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Photoelasticity and acousto-optic diffraction in piezoelectric semiconductors
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Contributions from the free-carrier screened indirect photoelastic effect and from the free-carrier density
fluctuations to the photoelasticity in piezoelectric semiconductors have been considered by taking account of
the existence of both electrons and holes. Explicit expressions for the effective photoelastic constants
corresponding to these contributions have been derived on the basis of the small-signal acousto-electric
theory. The results obtained are applicable either to extrinsic or to intrinsic semiconductors. The numerical
evaluation of these contributions has been carried out by taking tellurium as an example. In accordance with

the theoretical prediction, an appreciable diffraction ascribable to the free-carrier density fluctuations has
been observed in the acousto-optic diffraction experiments.

I. INTRODUCTION
1
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where the summation convention has been used.
In the first term P„-J&,», is the Pockels photoelas-
tic tensor component and p&,.»,», in the second
term represents the photoelastic tensor due to the
rotational contribution. The infinitesimal strain
and mean rotation are defined, respectively, by

(1.3)

and

An elastic deformation accompanying an acoustic
mode traveling in a medium gives rise to optical
scattering phenomena known as Brillouin scatter-
ing or acousto- optic diffraction. The physical
mechanism of these scattering phenomena in an
anisotropic crystal can best be described in terms
of the time-space fluctuations in the inverse di-
electric constant of the crystal. Especially, as
discussed by Keller, ' ' in strongly piezoelectric
semiconductors three effects can contribute sig-
nificantly to these fluctuations:

n. (1/~)' = a(1/~)' + a(1/~)!",+ a(1/~)!' , (l.l).

where s(1/~). , is the change in the inverse di-
electric constant at an optical frequency caused
by the elastic deformation. (Hereafter a dielectric
constant at an optical frequency willbe designated
by v. . and we shall retain &. . to mean that at an
acoustic frequency. ) The first term a(1/v)', , re-
presents the direct photoelastic effect arising from
the fluctuations in the strain (or equivalently, the
POckels photoelasticity) and from the mean ro
tation of the volume element. 'The formulation of
the direct effect was derived by Nelson and Lax"
on a phenomenological basis as

n, (l/z) . . =p &, , & &ai )s &a»+~ (;& «ai)~ w j

Parentheses enclosing subscripts indicate sym-
metry upon interchange of the subscripts, while
bracketed subscripts indicate antisymmetry upon
interchange. The gradient of the displacement
vector u, of the acoustic wave is denoted by uk,
—= su, /ax, . The antisymmetric part p „.«„, can be
calculated simply from the optical dielectric ten-
sor":

(1.5)

The second term on the right-hand side of Eq.
(1.1), b, (1/y)I;. , represents the indirect photoel-
astic effect, i.e. , the success'ion of the piezoelec-
tric and electro-optic effects. This effect includes
the screening caused by the free carriers and can
be calculated from the acousto-electrically in-
duced self-consistent electric field due to the pi-
ezoelectric coupling. The third term, n, (1/g)". .,
gives the change of the inverse dielectric con-
stant caused by the fluctuation in the free-carrier
densities, i.e. , an acoustic wave may be accom-
panied by free- carrier density waves arising also
from the piezoelectric coupling. Accordingly,
the second and third terms are significant only
when the acoustic wave is piezoelectrically active
or, equivalently, when the acoustic wave induces
a longitudinal self- consistent electric field. Con-
tributions from the def ormation-potential coupling
may be ignored, since in strong piezoe1. ectric
semiconductors contributions from the piezoelec-
tric coupling dominate these by many orders of
magnitude. Appearance of the third term was first
theoretically predicted by Proklov, Shkerdin, and
Gulyaev' and experimentally verified by Proklov,
Mirgorodsky, Shkerdin, and Gulyaev' in an n-type
CdS crystal.

Because both the second and third terms on the
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right-hand side of Eq. (1.1) are tensor functions
of the elastic deformation (the appropriate inde-
pendent elastic variable in this case is the strain),
it is possible to define effective photoelastic con-
stants for these two terms. An explicit expression
for the photoelastic constant for the indirect effect
was derived by Nelson and I,ax' for the case with-
out free-carrier screening and by Sasaki, Tsubou-
chi, Chubachi, and Mikoshiba for the case with
screening. The latter authors started from the Hut-
son-White formulation" for the acousto-electric
interaction assuming the existence of only one kind of
free carrier, and therefore it applies only to extrinsic
semiconductors. On the other hand, Keller' gave
rather general expressions for the dielectric fluc-
tuations of the second and third terms in Eq. (1.1),
but assumed also only one kind of free carrier.

In contrast to the previous works above this pa-
per takes account of the existence of both elec-
trons and holes and derives the expressions for
effective photoelasticity that are applicable to
piezoelectric semiconductors in either an intrinsic
or an extrinsic conduction regime. The theoretical
treatment presented in Sec. II A is based upon the
linear acousto-electric theory originally developed
by Fink and Quentin" taking two kinds of free car-
riers into account. 'The treatment is therefore val-
id for the cases in which the small-signal theory
applies. The derived results predict that in intrin-
sic semiconductors considerable cancellation may
occur between photoelasticity due to electron-
density fluctuation and that due to hole-density
fluctuation. In Sec. IIB we apply the results to
tellurium, one of the strongest piezoelectric semi-
conductors. Finally, in Sec. III acousto-optic
diffraction experiments of 10.6-p,m infrared light
from a CO, laser are carriedoutusingatellurium
crystal in an intrinsic conduction regime at room
temperature. In accordance with the theoretical
prediction, an appreciable diffraction ascribable
to the free-carrier density fluctuations is ob-
served.

Pq pqkl kl st s & (2.1)

(2.2)

where T„ is the stress, Sk, is the strain, c,„, is
the elastic stiffness constant, e,. „ is the piezo-
electric constant, and ek, is the dielectric con-
stant at an acoustic frequency. The subscripts
refer to the usual rectangular crystallographic
coordinate, es. An acoustic wave propagating in the
medium creates an instantaneous local modu-
lation of the free- carrier densities: neglecting
trapping .effect,

n'=no+n,

O'=Po+P j

(2.3)

(2.4)

where n, and p, are the equilibrium density of
electrons and holes in the absence of an acoustic
wave and n and p represent their instantaneous
local changes. Poisson's equation is satisfied
separately for the two kinds of free carriers:

and

BD," BD~

B
=CP ~

t

D =D"+D~,

(2.5)

(2.6)

where the superscripts n and p denote the compo-
nent due to electrons and to holes, respectively.
The equations of charge continuity are

BJ"; Bn BJ ~j BP

Bx - Bt Bx. M
(2.7)

The total current density is

J =J"+J~j j jP

with

(2.8)

The basic equations that describe the acousto-
electric interaction are the mechanical wave equa-
tions, the Maxwell equations, and the piezoelec-
tric equations of state":

II. THEORETICAL

A. Photoelasticity in piezoelectric semiconductors
and

n
~kjEk (2.9)

In this section we derive the expression for the
effective photoelastic constants corresponding to
the second and third terms on the right-hand side
of Eq. (1.1). In the following treatment the recom-
bination between electrons and holes will be neg-
lected. This assumption is legitimate in tellurium,
where 7„,-10~ sec,"which is much longer than
the period of the acoustic wave we shall be con-
cerned with. In order to derive the effective
photoelastic tensors with full symmetry, the ten-
sor notations will be retained throughout.

(2.10)

where S", and S~, are the diffusion constants, the
equilibrium conductivities are

n „„ tl p p&"OI"kj~ ~k j &&0~k; j (2.11)

and the nonlinear terms containing nEk and pEk
have been dropped compared with the other terms.
Equations (2.1)-(2.10) can be solved by introduc-
ing plane-wave time and space dependences such
as
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and

E» =ED» exp[j(k' x, .—vt)] (2.12) where y, j„ is the electro-optic constant measured
at constant strain. The effective photoelastic con-
stant defined in Eq. (2.20) is then given by

n = n' exp[j(k; x, —&t)], (2.13)

where the dielectric relaxation frequencies are

(2.15)

and the diffusion frequencies are

(2.16)

where 4'. and & are the wave vector and the fre-
quency of the acoustic wave. The piezoelectrically
induced self- consistent longitudinal electric field
is then obtained as

a„a,e, „S „j((u",/(u) j((u»e/~)
a,a,c„a, (+j(at/~ j )+)(w/~') )

(2.14)

~in & ~.~hei nA
~f jmn

&00&E&&Q&
(2.22)

The third term on the right-hand side of Eq. (1.1)
can be obtained through the relation for, infrared
radiation":

(2.23)

where n' and P' have been defined in Eqs. (2.3)
and (2.4), »', , is the dielectric constant in the ab-
sence of free carriers, &, is the optical frequency,
and m„and rn are the electron and the hole effec-
tive mass, respectively. Differentiating Eq. (2.23)
with respect to n' and p ', we obtain

(d»v=v'/a, S»,a, =qv /. a, t(, »~a/ke T. (2.17)

Here vis the acoustic velocity, g,. is the component of
the directional cosine of the acoustic wave vector,
and k~ is the Boltzmann constant. The local fluc-
tuations in the free-carrier densities due to bunch-
ing are then

AI(:".=—hw". . + 6K~.
&j t'j ij

= —»",,(n/n, ) —~", ,(P/P, ),
where

(2.24)

2.25

te imnSn, nn-
Q5 [1+j (&/~D)]

j(~c/&) i (& /&)
)+/(w/aP ) (+j(~ /~') )

(2.18) a(l/)(), , = - (1/~), a» „(1/)()„, (2.26)

and n and p have been derived in Eqs. (2.18)
and (2.19). To obtain the change in the inverse
dielectric constant, we shall employ the following
identity equation:

p
E 1mriae

g5
c

[1+j(u)/(()»v)]

In the crystal symmetries except for triclinic and
monoclinic systems the coordinate system we have
referred to above agrees with the dielectric prin-
cipal axes, so that Eq. (2.26) is reduced to the
simple form

~

~

~ ~

j( ~",/(u) j ( ~',/ ~)
x &+ . „+1+j ((d/& D) 1+j(a/(d» ) a(1/v). , =—

K .) K .j
(2.27)

(2.19) Substitution of Eq. (2.24) into Eq. (2.27) yields

From Eq. (2.14) the change of the inverse dielec-
tric constant arising from the indirect effect, i.e. ,
the second term on the right-hand side of Eq. (1.1),
can be written

fc—=P, , „S„. (2.28)

t), (l/~),'", = y„.„E„

y, &„a„a,e( P „A
&OQ~& ~pg~

in
~f jmt7S~ '

with

(2.20)

The effective photoelastic constant is then written

fc — n +Pi jm& ~ t jm& P j jmt7

ace, „A V",.j COc

n, 1+j ((d/(dD)

j(~",/~), j(~e/~)
1+j ((d/())v) 1+j((d/(d»n) ) (2.21)

61+j((u/(u')

(2.29)
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Because the right-hand side of Eq. (2.29) contains
K"j and KI.'., which are inversely ProPortiona, l to the
square of the optical f.requency, (d,', the photo-
elasticity arising from the free-carrier density
fluctuations in some favorable cases may become
comparable to or even larger than the two other
contributions for the measurements using a suf-
ficiently long optical wavelength (10.6- p, m light of
a CO, laser, for example).

For piezoelectric semiconductors in the extrin-
sic conduction regime (p-type, for example),
after putting the equilibrium electron density n,
equal to zero as compared with P„Eqs. (2.22)
and (2.29) become

pjfi ~ 4i~ r I fmn. y. . aae
t' jmn

0 k kP
(2.32)

n n

p
f'c l 1~n c ij c

K K @'0 (d + (d n Pti jJ C C 0 0

(2.33)

indicating that the absolute values of both photo-
elastic constants increase in proportion to ~.
For sufficiently high frequencies ~ » (&"'I', ~

~'~

the free-carrier screening rapidly diminishes
and p'. "j,„„approaches its high-frequency limit,

&m"
=

eoa~e~~a~ 1+j(~~c/~+ ~/~'D)

*ill — ~4 i~ v 1 f mt'
~t jm&

Oakekg, n
(2.34)

K~.5. .fc ~ lies ii ii c 2 31)~„~.qvP, 1+j(~~c/re+ (u/(u~)
'

Equation (2.30) is reduced to the expression de-
rived by Sasaki et a/. ' Equations (2.29) and (2.31)
indicate that the conductivity dependence of p'. ,'. „
between intrinsic and extrinsic semieonduetors is
considerably different. In particular, for the in-
trinsic case in which the relation n, =p, holds be-
tween the two equilibrium carrier densities, p. j „
and pI', „defined in Eq. (2.29) have the absolute
values which are, in general, not very much dif-
ferent from each other, while the phase angle be-
tween them is always greater than &p and less than

Especially when &~-~D, the phase angle cannot
deviate very much from z, regardless of ~z. The
maximum deviation of the phase angle from m oc-
curs at the acoustic frequency of ~=(~~&u~D)' '.
As a result, considerable cancellation is expected
between the photoelasticity due to the electron-
density fluctuation and that due to the hole-density
fluctuation. This behavior, as suggested by Eqs.
(2.18) and (2.19), indicates that the electron bunch-
ing and the hole bunching always occur nearly z
out of phase, provided that co D

- +~0. If a~ = co~»

the phase angle between p", „and p~j „is exactly
g, so that the most effective cancellation takes
place.

It is understood from Eqs. (1.2), (1.5), (2.22),
and (2.29) that the photoelastic tensors corres-
ponding to the different physical origins possess
different symmetries and show different depen-
dences on the acoustic and optical frequencies.
This permits a powerful experimental technique
to measure each contribution separately. For
acoustic frequencies ~ «~c'~, &u~~, Eqs. (2.22)
and (2.29) can be approximated as

which is in agreement with the expression obtained
by Nelson and I ax' in the limit of zero conductiv-
ity. On the other hand, ~p". . „~ decreases in in-
verse proportion to ~ as

I

tl p . p pQ)8 ) „1 K j(d~(d~ K,.(d~(d~
K. .K. qV CO n Pii jj 0 0

(2.35)

These frequency dependences will. be considered
in more detail in Sec. IIB by taking tellurium as
an example.

B. Photoelasticity and acousto-optic Bragg diffraction
in tellurium

Tellurium is a semiconducting material with a
trigonal crystal structure belonging to class-32
symmetry and shows p-type extrinsic conduction
below its Hall-reversal temperature of about
200'K. Since tellurium is one of the most highly
piezoelectric materials, it shows remarkable non-
linear conduction due to the acousto-electric ef-
fect at low temperature. "" Ultrasonic ampli-
fication in this material was achieved for the first
time by Ishiguro and Tanaka" and by Ishiguro
et al."using a shear ultrasonic wave of 45 MHz
propagating along the y axis at 77'K. These
previous experimental results suggest that apprec-
iable dielectric modulation due to the piezoelec-
tric coupling should be observed when piezoelec-
trically active ultrasonic waves traverse the ma-
terial. Recently the acousto-optic properties of
tellurium were studied in detail by the present
authors at the 10.6 p,m wavelength of CO, laser
light. ' '

The symmetric part p „,&(» &
of the photoelastic

tensor for the direct effect in crystals with class
32 symmetry is given by~'
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r
Pll P12 P13 P14

P12 P ll P13 P14

P31 P31 P33

P41 P41 0 P44 0

0 0 0 0 P44 P41

(2.36)

0 0 0 P14 s(P11 P12)

(8 independent components)

where the contracted matrix notation is used and
the superscript s is attached to clarify its sym-
metric property. Equation (1.5) gives the anti-
symmetric part P („.&,», as

P (13 )[13) p (23 )5(33 & ( ~ g 0) &
(2.37)

P ll

0

P11 P14 P15 P16

0 0 0 0 0
(2.38)

P41 P41 P44 P45 P46

P46 P46 P45 P55 P56

.P16 -P16 o P15 P65 P66

(12 independent components)

In a similar way Eq. (2.29) determines p,'& „as

Pll Pll P14 P15 P16

Pll Pll P14 P15 P16

P31 P31 P34 P35 P36

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

(8 independent components)

(2.39).

As pointed out by Nelson and I.ax, ' because of the
presence of the acoustic wave-vector direction
a, in p™„as shown by Eq. (2.22), it does not
transform as a simple fourth-rank tensor. It
is instead a tensor function of the acoustic wave-
vector direction. The same situation holds also
in P",, „which has been derived thus far in this

where N, and N, are the ordinary and the extra-
ordinary refractive indices, respectively. The
other antisymmetric components are identically
zero in this crystal class. For tellurium, N,
=4.7939 and N, = 6.2433 at 10.6 pm. 22 'Then the
value of Eq. (2.37) reduces to -0.0089.

The photoelastic tensor P,"~ „ for the indirect ef-
fect is determined from Eq. (2.22) using the di-
electric- constant and piezoelectric- constant ten-
sors of class 32 as

1nPll Pll P14 P15 P16

(2.40)

where the subscripts I and D indicate the quantities
relating to the incident and the diffracted light,
respectively, N is the refractive index, P„ is the
acoustic power, I. and H are respectively the
width and the height of the cross section of the
acoustic column where the direction of I. lies in
the scattering plane and is normal to the acoustic
wave vector, p is the density, v is the acoustic
velocity, X, is the wavelength of the diffracted
light in vacuum, 8 is the angle between- the optic-
al wave vector and the normal to the acoustic
wave vector, and P,« is the effective photoelastie
constant" given by

p ff=~d p „((d Q(5(, )
(2,41)

where d~ and d'„are unit vectors in the direction
of the electric displacement of the diffracted and
incident waves. a, and b„are unit vectors in the
direction of the acoustic wave vector and material
displacement. P „„,is a relevant photoelastic ten-
sor component given by Eqs. (2.22), (2.29), and

(2.36)-(2.39). In the derivation of Eq. (2.40) we

have made the approximation that cos5~ = 1 and

cos6, =1, where ~~ I are the angles between the
optical Poynting vector and the wave vector.
Fquation (2.40) is essentially the same as those
usually referred to in experimental determinations
of acousto-optic material figures of merit [Eq.
(3) in Ref. 27, for example] except that the latter

paper.
Since P.'. „is equal to zero if i cj, it is under-

stood that the acousto-optic diffraction of an in-
cident light caused by the free-carrier density
fluctuations does not accompany a right-angle
rotation of the polarization plane. In the Bragg-
diffraction limit, "therefore, when the polariza-
tion vector of the incident light lies in the plane
perpendicular to the optic axis in an optically un-
iaxial crystal like tellurium, the diffraction will
take the form of isotropie Bragg diffraction. "
On the other hand, anisotropie Bragg diffraction
takes place when the polarization plane rotates
at a right angle to that of the incident light (i.e.,
it j), and refractive indices for both lights diff'er
from each other. '

8tarting from Eq. (3.41) in Ref. 5, an expression
for the diffracted optical intensity from the Bragg
diffraction can be derived under the phase-match-
ing condition for plane waves. Ignoring the incid-
ent optical wave depletion due to the diffraction,
we obtain

N, (e~)JV~ (9~) p, ,(P„L2
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expressions often contain some ambiguous nota-
tions for refractive indices and photoelastic con-
stant.

ln order to utilize Eqs. (2.40) and (2.41), it is
necessary to determine the frequency dependence
of the angle of incidence I9, and the corresponding
angle of diffraction HD under the phase-matching
condition (or, equivalently, the Bragg condition),
which can be derived simply from a consideration
of energy and pseudomomentum conservation as
the following well-known equations":

e

AI R

Z= SX
TE I I URIUM

and

2

(2.43)

0,' = sin ' [N, (0,) sin0, ] (2.44)

where f(=&u/2m) is the acoustic frequency.
In the acousto-optic diffraction experiments we

shall describe below, a shear ultrasonic wave

propagating along the crystallographic y axis with
the velocity of 1390 m/sec at room temperature
was used as one of the highly piezoelectrically ac-
tive acoustic waves in tellurium. This wave has
its displacement vector parallel to the x axis, so
that the mean rotation of the volume element de-
fined by Eq. (1.4) is reduced to R,», . Because
Eq. (2.3'l) reveals that there are no nonzero anti-
symmetric photoelastic components corresponding
to R&»„we can neglect the rotational contribution;
consequently, the only relevant variable we must
retain to describe the elastic deformation is the
strain 8„. The experimental geometry is shown

in Fig. 1, in which the angles measured outside
the medium are determined by knell's law as

FIG. 1. Schematic illustration of the mve-vector
diagram employed in the acousto-optic diffraction ex-
periments. kJ and kD are the wave vectors of the inci-
dent and diffracted light, respectively. 8&and 8~ are
the angles of incidence and diffraction measured inside
the crystal, while 8& and 8D are those measured outside.
k is the wave vector of the shear acoustic wave propa-
gating along the y axis. The coordinate axes denote the
crystallographic orientation for the tellurium sample.
The diffraction plane is parallel to the y-z plane.

60—

1 I I I l 1II I 1 I 1lI I i I I t I 1 II

eo ei'
8o-

+ 30—
Cl

+ n
Cb 0

Cb

-30—

CAS

I j I ~ I I
I I 1 ~ ~ ~ ~

light lies in the y-z plane and Eqs. (2.42) and
(2.43) are simply modified by putting N, (0z) =N,
and

Nv(0D) =1 /[( cos 0~ /N)'+ (sin0 /N~, P]'~'.

Figure 2 shows the thus calculated external angles
0,' and gD for both isotropic and anisotropic Bragg

0D = sin '[Nv(0v) sin0D]. (2.45) 60 ANISOTROPIC DIFFRACT
— ---- ISOTROPIC DIFFRACTION

sin0z =sin0~=X, f/2N, v . (2.46)

For anisotropic Bragg diffraction, on the other
hand, the polarization vector of the diffracted

The incident optical beam was transmitted in the
y-z plane and ordinarily polarized parallel to the
x axis. Therefore, in an isotropic Bragg case the
polarization of the diffracted light is also parallel
to the x axis and both N, (0,) and ND(0D) coincide
with the ordinary index given by N„being inde-
pendent of 0I and 0~. Equations (2.42) and (2.43)
are then reduced to

-90 i i Ill I I I IIIII I I I I I I

10 100 3000
ACOUSTIC FREQUENCY (MHz)

FIG. 2. Calculated angles of incidence and diffraction
outside the tellurium crystal at 10.6 pm as a function of
frequency of a shear acoustic wave propagating in the y
direction with displacement parallel to the x axis. The
incident light is an ordinary wave polarized along the x
axis and the diffraction plane lies in the y-s plane. Solid
curves are obtained for anisotropic Bragg diffraction,
while broken curves are isotropic Bragg diffraction. Two
kinds of solutions are denoted respectively by "case 1"
and "ease 2" for the anisotropic diffraction.
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TABLE I. Pockels photoelastic constants in tellurium.

I pfi I I pft I Ipf, l I pftl I pfs I I pf41 I p'4t I I p441

0.164 0.138 0.146 0.086 0.038

~&4t s'nsn pose»on I
. (2.47)

Recently numerical values for five of the eight in-
dependent photoelastic tensor components in tel-
lurium were experimentally determined by the
present authors, ' ' as listed in Table I, where
values fog p,'„P4'„and p44 have not been deter-
mined yet. Though the actual value for P4, is still
unknown, the first term on the right-hand side of
Eq. (2.47) may be droppe'd compared to the second
term, which is a good approximation as long as
we are concerned with a small Bragg angle so as
to satisfy the relation sinOD«&. Then we have
p', « ——~p« ~. The absolute value of p,', can be de-
termined from the relation" ~pss,

~

= ~p'„—pft~/2,
with [Pf, [=0.164 and [p,', [=0.138. Because the
relative sign of P,', and Py4 is unknown, we shall
tentatively assume the following two cases: (i)
If P,', and P,', possess the same signs, then ~ps's

~

=0.013; (ii) if they possess different signs, then
~P'ss ~=0.151. The actual relative sign will be de-

termined in Sec. III by comparing the experimen-
tally observed diffraction intensity with those the-
oretically predicted from the two assumed kinds
of values above.

Similarly the indirect photoelastic effect causes
anisotropic Bragg diffraction through the effective
photoelastic constant

diffractions as a function of acoustic frequency.
Here two kinds of solutions designated in the dia-
gram respectively by "case 1" and "case 2" have
been obtained for the anisotropic diffraction, for
which the experiments were carried out with re-
spect to case 1.

Inspection of Eqs. (2.36) and (2.41) reveals that
in this geometry the direct photoelastic effect gives
rise to anisotropic Bragg diffraction through the
effective photoelastic constant

e~e A. Kg~ (d g
(a„)'qv n, ,l +j (a /(use)

I I I I I Ill] I I I I I III) I I I I I llli

002

Q.
001

In order to estimate the frequency characteristics
of the two photoelastic constants predicted by Eqs.
(2.48) and (2.50), the dielectric relaxation fre-
quencies and the diffusion frequencies were deter-
mined from the Hall measurements. The sample
was cut from the same crystal as used in the acou-
sto-optic diffraction experiments in Sec. III. The
Hall reversal was observed at 200 K. The estim-
ation of p, „and p, ~ in the intrinsic region above
the Hall reversal temperature was performed ac-
'cording to the method and formulas proposed by
Grosse, "from which we have no=p, =4.4 & 10"
cm-', p, „=1840cm'/Vsec, p~=800cm'/'li'sec,
and b = p, „/p ~=2.3 at room temperature. Using the
low-frequency dielectric constant &» = 33,"we ob-
azn (o" =7 11 ~10& Hz ~~ =3.09x10xo Hz ~n

=6.46 x 10' Hz, and &~~ =1.49 && 10' Hz. The ex-
pected variations of ~ps's

~

and ~p,'s ~

at 10.6 pm
are plotted in Fig. 3 as a function of acoustic fre-
quency, where &u„-=(~c&uo)'~' =(&u~oco~n)'~' =2.15

peff IpsssM&n —psscosHD
I

where Eq. (2.22) gives

(2.48)
0

0.014)N1 0 14)N1 100~

in
pss = mes~as+/solon (2.49)

Qn the other hand, it can be easily derived that
the photoelasticity arising from the free-carrier
density fluctuations may give rise to isotropic
Bragg diffraction via

FIG. s. Theoretical plot of lpIIssl and Ip&sl in tellur-
ium as a function of acoustic frequency. Calculations
have been carried out for tellurium in an intrinsic re-
gion at room temperature (co&—-2.15 && 10 Hz) and in a
p-type extrinsic region at 77'K (co&=1.0 ~109 Hz), res-
pectively.
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x 10' Hz. The material constants used in the cal-
culation are e„=-0.42 C/m', "m =0.051m„

0 146~ 31 ~ ~2 22 98 21 andy 6 97
x 10 "m/V'. y62 has been estimated from the non-
linear optical coefficient'a d» = 920 x 10 "m/V
employing Miller's rule. " At 77 K this sample
shows p-type extrinsic conduction with po =2.3
x10' cm ', iI.~=1920 cm'/&sec, a~~ =3.8 x10 Hz,

cuban
=2.7 x 10' Hz, and cu„= (&c~ aI~ )' ~' = 1.0 x 10' Hz,

from which ~pss ~

and ~p,'s
~

at 77 K are calculated
using Eqs. (2.30) and (2.31), as also illustrated
in Fig. 3. The frequency which gives the maxi-
mum value for ~P,",

~

coincides with ccv at 77'K,
while at room temperature it is shifted toward
higher frequencies but still located in the range
(cue, ~n~ «d «cc", &s~c). For sufficiently high fre-
quencies (~» ~o, u~~~), the free-carrier bunchings
attain a scale much smaller than the Debye length'
and are effectively smeared out by thermal motion
of the free carriers. The magnitude of ~P,",

~

aris-
ing from the free-carrier density fluctuations is
therefore considerably reduced. Figure 3 shows
that the maximum attainable value for ~P,';

~

is
about 0.022 at the acoustic frequency of 3.03 GHz
for room temperature and about 0.0074 at 1.00
GHz for 77 K. These values can be compared with
the photoelastic constants listed in Table I. In
the intrinsic region at room temperature, as dis-
cussed in Sec. II A, considerable cancellation may
take place between p,", and p1~, . To make this point
clear, p,", and p1~, are evaluated by resolving them
into their absolute values ~P,",

~

and ~Pf, ~

and the
phase angle Q between them. The results are plot-
ted in Fig. 4. As expected, Q does not deviate
very much from 71 and shows small but maximum

I~ .'ID" .'I~' =1:1,9 x 10:2.7 x 10 (2.52)

where ID is the intensity of the diffracted light due
to the direct effect, ID" is that due to the free-car-
rier screened indirect effect, and ID is that due to
the free-carrier density fluctuations. The ex-
tremely small intensities of ID" may be neglected
compared to I~ and ID at this acoustic frequency.

III. EXPERIMENTAL RESULTS AND DISCUSSION

deviation at (d =0.0457(d~. In the vicinity of the
maximum of p,", , about 35% of ~p,",

~

is effectively
cancelled by p1~, so that the overall photoelastic
constant IPI.s I

is reduced to about 65/o of IPI.s I

On the other hand, Fig. 3 shows that ~Pss I
in-

creases monotonically with ~ and, above co~,
rapidly approaches its high-frequency limit value
of 0.01.

For a given acoustic frequency the expected dif-
fraction intensities expressed by Eq. (2.40) can be
determined by knowing the Bragg angles and the
relevant effective photoelastic constants. In the
acousto-optic diffraction experiments carried out
at room temperature in Sec. III, a shear ultrason-
ic wave of 120 MHz was transmitted in the y di-
rection. At this frequency the angles of incidence
and diffraction for the anisotropic Bragg diffrac-
tions are 8, =4.76' and On = 6.18' (or, correspond-
ingly, 9z —-23.42' and 8n =31.18'), while they are
0, =On =5.48' (or 01=On =27.23') for the isotropic
Bragg case. Besides, we have p,'« —-

~p,',"~=2.1
x 10 ' and p,'« = ~p,", ~=2.5 x 10 ' at 120 MHz. There-
fore, (a) if the signs of p,', and p,', are the same,

I~D:I~":ID =1:2.6 x10-' 3.7 x10-'; (2.51)

(b) if different,

003

CD

CL.0 02
cK
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001
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The experiments were performed at room tem-
perature, where tellurium shows intrinsic conduc-
tion. A schematic illustration of the experimental
arrangement is given in Fig. 5. The tellurium
sample was cut from a boule grown by the gradual
cooling method. Since crystalline tellurium is
very soft, great care was devoted to minimize a
possible occurrence of damage during mechanical

0
0 014)M 0-14)M 10&M

PHOTO-
DETECTOR

FIG. 4. Dependences of Ipcp, I, Ip~« I, IpfII ~1 and p
on acoustic frequency at room temperature. Ip~&& I and

Ipp& I are the absolute values of the photoelastic con-
stants respectively arising from the electron- and the
hole-density fluctuation, respectively. Q is the phase
angle between p~I& and pII'c. I pI& I is equal to Iplc+pfl I

and therefore is obtained as their overall effect. co&
= 2.15 & 10 Hz.

!
BOXCPRE- I 1NTEGRA

AMPLIF IE R I TOR MATCHING
NETWORK

(RECORDERS

PULSED RF-
GENERATOR

l

FIG. 5. Experimental arrangement for acousto-optic
Bragg diffraction in tellurium. The coordinate axes de-
note the crystallographic orientation for the tellurium
sample.
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handling like cutting and abrasion. After polishing,
the sample was etched by concentrated sulphurie
acid at 100'C and then annealed at about 350 C for
3 days in order to remove lattice defects induced
during the gromth process. Finally, after the sam-
ple was subjected to the second surface polishing,
slight chemical etching with concentrated sulphuric
acid was again carried out to eliminate a surface
damage layer. This etching process is essentially
important in tellurium because optical absorption
within the surface damage layer often seriously
reduces its infrared transparency. The absorption
coefficient of the prepared sample at 10.6 p.m was
about 0.5 cm ' for ordinarily polarized light
(E x z axis) and about 4.0 cm ' for extraordinarily
polarized light (E ~[ z axis}, respectively. The
parallelepiped sizes of the finished sample mere
13.5 mm in the x direction, 7.7 mm in the y di-
rection, and 12.5 mm in the z direction. The sur-
face orientations were determined with respect to
the cleavage plane [(1010},hence the y plane] and

believed to properly coincide with the correspond-
ing crystallographic planes to an accuracy of much
less than 1'.

For an ultrasonic transducer a selenium film
epitaxially grown on the tellurium y face was used,
as described by Shiosaki et al. ,

'4 by utilizing the
fact that crystalline selenium possesses an iso-
morphic structure to tellurium. The film grown
on the y face serves as a transducer mhich gener-
ates only shear waves propagating along the y di-
rection. As long as the deviation of the actual
sample face from the ideal crystallographic y
plane is negligibly small, unexpected excitations
of other unwanted acoustic modes (which often
lead to serious inconvenience when using bonded
shear-mode transducers, owing mainly to mis-
oriented bonding) can be easily avoided. In the
present experiments the transducer with a funda-
mental center frequency of about 51 MHz and
fractional 3-dB bandwidth of about 90/o was fab-
ricated. The usual pulse-echo measuremerits
carried out prior to the acousto-optic diffraction
experiments proved that the time intervals of
any two adjacent echoes appearing in the acoustic
echo train precisely agreed with the value calcu-
lated from the shear-wave velocity, 1390 m/sec,
and any noticeable spurious echo pulses ascrib-
able to other acoustic modes were not detected.
In the acousto-optic diffraction experiments the
acoustic pulses with a carrier frequency of 120
MHz were excited by a pulsed rf generator util=-

izing the third-overtone frequency band of the
transducer. The pulse width was chosen as 1
p.sec.

A 10.6- p. m cw Co, laser operating in the lowest
transverse mode was used as a coherent infrared

light source. The high-power output from the la-
ser was reduced to about 20 mW with an optical
attenuator in order to minimize the effects aris-
ing from light absorption. The well-eollimated
beam had a spot diameter of about 1 mm at the
sample position. Any noticeable change was not
observed in the conductivity when the sample was
irradiated by light mith this level of intensity. The
conductivity data of the sample at room temper-
ature have been given in Sec. IIB.

A KRS5 lens focused the diffracted beam through
a narrow slit mounted in front of a HgCdTe photo-
conductive infrared detector. The polarization di-
rection of the laser beam was carefully adjusted
by rotating the Brewster plate inserted in the la-
ser resonator so as to align parallel to the x axis
within the sample. A grid analyzer placed in front
of the KH35 lens was used to determine the polar-
ization direction of the diffracted beam. The mot-
or-driven rotary table on which the sample was
mounted was used to obtain the angle of incidence
required from the Bragg conditions as precisely
as possible. The photodetegtor was also mech-
anically rotated in the y-z plane about the sample
to determine the diffraction angles precisely. The
signal from the photodetector was recorded after
integration by the use of a Boxcar integrator.

For the present transducer, L and H in Eq.
(2.40) are respectively equal to 3.5 and 11.0 mm.
Under these experimental conditions me have pure
Bragg diffraction because Q»4v. The factor Q is
equal to (k')'L/k and serves as a useful criterion
to determine in which regime (Bragg or Raman-
Nath) the diffraction takes place~' (where k' and
k represent respectively acoustic and optical mave-
numbers in a medium). At, the acoustic frequency
of 120 MHz diffraction was observed for two differ-
ent angles of incidence, 0,'=23.9' and 27.1'.
Figure 6 Shows the angular distribution of the dif-
fracted light intensities recorded by rotating the
photodetector about about the sample for these
two angles of incidence, the upper half of the fig-
ure for 8,' = 27.1 and the lower half for 8~™23.9,
The lower half has been drawn on a vertical scale
1:100 to the upper half for the same acoustic
pomer. The linear dependence of the diffracted
light intensities on the acoustic power was care-
fully checked by varying the electric pomer applied
to the transducer, so that the small-signal ap-
proximation of Eq. (2.40) was well satisfied under
the present experimental conditions. In the upper
half of Fig. 6 the polarization plane of the analyzer
mas set parallel to the polarization direction of the
incident light, and the diffraction angle corres-
ponding to the peak position was obtained as 6D
=27.1' (=8,'). In the lower half, on the other hand,
the polarization plane of the analyzer mas set
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FIG. 6. Angular distribution of the diffracted light
intensities measured at the same acoustic power. In
the upper half of the figure the angle of incidence 8I
= 27.1 and the polarization plane of the analyzer is
parallel to the polarization direction of the incident light.
In the lower half 8I —-28.9' and the polarization plane
of the analyzer is normal to the polarization direction of
the incident light.

normal to that of the incident light and we have

O, =31.6'.
Figure 7 shows the polarization states of the in-

cident and diffracted lights measured as functions
of rotation angles of the analyzer. The polariza-
tion state of the incident light is plotted in the low-
er half of the diagram. The solid curve in the up-
per half was obtained with respect to the diffrac-
tion peak given in the upper half of Fig. 6, indicat-
ing that the polarization of the diffracted light is
parallel to that of the incident light and hence was
created by the isotropic Bragg diffraction. Quan-
titative agreements of the measured 9,' and OD

with the calculation, i.e., 9,'=OD =27.23', also
confirm that the diffraction arose according to
the isotropic Bragg law. On the other hand, the
broken curve which was obtained with respect
to the diffraction peak in the lower half of Fig. 6
suggests that the polarization of the diffracted
light in this case is perpendicular to that of the
incident light; hence the diffraction is anisotropic,
for which the calculated Bragg angles are 9,'
=23.42, 0~=31.18 and agree well with the ob-
served angles. In addition, Fig. 6 shows that the
intensity of the observed isotropic diffraction rel-
ative to the intensity of the anisotropic diffraction
is about 1.2 X10 '.

FIG. 7. Polarization states of the incident and diffract-
ed beams determined by rotating the polarization plane
of the analyzer. The solid curve in the upper half of the
figure has been obtained with respect to the diffraction
peak shown in the upper portion of Fig. 6, while the
broken curve corresponds to the peak shown in the lower

,:portion in Fig. 6.

As we have seen in Sec. 0B, the isotropic dif-
fraction observed in„the experiments cannot be
explained only by taking account of the direct
photoelastic effect. By using the selenium trans-
ducer epitaxially grown on the moderately oriented
tellurium sample, the possibility of excitation of
unexpected spurious acoustic modes which might
give rise to the isotropic diffraction was neg-
ligibly small. Besides, the plane of incidence
and the polarization direction of the incident light
had been closely adjusted. Even if we allow mis-
alignment to a certain extent in the experimental
conditions, the observed intensity of the isotropic
diffraction is very much larger than that predicted
solely from the direct photoelastie effect. Conse-
quently, the possibility of an accidental contribu-
tion from the isotropic photoelastic tensor compo-
nents of the direct effect, which might arise from
possible experimental misorientations, can be
ruled out. . On the contrary, the observed relative
intensity (1.2 x 10 ') is in satisfactory agreement
with the theoretically predicted one [In%~ =3.7
x 10 ' as given in Eq. (2.51}]within a factor of 3,
leading to the conclusion that the observed iso-
tropic diffraction should be attributed to the free-
carrier density fluctuations.

This is the first time that an acousto-optic dif-
fraction due to free-carrier density fluctuations
accompanying an acoustic wave has been observed
in an intrinsic semiconductor. It has been shown
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that this effect gives rise to an appreciable con-
tribution to diffraction intensity in tellurium for
the optical wavelength of 10.6 p.m. The essential
agreement of the observed diffraction intensity
with the theoretical prediction given by Eq. (2.51)
suggests that the signs of f,and p» should be the
same in tellurium.
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