T'" the vertices P' and p' of triangle i
come together with decreasing temperature and merge at the point 6', while o' approaches the point &', i.e., the triangle
0."P'p' degenerates with decreasing temperature into the line &'5' which is parallel to the gz-pg~ plane. In other words,
the liquid phases I and II eventually become indistinguishable as the, temperature decreases.

performed the above calculations at two values of
stress using E„, (Hubbard) instead of Eo,. The
results are shown in Figs. 11(a) and 11(b), and are
similar to those in Fig. 9(c). As can be seen in
Fig. 8, the pressure P, which corresponds to
three-phase equilibrium is consistently lower if
one uses E„, (Hubbard) than if one uses Eo, for the
exchange-correlation energy. For this reason it
turns out to be necessary to use the zero-pressure
approximation up to higher temperatures when the
Hubbard correlation energy is used.

Comparison of Figs. 9 and 11 shows. that while
the reappearance of the phase separation at higher
temperatures appears to survive modest changes
in the exchange-correlation energy, a more de-
tailed theory is needed in order to be able to make
accurate predictions at high temperatures.

V. DISCUSSION

Our calculations have shown that the two-com-
ponent electron-hole liquid in stressed Ge is a
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FIG. 11. (a3 Coexistence curves for three phases in
equilibrium for a valence-band splitting S+=2 meV,
using the exchange-correlation energy E„~ (Hubbard3.
Notation as in Fig. 9. (b) Coexistence curves for three
phases in equilibrium for a valence-band splitting SH
= 3 meV using the exchange-correlation energy E„
Pbabbard3. Notation as in Fig. 9.

system of considerable interest from the point of
view of both theory and experiment. It is a unique
case of a degenerate two-component Fermi system
which can be studied in the laboratory. In addi-
tion, the magnitude of the stress applied to the
crystal provides a, crucial parameter in the Hamil-
tonian of the liquid which can be va, ried at will by
the experimentalist.

The main approximation which has been made in
our theory is that the exchange-correlation energy
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APPENDIX: DISCUSSION OF THE HARTREE-FOCK
APPROXIMATION AT T = 0

The exchange energy of the two-component EHD
at T= 0 ean be written

4++a & ~P E e'z /3 j./3 (A1)

per electron-hole pair in the electron-hole liquid
depends only on the total density of hot and cold
electrons. At T= 0 we have examined ma, ny mod-
els for the exchange-correlation energy having this
property, in addition to those described in this
paper. In all cases we found that the two-compo-
nent electron-hole liquid phase separates in an
intermediate stress range in a manner very simi-
lar to that described in Sec. III.

The Hartree-Fock approximation and related
approximations in which an approximate correla, -
tion energy per pair (taken to depend only the total
density of hot and cold electrons in the EHD) is
added to the exact exchange energy (per pair) of
the EHD, provide some examples of model ex-
change-correla. tion energies which depend on the
way in which the electrons a,re distributed among
the hot and cold valleys as well as on the total
density. While all of these Hartree-Fock type
models predict that- the two component EHD should
phase separate, they all suffer from the same in-
consistencies as the Hartree-Fock approximation
(Appendix) and thus should be considered as in-
ferior to the models which we ha, ve used in this
paper.

In a recent article, Feldman and Markiewicz"
calculated the energy which is gained (per elec-
tron-hole pair) when the two-component electron-
hole liquid phase separates at T= 0. They found
this energy to be quite small and concluded that
this implies that the phase separation of the EHD
would only occur at temperatures well below 2'K.
Our explicit finite-temperature calculations show
this conclusion to be inva, lid, a,nd that the phase
separation of the two-component FHD may well
persist up to temperatures comparable with the
liquid-vapor critical point. However, it is clear
that only experiment will be able to determine
unambiguously to what extent our predictions are
correct.
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(A2)

from the first term on the right-hand side of (Al),
i.e., from the exchange interaction between the
hot electrons. [The contribution to gh of the hot
electron kinetic energy which is proportional to
n„' ' is a much more slowly varying function of n„
(in the limit of small nh) than the term (A2). The
other Ha, rtree-Fock contributions to p.„are also
more slowly varying. ] This implies that for suf-
ficiently small x,

gx ~ z.0&0, (A3)

which is in violation of the thermodynamic stability
requirements for a uniform two-component sys-
tem. " Consequently, for very small values of x

where a homogeneous electron-hole liquid has been
assumed, y„and y, are positive constants, and

E„~ is the hole exchange energy. In the limit of
small x=Nh/N, the variation with nh of the hot pair
chemical potential p,„, in the HFA, is dominated
by the contribution

~h 4h( h ) h (A4)

in the limit of small n~. Thus, the limiting HFA
result (A3) fails when correlations are included.
The result (A4) can be viewed as the extension to
zero temperature for a Fermi system of the usual
finite temperature asymptotic property of dilute
solutions. 9

This illustrates the need for a careful choice of
the approximations used for the exchange-correla-
tion energy of this system. Our use of exchange-
correlation energies which depend only on the total
electron density guarantees that the requirement
(A4) is satisfied at T=O.

the EHD must phase separate in the HFA. A sim-
ilar argument applied to p, shows that in the HFA
the EHD must also phase separate if x is sufficient-
ly large.

If correlation effects are included, the exchange
interaction between hot electrons will be screened
out in the limit n~«n, and the variation of p~ with

n„ in the limit of small x will be dominated by the
contribution from the hot electron kinetic energy,
l.e ~ )
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