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We apply our previously developed first-principles nonlocal pseudopotentials (obtained for all atoms of
rows 1—5 in the Periodic Table) to study self-consistently the electronic structure of Si and Ge and the

transition metals Mo and W. For Si and Ge we find that the first-principles pseudopotentials yield valence-

band states in good agreement with the empirically adjusted pseudopotential and photoemission data,

whereas the low conduction-band states appear to be consistently lower in energy due apparently to
incomplete cancellation of the self-interaction effects. The calculated x-ray scattering factors (obtained by

core orthogonalization of the pseudo-wave-functions) are in excellent agreement with experiment. The self-

consistent valence charge density shows a distinct elongation of the covalent bond along the internuclear

axis, in good agreement with the experimentally synthesized density. The systematic deviations of the

empirical pseudopotential results from the present are discussed in terms of the underlying differences in the

potentials in the high-momentum regions. Using a mixed Gaussian-plane-wave representation, we calculated

the self-consistent band structures of Mo and W, and compared them with the available augmented-plane-

wave results. We find good agreement in the internal structure of the d bands, however, the present non-

muKn-tin self-consistent calculation yields substantially different s-d and p-d splittings. The bonding

characteristics and Fermi surfaces in these materials are discussed. Finally, we show that these first-

principles potentials provide a topological separation of both the octet 2"8 ' " and the suboctet 3"8
(3 & P & 6) crystal structures. It is concluded that the presently developed pseudopotentials can be

successfully used for studying both the electronic structure of wide range of materials and structural

properties, without resorting to empirical parametrization.

I. INTRODUCTION

In aprevious paper" (hereafter referred to as I),
we have presented a gene ral m ethod for obtaining
first-principles atomic nonlocal pseudopotentials
in the local-density-functional (LDF) formalism by
direct inversion of the corresponding all-electron
eigenvalue equations. We have computed these po-
tentials in numerical form for 68 transition and
nontransition elements from the first five rows of
the Periodic Table and discussed the chemical reg-
ularities reflected in their form. We have shown
that these potentials accurately reproduce the
atomic energy eigenvalues, total energy differ-
ences, wave-function moments, and valence charge
densities of the underlying all-electron density-
functional formalism over a wide range of excita-
tion energies. These potentials contain no empir-
ical data and no adjustable parameters. They are
obtained in closed form in terms of the micro-
scopic constructs of the all-electron problem,
such as the repulsive Pauli force, orthogonality
hole potentials, and valence screening. As such,
they should offer greater insight into the reasons
for both the successes and the failures of pseudo-
potential theory in interpreting observed quanti-
ties, relative to the empirically adjusted model
pseudopotentials.

In the present paper we apply the first-principles

pseudopotentials to the study of electronic proper-
ties as well as phase stability and structural prop-
erties of solids. As the valence electronic struc-
ture of solids is predominantly sensitive to the low-
momentum (q =2k~, where kz is the Fermi mo-
mentum) components of the effective crystal poten-
tial whereas the crystal structure and total ener-
gies are determined also by the high-momentum
potential segments, a combined study of these
properties should offer the opportunity to examine
the quality of the first-principles pseudopotentials
in an extended momentum range.

II. APPLICATIONS TO BAND-STRUCTURE CALCULATIONS

A. Methodologies of construction of first-principles density
functional pseudopotentials

The details of our approach for the construction
.of the density functional nonlocal pseudopotentials
are given in I. Here we briefly indicate the under-
lying methodologies and discuss some of the im-
plications of our approach.

1. Density functional pseudopotential

Let Qr„","(r)}and (e„","j indicate the occupied core
(c) and valence (e) wave functions and energy
eigenvalues, respectively, obtained from the all-
electron (core and valence) density-functional
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(DF) equations for an atom in. the electronic con-
figuration g. We intend to construct a suitable
total energy expression and single-particle eigen-
value problem which applies to the valence sub-
space alone and is defined sofely by the DE orbital
sPace.

We first set a DF total energy expression which
describes the energy of a fictitious (pseudo) atom
having only N„(valen ce) electrons with density n(r)
and interacting mutually via the interelectronic
coulomb V„[n (r)] and exchange-correlation
V„,[n (r)] potentials akin to the DF approach, as
well as with a yet unspecified external potential
V, (r). Using a DF variational approach we will
derive from this a corresponding single-particle
(pseudopotential) equation with eigenvalues e„, and
orbitals y„,(r). We will impose a number of physi-
cally de sir able constraints on &„,and y„,(r) via a La-
grange-multiplier technique and use them to solve
for the unknown pseudopotential V, (r) ~which satis-
fied them.

The constraints are (i) the one-electron spectrum
a„, of the pseudopotential problem equals the val-
ence spectrum c"„,of the all-electronproblem, for
the chosen reference electronic configuration g;
(ii) the pseudo orbitals y„,(r) be normalized and
nodeless for each of the lowest angular symme-
tries; (iii) the pseudo orbitals X„,(r) be given as
a rotation in the all-electron "true" orbital space'
Q„","(r)], i.e., X(r) =g„,C„"„g):",(r) The .coeffi-
cients fC„"„',J are then chosen to minimize the ma-
trix element (}t„,~P, ~X„,) of the core projection
operator P,. This leads to a y.„,(r) which has a
minimal amplitude in the core region and maxi-
mum similarity, possible within the DF orbital
space, to the corresponding "true" valence orbital
$",(r) in its chemically important "tail" region.

Condition (i) assures that the one-electron spec-
tral properties obtained in the pseudopotential
representation match those of the underlying all-
electron system. Condition (ii) will allow us (cf.
Sec. II C) to expand the pseudo-wave-functions in a
simple and spatially smooth basis set, relieving
us from the necessity, characteristic of the all-
electron approach, to accurately describe the com-
plex and strong spatial variations of the mave func-
tions near the core region which is usually inert
to chemically and physically interesting interac-
tions. Condition (iii) establishes a simple unitary
relation of X(r) to the all-electron orbital space,
which mill allow us, if so desired, to recover the
"true" orbital g, (r) from the pseudo orbital, sim-
ply by core orthogonalization (see Sec. IID and
Table II). The maximum similarity constraint of
It„,(r) to g, (r) in the tail region as well as the min-
imum core amplitude will assure us that the chem-
ical information characteristic of (t)„"~(r) will be

contained in X„,(r) and that this will continue to be
so, to a good approximation, even if the pseudo-
potential is to replace the core electrons in 'chemi-
cal environments other than those used to derive
it. Stated formally, we are lowering the energy
dependence of the pseudopotential by minimizing
the orthogonality hole through a core-projection
minimization. Physically, we mean that although
we derive the pseudopotential from information on
a certain atomic electronic state g, this potential
will be transferable to within a good approximation
to different chemical environments (e.g. , excited
atoms, molecules, solids, surfaces). This ex-
pectation is confirmed by our calculations, "
where we find that a DF pseudopotential derived
from the atomic ground-state orbitals continues
to yield very precise orbital energies (i.e., errors
of less than 0.1 eV) when applied to excited con-
figurations over a 25-eV range of excitation en-
ergies.

The calculation of any physical observable from

X„,(r) rather than from the "true" wave function
)t)o, (r) will inevitably include errors due to the
elimination of the nodal structure from }t„,(r). The
corrections to X„,(r) are simply described in the

pr esent s chem e by the core-orthogonality term s
(X

~

score)ycore.

}t„,(r)= $ C„"„',(j„;",(r), (»)
n

t)" (r) = „»„,(&) —F„(» Ie-")e-"I .
n, n core

Note that as X„,(r) may have different forms in the
core region when the atomic core is placed in dif-
ferent chemical environments or electronic states,
the error &=Z„„(x~g"") is state dePendent. The
pseudopotential derived from }t(r) is hence energy
dependent and may not be transferable from one
system to the other. This is treated in the DF
pseudopotential approach by directly minimizing
4 via a core-projection-minimization criterion,
and at the same time enforcing a maximum simi-
larity constraint of }t„,(r) to tg, (r) outside the core
region. Note that the extreme limit of this mini-
mization can be achieved by zeroing X„,(r) and its
first derivatives at the origin, leading na,turally
to small (X

~

(I)""). Since the leading terms in the
pseudopotential are of order X"(r)/X(r), the choice
of a pseudo-wave-function with a limiting behavior
of Iim„g(r) =acr~" a+,r~"" a+,r~"" '+for any
X ~ 2 leads to a "hard" pseudopotential with
lim (rV)= n)rand n, &0 and an exceedingly small
energy dependence. Choosing X= 0 one obtains a
"soft" potential with limV, (r) = const, higher am-
plitudes of X„, in the core region, and larger cor-
rections A. One can obtain a small core overlap
with the choice of X=O if the pseudo-wave-function
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is allowed to be nonmonotonic (e.g., a spike at the
origin followed by a low amplitude). Such a pseudo-
wave-function would, however, require a more
extended basis set for its expansion in electronic-
structure calculations. A central point in the DF
pseudopotential approach is that one can generate
continuously "softer" pseudopotentials by the
choice of {C~'„',}, compromising thereby with (i)
the range ~ (between a cutoff point R, and infini-
ty) at which X„,(r) is equal to the "true" wave func-
tion and (ii) the energy dependence of the pseudo-
potentials. Although there exist a parameter range
where a reasonable compromise can be achieved
between softness and accuracy (see Sec. IIC), we
usually prefer the well-defined limit of hard po-

tentialss.

Having established a set of physically motivated
conditions on e„, and )t„,(r), we apply a constrained
variational treatment to the pseudopotential total-
energy expression "and solve for V, (r) in terms
of (e„",", g„",", and C„"„'.}. We refer to this as the
density functional Pseudopotential to emphasize
that it is constructed from the DF orbital space
alone. The closed-form result (Paper I) has a
physically transparent form interpretable in terms
of an analytical Pauli repulsive term replacing the
orthogonality constraint, a screened core poten-
tial, an exchange-correlation nonlinearity term, ,

as well as a Coulomb and exchange-correlation
orthogonality hole potentials. In I, w'e have cal-
culated V, (r) for 68 atoms and demonstrated quan-
titatively that the desired similarity to the all-
electron results (i.e., in the ground-state and
excited-state wave functions, orbital energies,
and total energy differences) is achieved to within
a very good accuracy. Similarly, the low pseudo-
potential energy dependence and the close simula-
tion of chemical trends across the periodic table
are demonstrated. Applications to diatomic mole-
cules, transition metals, and their cohesive prop-
erties have similarly shown very good results.

2. Trans density functional pseudopotential

The construction of &„,(r) in Eq. (1a) from a line-
ar combination of the occupied DF orbital space
will always lead to a finite difference between

X„,(r) and g„",(r) asymptotically as r goes to infini-
ty. As the DF space Qi„","(r)}is orthogonal, the
coefficient ~C„"„') multiplying the P„",(x) in the
linear combination is always smaller than unity,
leading to lim„„X„,(r) = C„"„'g„",(r) rather than to

rg, (r) This is .an inevitable consequence of our
choice to remain in this unitarily rotated DF space.
These large-x discrepancies show up for instance
in a deviation of 1%-3% in the pseudo-orbital mo-
ment (X„,~r ~II„,) from the "true" moment (g„",~x ~g„",).
Although small, such deviations may be noticeable

f„,(~) = —~&„,~~"'exp(-u„, r) . (3)

The constants A„„n„,are chosen in an iterative
procedure so that conditions (i)-(iii) above remain
valid. This leads to a simple quadratic algebraic
equation for A„, as a function of a„, whose solution
satisfies the normalization of X„,. &„, is then de-
termined by requiring X„,(x) to remain nodeless
and that the pseudo orbital charge accumulation
function Qr, (R)= f ~X„,(r)~'dr match the corre-
sponding all-electron valence orbital accumulation
function (starting from R = ~) up to the smallest R
value possible under the above constraints. This
leads to X„,(x), which i s numerically equal to g„",(x)
to a Point R, inward to the last radial maxima of
tg, (x) and is somewhat more contracted in the core
region relative to It„,(r). This guarantees that the
electrostatic potential outside B, is identical in the
all-electron and the pseudopotential representa-
tion. '" The orbital moments (j.„,~x ~X„,) for p
= 1, 2, 3 are now within less than I%%uo from the val-
ues obtained from g„",(r).

Note that, much like in the DF approach, one
can choose in Eq. (3) A. =2, obtaining thereby a
very low-amplitude pseudo-wave-function in the
core region with its associated hard-core pseudo-
potential and small energy dependence or, con-
versely, one may choose X= 0 and obtain a soft
pseudopotential. We find again that a strong pseu-
dopotential produces a larger range aR (between

R, and infinity) where X„,(r) can be made identical
to P„",(r), and hence prefer the choice X=2.

The modified pseudo orbital g„,(r) is used exact-
ly as before'"" to obtain the pseudopotential V, (r).
We refer to this as the trans density functional
(TD F)pseudopotential to emphasize that an orbital
component lying outside the DF space is needed for its

in solid-state applications for crystals with an
"open" structure such as Si, where the lar ge-r be-
havior of the orbitals contributes to the bond

charge density. To correct for this small differ-
ence, one has to go outside the DF orbital space.
We chose to do that in a controlled way by adding
to X„,(r) an analytic component f„,(r) which will
permit C„"„'-=1. The modified orbital )(„,(r) is

y„,(r)=p Q c„"„'.g'„",;(r)+ f, (r)I +c,(r), (2a)
n'&n

with

core

Nf„,(r), (2b)

where N is a normalization constant. Any regular
function f„,(r) which is nonorthogonal to (g,"}and
decays vapidly to zero at large t' [so that

lim„„j„,(x) =g, (r)] is adequate. We use the sim-
ple choice for the cutoff function:
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3. Analy ticaIly continued orbita1 approach

In this approach one abandons the simple physi-
cal description of the pseudo-wave-functions as a
linear rotation in a core and valence orbital space,
and represents it instead by an arbitrary and nu-
merically convenient functional form. One possi-
bility is to set the pseudo orbital y„,(r) to b'e equal
to the valence all-electron orbital tg, (r) from r = ~
to r =R, and then analytically continue it to r = 0 in
a smooth form:

( )
g„",(r); r&R,

(4a)
F„,(r); r-R, .

Here E„,(r) can be

(r) a rx+l+I
nf fl (4b)

where X is a constant. The coefficients a„are de-
termined from continuity requirements F„(R,)

construction. We apply V, (r) (Fig. 1)for bulk Si in
this paper. It seems that the DF pseudojotential, be-
ing conceptually and arialytic ally simple, will suf-
fice for most applications. When, however, greater
numerical precision is required (e.g. , total energy
calculations for opened-structure system), the
TDF pseudopotential should be preferred. A de-
tailed comparison of the DF and TDF pseudopo-
tentials is given elsewhere. 'b

Both the DF and TDF pseudopotentials have sim-
ple and often desirable analytic properties. In
particular, they allow us to recover to within a
good approximation the "true" wave functions sim-
ply by using Eqs. (1b) or (2b) and the known core
orbitals (see Sec. IID). This permits a precise
assessment of the accuracy of the calculation of
physical quantities from pseudo rather than from
"true" wave functions. We note, however, that
the performance of a core orthogonalization is
merely an oPtion afforded by the DF and TDF ap-
proaches, and not anecessity, as both methods
explicitly guarantee a minimal departure of the
expectation values of X from those calculated with

Our experience indicates, however, that even
if the need for core-orthogonality corrections is
minimized to an extreme (possible within the
physically motivated constraints imposed), a num-
ber of physically interesting properties (e.g., x-
ray-structure factors) may be sensitive to such
corrections.

The DF and TDF approaches allow fo.r a simple
recovery of the true wave functions because of
the Iinear relations (la) and (lb) between the pseu-
do-wave-functions and a canonical orbital space.
If these properties can be sacrificed, yet a third
method for constructing first-principles pseudo-
potentials is possible.

= („,(R,); F„',(R,) = if)„',(R,); E„",(R,) = g„",(R,); F„"',(R,)
= g„",(R,) as well as from the normalization condi-
tion J ~X„,~'dr =1. Such an approach has been re-
cently used by Christiansen et al."in the Hartree-
Fock scheme. In the LDF context, we use M=4,
calculate the derivatives to high numerical accu-
racy by a Spline scheme, and solve the resulting
set of five algebraic equations as a function of R,.
We seek the smallest R, value for which a node-
less, normalized, and monotonic pseudo orbital
X„,(r) can be obtained. From this, the pseudopo-
tential is obtained as in the DF and TDF schemes.
We refer to this as the analytically continued pseu-
dopotential approach. As before, the choice of
X = 2 leads to hard-core potentials while X = 0 lead s
to soft-core potentials. The form (4b) is not unique
and was chosen since it is the natural description
of a central-field atomic orbital at small r and
leads to simple analytic forms for the derivatives
and the normalization. Exponential forms for
E„,(r) are possible as well. Note that the critical
feature of E„,(r) which determines the strength of
the corresponding pseudopotential is the first
power of r which is larger than 1 in its small-r
expansion. If this power is 2 the potential is hard
[lim„oF"(r)/F(r) = ~], while if it is larger than 2

the potential is soft [lim„,E"(r)/F(r) = constj.
We have applied the analytically continued pseu-

dopotential approach to eight atoms. We find that
the resulting potential is numerically identical to
the TDF potential from r= to r=R, . The central
result is that the minimum Possible value of R, is
pinned to a narrow range near the outer maximum
of g, (r), much like the R, value obtained in the
TDF aPProach. This simply indicates that there
exist a fixed nonzero charge Q„, (R,)=—Q„, (R,) re-
siding in the core region of the pseudo orbital
which cannot be eliminated if a normalized,
smooth, and nodeless orbital is required. The
TDF and the analytically continued. orbital ap-
proach directly minimize Q~~(R, ) and hence
achieve the largest spatial range of similarity be-
tween the pseudo and true orbitals. The DF ap-
proach, restricted to an orthogonal orbital space,
typically yield Q~~(R, ) values which are 5%%uo larger.
Hence, as long as one attains a matching between
the true and pseudo-wave-functions asymptotically
as r goes to infinity, the relevant aspect of the
description of X(r) at small r is the degree to which
- given choice minimizes Q~,s(R,). In this respect
the hard-core pseudopotential is unique in that for
any X~ 2 the potential starts off at small r as n, /r'
and produces a smaller core charge, lower energy
dependence, and a larger region AR of identity be-
tween the pseudo and true wave functions, relative
to a soft-core pseudopotential. Due to its small-r
form of n, /r, the hard-core pseudopotential will
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always have a crossing point r, (i.e., where the
screened pseudopotential crosses the r axis). In
Sec. III we show that these quantities form a unique
scale reflecting many of the chemical regularities
of atoms in the periodic table and, in particular,
correlating with the stable crystal structure of
compound.

In this paper, we use the TDF pseudopotentials
for Si and Ge and the DF potential for the closely
packed metallic solids. It will seem that while
the TDF and the analytically continued orbital ap-
proaches yield numerically accurate pseudopoten-
tials, the basic conceptual framework for con-
structing nonempirical LDF pseudopotentials is
contained already in the DF pseudopotential meth-
od. Hence, while different experimentations with
the functional choice of f„,(r) [Eq. (2)], F,(r)
[Eq. (4b)], and X [Eq. (4b)] lead to families of
pseudopotentials which may be tailored to specific
applications or expansion basis sets, the unam-
biguous DF pseudopotential approach lends itself
to a simple and physically transparent interpreta-
tion and to sufficiently accurate results for most
problem s.

Qualitative comparisons with semiempirical potentials

The first-principles pseudopotentials developed
in I have a shape significantly different from that
of both the empirical' and semiempirical model
potentials that have been very successful in de-
scribing the band structure of many solids. We
discuss here the implications of these differences
on the electronic structure of atoms and solids.

Figure 1 depicts the core potentials of Si as ob-
tained in the present first-principles local-density
approach'b(full lines), the first-principles Hartree-
Fock (HF) approach~ (dashed lines) and the semi-
empirical model potential method' (dot-dashed
lines). The latter potential is local and has been
designed to fit the overall features of the band
structure within a smooth form. It has been used
in numerous studies of the bulk, surface, ' inter-
face, and vacancy problem and is similar in shape
to the potential developed by Appelbaum and
Hamann' for studying surface and chemisorption
problems. The HF potential4 has been previously
used for studying various silicon containing mole-
cules and reproduces the all-electron ab.,initio HF
results very well. Clearly, the semiempirical po-
tential differs substantially from both the first-
principles potentials in the core region (the former
lacking turning points) and in the valence region,
close to its minima. Since Si lacks an E= 2 core
state, its d potential is purely attractive over
all space. These differences in the potentials can-
not be dismissed as irrelevant to the valence
states of the atom as they have a maximum at the

D

pf0

I
0
O.

Si—Local density--- Hartree Fock——Empirical'
(local)

-6
p 1.p 2.p 3.p

Distance Ia.u. )

FIG. 1. Core pseudopotentials of Si as obtained in the
present first-principles density-functional approach
(solid line), the Hartree-Fock approach (Ref. 4) (dashed
line), and the semiempirical approach (Ref. 3) (dot-
dashed line). The fi.rst two potentials are nonlocal while
the third is local.

points where the 3s and 3p pseudo-wave-functions
reach values of 6F/q and 94% of their maxima, re-
spectively. Direct application of the semiempirical
potential to the self-consistent calculation of the
Si atom indeed reveal discrepancies of 0.60 and
0.70 eV in the 3g eigenvalues for the ground and
singly ionized configurations, respectively, rela-
tive to the "exact" all-electron results obtained by
using an identical exchange functional with e= 3.
The errors in the orbital moments are 6% and 8%,
respectively. Hence, since the semiempirical po-
tential approach attempts to fit the overall band
structure with a soft-core or smooth form, devia-
tions for atomic structure relative to "exact" all-
electron results exist. The corresponding devia-
tions in the first-principles potentials are smaller
by more than an order of magnitude. " Similar ac-
curacy is enjoyed by the first-principles HF
pseudopotentials. "The comparison shown here
for Si is also characteristic of other atoms (e.g. ,
C, Ge) for which similar semiempirical potentials
are available. '

Inspection of the orbital kinetic energies of the Si
atom discloses part of the reason for the differ-
ences in results: the semiempirical potential re-
sults in extended wave functions having about 3(P/p

less kinetic energy than the corresponding first-
principles-derived wave functions. Although this
causes significant errors in describing atomiclike
configurations, one expects that the differences be-
tween these potentials in the valence region would
have a smaller effect on the electronic structure
of the solid. This stems from the fact that a larger
part of the wave function extends towards the bond
center, forming a covalent charge buildup and
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thereby decreasing the relative importance of the
kinetic energy in favor of the more crucial role of
the potential energy. As all the potentials shown in
Fig. 1 are nearly identical at 3, distance corres-
ponding to the bond center in bulk Si (2.22 a.u. ),
one mould expect the corresponding valence-band
structure to be roughly similar.

One similarly does not expect the significant dif-
ferences in the potentials near the classical turning
points to show up strikingly in the corresponding
valence-band structure as the steep portion of the
potential is sampled only by high-momentum trans-
fer scattering events which do not affect the dis-
persion of the bands near k~." The success of the
"on the Fermi sphere" approximation" in describ-
ing many of the features of the valence band struc-
ture of semiconductors and the sufficiency of the
first fem reciprocal-lattice-vector Fourier com-
ponents of the potential to obtain reasonable band
structures' "are in line with this notion. Fur-
ther, when a model potential is constrained to fit
only the low-energy interband spectra, ' inclusion
of high-momentum potential components often in-
troduces linear dependence" and leads only to
nearly rigid (k-independent) shifts in the positions
of the energy bands. One notes, how'ever, that the
high-momentum components apparent in the first-
principles potential (which are associated with its
steep portions near the classical turning points)
might be of crucial importance for the study of
phase stabilities and lattice vibrations. " We will
return to this point in Sec. III.

C. Practical considerations

The highly repulsive character of the first-prin-
ciples pseudopotentials in the region of its classi-
cal crossing points (cf. Fig. l) gives rise to long
tails in its Fourier representation. While this
poses no practical difficulty when the electronic
structure problem is formulated in real space
(e.g, using Gaussian" or exact numerical atomic
orbitals" and real-space integration tech-
niques" "), these long tails require a large num-
ber of basis functions in reciprocal-space repre-
sentations. "Although the recent advent in inte-
gration techniques and orbital optimization meth-
ods have made the real-space representations of
the crystalline wave functions both-economic and
accurate, the reciprocal-space techniques are
computationally simpler. Hence we investigate
here possible ways of suppressing the high-mo-
mentum components of the pseudopotentials. "

We first inquire as to how sensitive the valence
electronic structure is to the details of the repul-
sive part of the potential. We use the behavior of
excited atomic species as a probe to the response

of the system to modifications in the repulsive po-
tential. We have used various forms of truncating
functions (such as Gaussian continuation of the
form A,e &", parabolic continuations, and various
combinations of hypergeometric functions) that
smooth the effective potential with continuous first
derivative, requiring that such smoothing leave the
energy eigenvalues and orbital moments unchanged
to within l%%u, over a typical excitation energy range
of a rydberg. We have found that such smoothing is
possible with a wide range of truncating functions
provided the classical crossing points r', and the
potential for r & 0 are untouched. Some examples
are given in Fig. 2 where the original effective
potentials of C and Si are compared with the poten-
tials smoothed in the inner core. We find, how-
ever, that modifications of the turning points lead
to rapid deterioration of the quality of the potentials
over the entire energy range due to the variational
tendency of the charge density to penetrate the core
regions where the Coulomb potential is attractive.
These small-r smoothing procedures hence offer
an approximate but practical way of employing the
first-principles potentials in plane-wave repre-
sentations. Note, homever, that the localized na-
ture of these potentials outside ro (e.g. , for l =2 in
transition metals) may still require a large number
of plane waves in its reciprocal-space representa-
tion and is more naturally described by suitably
localized real-space expansions (see below).

A di. fferent and equally effective method of sup-
pressing the high-momentum components of the
potential is based on overmixing core character
into the pseudo-wave-functions. "'0 If the wave-
function transformation coefficients C„, „„con-
structed to lead to a maximum similarity between
the nodeless pseudoorbital }t„,(r) and the true val-
ence orbital g„,(r), are artifically scaled to include
in)(„,(r) more core character than needed to satisfy
this constraint, X„,(r) becomes finite atthe origin and
the repulsive part of the potential becomes smoo-
ther." In the simple case of a first rom atom one
has

(lc)

e C2s, lg and C,', „are determined such that
y„(r) be nodeless and smooth (i.e., satisfy mini-
mum kinetic energy) and possess the maximum
similarity to (2,(r) possible under these con-
straints. This leads to y„(0)=0 and a repulsive
potential. As C2 y is replaced by C,, „+5one ob-
tains

~ X„(0)~&0 and. a resulting smoother potential.
This is illustrated in Fig. 3 where the l =0 compon-
ent of the screened carbon core potential is dis-
played for various choices of 6. As core character
is overmixed, the node q, in V,«(q) moves outwards
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As this approach is costly due to the large num-
ber of plane waves required, it was used primarily
to obtain a standard for converged results. The
mixed-basis approach offers much improved con-
vergence as the localized features of the wave func-
tions are represented by suitably peaked Gaussians
basis function while the remainder of the wave
functions is expanded in plane waves. The Gaussian
exponents are varied to obtain rapid convergence
in the' plane-wave expansion. We obtain an accur-
acy of better than 0.1 eV in the energy eigenvalues
for W and Mo by using d Gaussian exponents of
1.35 and 1.85, respectively, and 95 and 103 plane
waves plus five Gaussians per atom, respectively.
For Si, a s,p exponent of 1.50 a.u. ' was found to
be optimal. The mixed-basis representation is well
suited for the pseudopotentials at hand, and since only

valence states are treated (e.g. , six electrons for W

and Mo), it constitutes a substantial simplification
over the all-electron approach to these materials
(involving 42 and 74 electrons for Mo and W, re-
spectively).

The calculations are carried to self-consistency
in a standard fashion, avoiding muffin-tin or other
shape approximations to the potential. The charge
density is sampled at six special k points in the
Brillouin zone (I', K, I., g, E, and &) for the
semiconductors and 14 k points for the metals.
For the latter we compute the density of states,
Fermi. energy, and the wave-vector- and band-
dependent weights at each iteration using the tetra-
hedron integration scheme. '4 More details about
the method and its application to bulk Mo will be

given in a different publication. '

D. Si and Ge pseudopotential band structure and charge density

The self-consistent nonlocal pseudopotential band

structure of Si is given in Fig. 4. We have used
the standard Kohn and Sham ' exchange coefficient
of e = & and included the homogeneous electron
correlation functional of Singwi et a/. ' The energy
eigenvalues at high-symmetry points a.re given in

Table I where they are compared with the first-
principles self- consistent orthogonalized-plane-
waves (SCOPW) results of Stukel et al ,

"for n = as.

the semiempirical self-consistent local pseudo-
potential" (SESCL), the empirical non-self-con-
sistent nonlocal (ENSCNL) pseudopotentialm~ and

with the observed photoemission ' and optical"
data. Of the four calculations compared, only the
ENSCNL' is not self-consistent as the effective
potentia1. in this approach has a parametric form
adjusted to reproduce the bulk interband transitions
and photoemission data and is not expressible in

terms of the charge density. It has also been
shown29 to give excellent agreement with the cyclo-

—.—2

I

—10

—14
W

FIG. 4. Self-consistent exchange and correlation band
structure of Si using the first-principles nonlocal pseudo-
potential.

tron masses in Si arid the shape of the valence
charge density. Since it attempts to mimic the

geyee~ed potential in the bulk, it does not provide
a mechanism for charge redistribution and cannot
be used for Si-containing systems other than bulk
Si (e.g. , molecules, surfaces, etc.). The semi-
empirical pseudopotential SESCL has been used
mith slight modifications in the past for studies on
the Bi, -molecule, silicon surfaces, ' interfaces,
and vacancies. '

Our results agree well with the experimental
data for the occupied states and are in moderately
good agreement with the first-principles SCQPW
results. The indirect I'» „-b, , band gap (0.5 eV)
is, however, substantially smaller than the ob-
served value of 1.13 eV. Although the agreement
between the calculated gap and experiment can be
improved by treating the exchange coefficient as an
adjustable parameter, '~ this approach will be
avoided here. In general, the first-principles re-
sults are as good as the empirically adjusted re-
sults for the ground occupied states but are sys-
tematically lower than both the empirical and the
experimental results for the excited states (e.g.,
discrepancies of 1.65, 0.35,0.61, and 0.54 eV for the

I, „ I', „Ã, „and L„st teasrespectively). We
mill discuss this effect later on. As expected, the
difference between the results of the local pseudo-
potential (SESCL) and the present nonlocal pseudo-
potential are somewhat smaller than the corres-
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TABLE I. Comparison of the Si-band eigenvalues (in eV) of the present pseudopotential ex-
change and correlation study (using a mixed-basis) with the SCOPW (Ref. 27) results (o = 3),
the semiempir ical self-consistent local pseudopotential (o' = 3) (Ref. 28), the empirical non-
self-consistent non-local (Hef. 29) and experiment (Befs. 30-33).

Level SCOP%
I'resent
results SESCL ENSCNL Experimental

F( „
F)5 „
F2',c
F15,c
F(cI, „
X4 „
Xi
X4
1-2,v
Lj „
&3,v
Li,c
L3,c

-12.04
0.00
3.31
2.33

-7.83
-3.00

0.34
9.87

-9.63
-7.14
-1.26

1.39
3.12

-3.95

-12.20
0.00
2.50
2.48
7.25

-8.02
-2.93

0.52
9,97

-9.92
-7.21
-1.28

1.13
3.36

-4.72

-12.82
0.00
3.38
2.70
5.95

-8.51
-3.24

0.51
11.62

-10.41
-7.62
-1.39

1.45
3.48

-4.20

-12.36
0.00
4.10
3.42
7.69

-7.69
-2.86

1.17

—9.55
—6 ~ 96
-1.23

2.23
4.34

-4.47

-12.4 +0.6

4.15~ 0.05

7.6

-2.9,—2.5 +0.3
1.13 d

-9.3 ~0.4 '
-6.4 +0.4, —6.8+ 0.2
-1.2 +0.2

3.9 + 0.1
-4.7 + 0.3

~ Reference 31.
Reference 30.

Reference 32.
Reference 33.

ponding differences in the free atom. Note, how-

ever, that the semiempirically adjusted SESCL
potential yields somewhat poorer agreement with
the observed valence-band states, as compared
with the first-principles pseudopotential.

As the first-principles core pseudopotential is
given as an infinite series of angular momenta
components' Q, W, (r)P, (where P, is the projec-
tion operator) and as W, (r) for the symmetries
which are absent in the core of the free atom is
singular (e.g. , l ~ 2 in Si, cf. Fig. 1) it is impor-
tant to assess the validity of the truncation of this
series. One expects that only those angular-mo-
mentum components which are present in the crys-
talline wave function in an energy range of interest
w'ould bg important. As the atomic central-field

symmetry is removed in the solid, states including
l» 2 componen'. s can be admixed into the occupied
variational crystal wave functions. We have re-
peated a self-consistent band-structure calculation
for Si, retaining this time only the l =0, I pseudo-
potential components. We find rather small
changes in the valence band spectra (e.g. , L, „,
X, „, X~ „)along with more significant changes
(0.3-0.8 eV) in some conduction band states (e.g. ,

L, „L,„I"„,andthe Z, line). It would hence
seem that the higher l &2 corrections are unimpor-
tant for the energy region below -5 eV above the
conduction-band edge. As one moves down the
Periodic Table, one expects, however, the l ~ 2 com-
ponents to become more important (i.e., As, Se)
as the d states tend to be bound even in the free

24 24

FIG. 5. Total valence
pseudocharge density in
the (110) plane in Si, as
calculated by the present
exchange and correlation
nonlocal pseudopotential.
The full dots indicate the
atomic positions. The re-
sults are given in units of
electron/ (crystallographic
cell).
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atom.
The total valence pseudo-charge-density of Si in

the (110) plane is depicted in Fig. 5. The valence
charge density obtained from the present first-
principles potential differs from that obtained with
the SESCL potential in a few respects: The calcu-
lation depicted in Fig. 5 yields a bond charge den-
sity which is elongated parallel to the bond axis
and decays rather steeply towards the atomic site,
whereas the semiempirical potential yields a bond
charge that is oblate and decays rather slowly to-
wards the atomic site. If one is arbitrarily to de-
fine the covalent bond charge density as that en-
closed by the outermost contour surrounding the
bond, the present calculation yields an anisotropy
factor L,/L, (where I., is the length of the bond

charge parallel to the bond axis and L, is the. length
perpendicular to this axis) of -1.3 while the SESCL
potential yields L,/L, =0.8 and the observed bond
anisotropy ratio" is about 1.4. The highest value
of the valence charge density obtained in this work
is 24.0 e/cell while that obtained with the semi-
empirical potential is 24.2 e/cell and the observed
maxima is 23.3 e/celL35 We note, however, that
the experimentally synthesized valence charge
density is not strictly comparable to pseudopoten-
tial calculations as (i) the. core density is simply
subtracted in the former case from the total density
whereas in a pseudopotential methods the core
density is projected out (i.e., the valence wave
functions are deorthogonalized to the core, . leaving
a smooth wav'e function), and (ii) the core density
is represented in the experimentally synthesized
density by HF (rather than the density functional)
orbitals. These are usually more contracted than
the local density orbitals. " Note that the local
pseudopotential gives rise to a single charge dens-
ity maxima or to closely spaced double maxima in
the occupied m„orbital of the diatomic Si, mole-
cule, '~ whereas firgt-principles LDF" calcula-
tions and the present pseudopotential predict
a well-separated double maxima in either side of
the interatomic axis.

Figures 6 and 7 show the valence pseudocharge
density of Si at few high-symmetry points in the
zone. Both s-type (e.g. , I, „, X, „)and p-type
(e.g. , I'» „, X4 „) states show a distinct charge
polarization along the bond axis, suggesting that it
is not the potential nonlocality that is responsible
for the formation of a bond-polarized charge
(L,/L2 &1). A local approximation to our potential
(i.e., neglecting the I &0 components of the poten-
tial) produces indeed L, /L, = 1.2. In contrast, we
find that the SESCL pseudopotential produces I.,/
L, & 1 for both the s- and the p-type states. The
polarization of the bond charge density along the
bond direction is a consequence of the more local-

ti,v

lal

25,V

tbl

FIG. 6. Symmetrized pseudo charge density in the
(&10) plane of Si at the I'point in the zone, as obtained
by the present exchange and correlation first-principles
(nonlocal) pseudopotential. Full dots indicate the atomic
positions. (a) The bonding Bs-type I'& „state, (b) the
bonding BP-type triply degenerate I'2» state, (c) the
antibonding Bs*-type I'~, state.

ized nature of the first principles potential (cf.
Fig. 1}. It is important to note that the differences '

in the details of the valence charge polarization be-
tween the first principles and the semiempiricat.
pseudopotentials do not manifest themselves sig-
nificantly either in the valence band structure nor
in the low-angle forbidden x-ray scattering factor
(the F222] reflection being 0.19 e/cell in the pres-
ent calculation and 0.25 e/cell with the semiempir-
ical pseudopotential). It would seem that only the
higher-momentum components (q»2k+) of the
first-principles pseudopotential determine the de-
tails of the anisotropy of the charge density. These
might be important in determining the total energy,
phonon spectra, or chemical reactivity but are
hardly material for the one-electron observables
related to low-momentum scattering events.

It is interesting to note in passing that the charge
densities of the top and bottom valence bands in Si
change very little across the Brillouin zone (e.g. ,
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FIG. 7. Symmetrized pseudocharge density in the (110)
plane of Si at the X point in the zone, as obtained by the
present exchange and correlation first-principles (non-
local) pseudopotential. Full dots indicate the atomic
positions. (a) The bonding 3s-type X& „state. (b) The
bonding 3p-type E4 „state.

I',„-X,„, I'» „-X4 „). The low dispersion of the
band density implies that Brillouin-zone sampling
techniques based on few representative points" are
accurate for such systems.

Inspection of the charge density of the highest
occupied p-type valence band (e.g. , I'» „}and the
lowest s-type conduction band (e.g. , I', „L,,)

suggests a reason for the remarkable sensitivity
of the p-s gap (e.g. , I"» „-X,„ I'» „-I'...) to scal-
ing of the exchange potential. " As the I, ,-F,
states are strongly antibonding states having a. den-
sity which is appreciably localized near the atomic
sites [cf. Fig. 6(c)], they are particularly sensitive
to the enhancement of the exchange potential
o.'p'~'(r) (via increasing the exchange coefficient u).
On the other hand, the I'» „valence band is a de-
Iocalized 3p state fcf. Fig. 6(b)] occupying regions
of low charge density and is consequently signifi-
cantly less sensitive to exchange scaling. The dif-
ferences in the degree of localization of these
states leads to marked changes in the calculated
band gaps as the exchange coefficient is increased
from 0.'=-', ." One further notes that the localized
nature of the lowest s-type conduction band in Si
might induce important self-interaction effects
which are spuriously included in the density func-
tional potential. 4 '. These arise from the imper-
fect balance between the electronic self-Coulomb
and self-exchange interactions and have an appreci-

able magnitude for localized states both in atoms
and solids. ~ These usually produce anomalously
small band gaps relative both to the self-interac-
tion-compensated calculations" and experiment.
Hence, although the difference in the degrees of
spatial localization of the valence and conduction
bands in Si enables the adjustment of the band gap
via exchange scaling, the calculated anomalously
small band gap appears to have a different and
physically distinct origin, As the self-inter-
action corrections vanish at the limit of extended
delocalized states, the high plane-wave-like states
of Si are likely to be correctly described by the
density functional approach. A direct approach to
the self-interaction corrections in the spectra of
solids has been previously developed ', however,
a similar application to Si is outside the scope of
the present paper.

Another measure of the quality of the calculated
charge density is furnished by comparison with the
observed x-ray scattering factors. As the pseudo-
potential calculation produces nodeless valence
wave functions, it is not clear whether these are
sufficiently accurate for comparison with the all-
electron charge density or with experiment even in
the valence region, ' 'O' Since our pseudopotential
formalism represents the pseudo-wave-functions
in the atomic limit as linear combination of the
true all-electron core and valence wave func-
tions, " it is possible to recover the nodal valence
orbitals to within a good approximation by performing
an appropriate core orthogonalization. ' " The ef-
fects of such an orthogonalization in the atomic limit
are demonstrated in Fig. 8. Here we plot the differ-
ence AE, (q) between the all-electron atomic scat-
tering factor fp„„(r)e'"' dr and that computed
from the valence pseudodensiiy n(r) plus the core
density p,(r): f[n(r)+ p,(r)]e" "dr. H'ere p, (r)
is constructed from the nodal core (c) and valence
(v) orbitals. As both p„„(r)and n(r }p+,(r) are
normalized to the total number of electrons in the
system, aE, (0) =0 and similarly AE, (~) =0 as the
high-momentum components sample only the core
density p,(r). At intermediate momentum values, the
error LE,(q) (solid line in Fig. 8) is seen to be
non-negligible relative to the experimental errors
in determining the scattering factors of bulk44 Si
(vertical bars in Fig. 8 appearing at the first few
reciprocal-lattice vectors of Si). Clearly, a direct
use of the pseudocharge density instead of the
core-orthogonalized density produces some errors
even at low momenta. The curve marked AE2(q)
denotes the similar differences produced by the local
semiempirical pseudopotential. ' These are larger
by about a factor of 3 and localized in the region
where the physically interesting [111]reflection
occurs. Upon core-orthogonalizing the first-prin-
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FIG. 8. Differences between the all-electron and the
pseudopotential atomic x-ray scattering factors for Si.
~& (q) denotes the difference obtained with the first-
principles pseudopotential; ~2(q) denotes similar dif-
ferences obtained with the semiempirical pseudopoten-
tial; ' 4I"3(q) denotes the difference obtained when the
semi-empirical pseudo-orbital s are orthogonalized to
the core orbitals. The corresponding difference with
the first-principles-derived orbitals is identically zero.
The vertical bars on the abscissa indicate the experi-
mental errors associated with measuring the crystalline
scattering factors at the first few reciprocal-lattice vec-
tors (Ref. 44).

ferences in the bulk are not expected to vanish
identically as the orthogonalization is performed
with respect to the atomic frozen-core orbitals (ra-
ther than the variational bulk core wave functions);
however, based on our experience with core ortho-
gonalizations of excited state atomic wave func-
tions, ""we expect to obtain accurate results for the
bulk. It is interesting to note that core orthogonali. -
zation of the pseudo-wave-functions derived from the
semiempiricalpseudopotential method'(in which the
pseudo-wave-functions are not representable as
combinations of the true orbitals), produces even
larger differences [curve marked LE,(j)] relative
to the unorthogonalized results.

Table II shows the calculated x-ray scattering
factors in bulk Si obtained by core orthogonaliza-
tion of the pseudo-wave-functions. '~' The ortho-
gonalization has been performed using a three-
dimensional Diophantine integration method. " The
results are compared with the al)-electron SCOPW
calculation of Stukel eg gl.2' and with experiment, 4~

corrected for the Debye-Wailer factor and anoma-
lous dispersion. ' The present results agree very
well with the observed data, and even the sensitive
features such as the "forbidden" [222) reflection
and the order of the [333] and [555] ref lectiori
(degenerate in the atomic superposition limit) are
correctly reproduced. Our scattering factors are
significantly larger than the SCOPW and the atomic
superposition results" at low momentum, indicat-
ing a more localized valence density in the present
calculation. At high momentum, our results are
slightly lower than the SCOPW results, possibly
due to the use of somewhat different core orbitals
in the present scheme which involve homogeneous
correlation terms in the potential. The excellent
agreement obtained here between the calculated
and the observed x-ray scattering factors suggests
that the differences between our real-space charge

TABLE II. Comparison of the observed (Ref. 44) and calculated x-ray structure factors for
Si (in units of electrons per crystallographic cell). The SCOP%' results (Ref. 27) are given for
the Kohn and Sham exchange. The present results include free-electron correlation correc-
tions.

Experimental
Ref. 44b Ref. 44a

Present
results

Atomic
superposition SCOPW

111
220
311
222
400
331
422
333
511
440

10.70
8.48
7.77
0.17
7.08
6.81
6.21
5.87
5.88
7.65

11.12
8.78
8.05
0.22
7.40
7.32
6.72
6.43
6.40
6.04

10.70
8.57
7.79
0,19
7.35
7.03
6.65
6.31
6.35
6.00

10.52
8.70
8.15
0.0
7.47
7.14
6.65
6.39
6.39
6.03

10.69
8.64
8.01
0.17
7.44
7.21
6.68
6.38
6.42
6.02
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TABLE III. Calculated Fourier coefficients of the
self-consistent Coulomb screening [Vc,„&(G)t, ex-
change screening fV„(G)t, and correlation screening
fV (G)] for Si. Hesul. ts are in rydberg per unit cell
volume. p(0) is normalized to 8.0 electrons and h, k, l
denote the index of plane waves representative of the
corresponding stars.

Vcoul (G) V„(G) V (G)

111
211
221
222
220
311
332
331
422
421
411
431
443
442

—0.1 50.64
-0.001 54

0.00813
0.008 05
0.006 25
0.001 24

—0.001 76
-0.001 24
-0.000 92
—0.000 55
—0.000 31
-0.000 08

0.000 21
—0.000 09

0.050 76
0.00742
0.007 26
0.002 99
0.006 92
0.002 79
0.003 47
0.002 36
0.001 89
0.002 12
0.000 13
0.000 24
0.001 23
0.000 60

0.003 76
0.000 79
0.000 44
0.000 03
0.000 43
0.000 18
0.000 25
0.000 17
0.000 14
0.000 18
0.000 11
0.000 01
0.000 12
0.000 07

density (computed from the lowest 880 scattering
factors) and the experimentally synthesized densi-
ty" (obtained by inverting the Fourier series of the
lowest 21 observed scattering factors) might orig-
inate from limitations of the inversionproeedure. "

Table III depicts the first few Fourier compon-
ents of the self-consistent screening field. In each
case we give the transform with respect to a single
plane wave (with index k, k, f) representative of the
corresponding star of G. A few conclusions per-
taining to the screening mechanism in Si emerge
from these results. With the exception of the group
of 12 reflections belonging to the [211] star, both
the exchange (V„) and the correlation (V„„)fields
act to screen the electron-electron Coulomb (V c,„,)
interactions (i.e., they have an opposite sign). This
screening is very effective at short wavelength
where

~ V, (G)/V&-, „,(G)( is larger than unity. The
Fourier components of the screening potential are
divided into a few groups with decreasing impor-
tance: the first contains the strongest [111]com-
ponent (eight members), the second contains the
smaller (Vc,„,-0.005 Ry) components (four stars
with a total of 56 members), and finally one finds
the higher components having lower contributions
(Vc,„~ -10 '-10 ' Ry). The band structure appears
to be sensitive to variations of the first two groups
of components while changes in the high-momentum
contributions affect only the details of the charge
density (e.g. , bond anisotropy). We similarly find

that the correlation screening constitutes only
about 5% of the exchange screening and decay very
rapidly at high momenta. Note that the ratio
V«ir (G)/V„(G) varies considerably with G for the

TABLE IV. Comparison of the present exchange and
correlation band structure of Ge with the SCOPW (Ref.
46) and empirical (non-self-consistent) pseudopotential
calculations (Ref. 47). Results are given in eV.

Empir ical
Present results SCOPW, pseudopotential

F
F25 v

~ 2', c
F15.c

X(
&4, v

Xi
~s.c

L2, v

Lg„
&s,v

L &,c
L3,c
1-2,c

-12.36
0.00
0.77
2.59

—8.40
-2.85

0.95
8.92

-10.09
-7.24
-1.28

0.65
3.95
7.60

12 Q 2
0.0
1.1
3.0

-8.4
-2.8

1.3
10.2

-10.1
-7.1

1 Q 2
0.9
4.2
7.8

-12.66
0.00
0.9
3.1

-8.65
-3.29

1.16

-10.39
-7.61
-1.53

0.76
4.20

first two groups of waves and settles to about &.05
for the high-momentum parts. This suggest that
one cannot simulate these correlation terms ef-
fectively for the important low-momentum compon-
ents by simply linear scaling of V„. For higher
components, an exchange coefficient of 0.70 (in-
stead of the Kohn and Sham value of —', ) seems to
mimic the combined effects of exchange and cor-
relation reasonably well.

We have performed an analogous study of the
band structure and charge density on Ge, using our
first-principles pseudopotentials. As the charge
density and the corresponding conclusions born out
from the study on Si are qualitatively similar, we
present only a brief discussion of the resulting
band structure. Table IV depicts the calculated
band structure of Ge at high-symmetry points, as
compared with the SCOPW results of Herman
eg al. ' and the empricial pseudopotential of
Chelikowsky and Cohen. 4'

The agreement between the present first-princi-
ples calculation and the empirically adjusted
pseudopotential ' and the SCOPW ' calculation is
very good for all except the low-lying antibonding
4s band (I', , A;;L, ,) -where the present study re-
veals systematically lower results. The same ef-
fect occurs in our calculation on Si and was dis-
cussed above. Anomalously low I'» „-I'.. .and
I'», -&, , gaps have been previously obtained in

first-principles OPW studies ' where it was found

that slight empirical adjustments of the calculated
Fourier components of the potential are required
to bring these results into agreement with experi-
ment. Our calculated valence charge density for
Ge is qualitatively very similar to that of Si. The
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bond anisotropy factor L,/L, decreases from the
value of 1.3 in Si to 1.1, indicating an increased
tendency to form a metallic bond. A local (self-
consistent) semiempirical Ge pseudopotential pro-
duces a consistently lower bond anisotropy (L,/L,
= I.O).

E. Applications to transition metals

As a further test to the quality and generality of
the first-principles pseudopotentials we have ap-
plied them to study the electronic structure of two
transition metals —molybdenum and, tungsten. The
detailed description of the molybdenum results will
be presented elsewhere, "and we concentrate here
on the tungsten results.

The application of pseudopotential formalism to
the study of the electronic structure of transition
metals is difficult. This is mainly due to the inef-
fectiveness of simple plane-wave expansion tech-
niques to describe localized d states, the pro-
nounced nonlocality of transition-metal pseudo-
potentials" and the lack of sufficient experimental
data to parametrize either the single valence-elec-
tron-ionic term values or the low-energy interband
spectra. The present approach circumvents these
difficulties by using a flexible mixed-basis repre-
sentation capable of treating nonlocal potentials
and accurately describing both the localized fea-
tures of the d states and the extended character of
the s-p states. Further, no use is made of experi-
mental fitting techniques in the present first-prin-
ciples approach.

The establishment of the self-consistency of the
crystal potential poses special problems in metals.
Whereas in semiconductors and insulators one can
approximate the variational crystal charge density

by sampling the square of the symmetrized wave
functions at few representative points k, in the
Brillouin zone (BZ) using equal weights for all the
occupied bands at a given point k, ,

' the occurrence
of a Fermi surface in a metal requires explicit
consideration of both wavevector and band depen--
dent weights W&(k, ). This results from the fact that
the BZ occupation volume depends on the details of
the crossing of the Fermi surface by a given band.
We treat this problem by sampling a grid of equally
spaced inequivalent k points in the irreducible zone
and computing at each iteration step the density of
states (using the tetrahedron interpolation
scheme24), the Fermi energy, and the fractional
volume of each minitetrahedron that lies under the
Fermi surface at each band. These band-dependent
weights vary at each iteration step with the shape
of the Fermi surface. They reflect both the geo-
metric factor associated with each k,. point (i.e. ,
nearest BZ volume occupied by k,.) and an addition-

' al factor, absent for nonmetals [in which W,.(k, )
reduces to W(k, )]which measures the occupancy of
volume under the Fermi surface. .The sampling
weights obtained for 44 principal k,. points in tung-
sten at the self-consistency limit are depicted in
Table V.

It is seen that W&(k) is band independent for the
lowest two valence bands (which are removed from
the Fermi surface) and is a decreasing function of
the band index for the higher bands which cross the
Fermi surface. The weights of the two lowest
bands increase initially as one moves away from
the I'points towards H, N, or I' due to the in-
creased fractional BZ volume associated with the
latter points, while the variation of the weights of
the highest bands with wavevector also reflect the
vicinity of the band to a Fermi surface area.

TABLE V. 14-k-point band and wave-vector-dependent weights &&(k) for the self-consistent
tungsteri band structure. %eights are normalized to the number of valence electrons per cell
(6.0). All weights for j &4 are zero.

k point

1 (0.0, 0.0, 0.0)
2 (0.25, 0.0, 0.0)
3 (0.25, 0.25, 0.0)
4 (0.25, 0.25, 0.25)
5 (0.50, 0.0, 0.0)
6 (0.50, 0.25, 0.0)
7 (0.50, 0.25, 0.25)
8 (0.50, 0.50, 0.0)
9 (0.50, 0.50, 0.25)

10 (0.50, 0.50, 0.50)
11 (0.75, 0.0, 0.0)
12 (0.75, 0.25, 0.0)
13 (0.75, 0.25, 0.25)
14 (1.0, 0.0;0.0)

W, (k)

0.03125
0.125 00
0.125 00

. 0.18750
0.125 00
0.250 GG .

0.312 50
0.093 75
0.218 75
0.062 50
0.062 50
0.218 75
0.15625
0.03125

W2(k)

0.031 25
0.125 GQ

0.125 00
0.187 50
0.125 00
0.250 00
0.312 50
0.093 75
0.218 75
0.062 50
0.062 50
0.218 75
0.156 25
0.03125

S'3(k)

0..031 25
0.125 00
0.120 291
0.187 50
0.120 200
0.241 079
0.302 910
0.079455
0.208 670
0.062 500
0.038 319
0.184 978
0.132 069
0.011869

W4(k)

0.015 073 7
0.032 425 5
0.0178176
0.020 074 3
0.018401 2
0.020 348 4
0.019202 2
0.000
0.000
Q.QOO

0.001461 2
0.006 050 6
0.003 053 9
0.000
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The self-consistent nonlocal (l =0, 1, 2) pseudo-
potential band structure of tungsten is shown in

Fig. 9. Some energy eigenvalues at high-symmetry
points are collected in Table VI, where they are
also compared with the non-self-consistent
mented plane waves (APW) results of Mattheiss. ~'

The latter have been obtained within the muffin-tin
approximation to the superposition density of tung-
sten atoms in the 3d'6s' configuration using an ex-
change coefficient of o. =1. These results are vir-
tually 'd t'cal to the similar APW calculation of
Petroff and Viswanathan, ' which were obtained by
superposing atomic densities of the 5d'6s' config-
uration. The agreement between the APW and the
presen reresent results is fair. A few noticeable discrep-
ancies occur: (i) the s-d splitting (1",-H„, I, N, -
is substantially smaller in the present calculation
(0.18 eV) relative to the APW results (0.75 eV).
We find this gap to be very sensitive to the detai. ls
of the self-consistency (the I",-P» splitting bei~g
0.55 eV in the zeroth iteration in which a super-
position pseudocharge-density model is used) as
charge is exchanged between the s and the d
shells. " As the charge density is substantially
more localized in the d„2,2+ d, 2 state at the bot-
tom of the d band (H») than in the extended s state
I", (see below), one further expects these states to
vary differently under exchange scaling leading to

1 12

this gap to change by as much as 0.6 eV as the ex-

18

15

& 9

I

P 6 H G N g 1 A P DND P F H

FIG. 9. Self-consistent-exchange and correlation-band
structure of tungsten using the nonlocal (l =0, 1, 2) first-
principles pseudopotential. Dashed lines denote doubly
degenerated representations.

TABLE VI. Energy-band eigenvalues (in eV) of tung-
sten as obtained in the present self-consistent nonlocal
pseudopotential calculation and APW (Ref. 49).

State
Present
results APW

r,
r»
~&2

H(~
H25,
H(2- H25I

P4
P3
P)
N,
N2

N(i
N)
N4

N3

0.00
4.80
8.31

28.80
0.18

10.44
10.27
3 32
9.00

15.93
0.56
2.47
7.89
8.21
8.92

11.03

0.00
5.51
8.38

21.37
0.75

11.26
10.51
4.16
9.41

17.66
1.28
3.28
8.64
8.67
9.28

12.16

change coefficient e is varied from 1.0 to 0.7. The
early cellular calculation of Manning and
Chodorow leads to results that are similar to the
APW results except that the I',-0» gap is negative.
(ii) The p-d gap between N, , (6p) and iV, (5d) is close
to zero in the APW results, while in the present
calculation it is 0.32 eV. This gap is again sensi-
tive to the details of self-consistency and exchange
scaling for the same reasons discussed above. Its
occurrence constitutes a qualitative difference with
respect to molybdenum in which no p-d gap is
present. "" This might have direct consequences
on the existence of surface states in the corres-
ponding materials as a N, ,-Ã, gap would persist in
the (001)-surface projected band structure (at M).'4

(iii) The antibonding d state (second 1'», ) is much
separated from its bonding counterpart in the pres-
ent calculation (24 eV) than in the APW calcula-
tion" (16 eV), suggesting stronger d-d overlap in
the present representation.

The internal structure of the d band is very sim-
ilar in the two calculations as these features are
rather insensitive in these materials to charge re-
distribution, exchange scaling ' or muffin-tin ap-
proximations. "" The d-band width is 10.27 eV in
the present calculation compared with 10.51 eV in
the APW results and similarly the distance of the
Fermi energy from the H~ bottom of the d band is
6.20 eV in the present calculation and 6.17 eV in
APW.

The calculated density of states of tungsten is
given in Fig. 10. The general features are very
similar to the APW results. ~ ' Three pronounced
peaks appear below the Fermi energy, at e~ —4.5
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FIG. 10. Density of states of tungsten, obtained from
the first-principles pseudopotential calculation.

eV, e~ —3.4 eV, and e~ —1.6 eV. These peaks ap-
pear at approximately -4.6, -3.3, and -1.8 eV in
the -calculation of Mattheiss" and -4.3, -3.1, and
-1.V eV in the calculation of Petroff and
Viswanathan, "the differences prIobably reflecting
the more extensive BZ sampling used by the latter
authors than genuine differences in the band struc-
ture. The three peaks at the occupied part of the
density of states originate from predominatly s
+d, 2, xy+yz+zx, and xy+yz+zx states, respec-
tively. The Fermi energy appears at a region of
low density of states, followed by a broad structure
of about 4 eV which constitutes the unoccupied por-
tion of the d band. This structure shows two pro-
nounced peaks at 1.4 eV (due to p- and d-type
states around N, , and N„respectively) and at 2.45
eV (due to the d states around P, and N, +N, ).

The density of states at the Fermi energy D(e~)
is 6.96 electron/(Ry atom). This is close to the
value of -7.2 electron/(Ry atom) obtained by
Petroff and Viswanathan, ' leading to an electronic
specific heat of 3.1 &10 ' cal/moleK', compared
with the observed values of 3.10&&10 ' (Ref. 57) and

(2.5~1)X10 ' cal/moleK'. "
As relativistic effects are not included in the

present calculation, a detailed comparison with the
measured Fermi surface cannot be made and only
its gross features will be discussed. Figure 11
compares the calculated (110) section of the Fermi
surface (broken lines) along with the experimental
dimensions (full lines) obtained by Walsh and
Grimes" using size-effect techniques, the mag-
netostatic data. of Bayne et al. ,

~ and the de Haas-

H

I
I
1

I

I

&ip

FIG. 11. Calculated (dashed line) and measured (Befs.
59-61) (solid line) dimensions of the Fermi surface of
tungsten in the (110) plane.

van Alphen results of Sparlin. " The agreement
with experiment is generally good. The dimensions
of the hole ellipsoid at N are sensitively deter-
mined by the location of the p-type N, state. As
the p-d gap between Ã, , and N, opens up during the
self-consistency iterations, the dimensions of the
ellipsoid around N decrease towards their observed
values. The hole octahedron at 0 is very accurate-
ly reproduced and so is the electron jack at I'. The
absence of spin-orbit interactions in. the present
calculation shows up in the absence of a gap be-
tween the electron jack and the hole octahedron
along 4.

The nature of the bonding in tungsten can be stud-
ied from the variational charge densities. The
lowest band at I' (1',) is a pure 6s-like state where-
as one progresses to the next state at I" we observe
the bonding my+ye+ax state (1'», ) which has a
background of 6s character. These states are di-
rected predominantly along the nearest-neighbor
axis and form the metallic d bond. The lower part
of the d band (e.g. , P» ) contains d, 2 and d„2 2

nonbonding character that is directed toward the
next nearest neighbors and forms a loose bond. As
one moves away from the & direction, p character
is admixed into the bond with increasing propor-
tions at higher energies. The P4 state at the center
of the d band is a combination of d-like xy+yz+zx
and the p-like x+y+z representation giving rise to
a bond which is directed toward the nearest neigh-
bors with some polarization towards the next near-
est neighbors. Just above e~ at the N point (N, , )
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one encounters a P state. The unoccupied portion
of the conduction band is made predominanatly from
nonbonding d, 2 states (I"», P„N, ) with x'- y'
components slightly admixed. The basic bonding
mechanism in tungsten arises from the overlapping
bond-directed xy+yz+zx "$„"-like d states which
prevail throughout the zone while s and p bonding
have somewhat lower contributions and are concen-
trated predominantly at the lower and upper parts
of the occupied band, respectively. The total val-
ence charge density (Fig. 12) is indicative of such
a combination of localized bond directed d'-states
with a more diffused background contributed by s-
p bonding. No accurate experimental x-ray scat-
tering factors are available for this material for
comparison with the present calculation.

We next consider the features of the self-consis-
tent valence screening field. Table VII shows the
components of the valence Coulomb (Vc,„,), ex-
change (V„), and correlation (V„„)potential in

tungsten. It is seen that contrary to the situation
encountered in semiconductors (e.g. , Si, Sec. II D)
only the first reflection is large (i.e. , Llll]), the
rest being usually much smaller. The rate of decay
of these small components is, however, consider-
ably slower, due to the localized features of the
charge density (1505 plane waves are normally re-
quired to expand the total valence density effec-
tively). Both exchange and correlation contribu-
tions are seen to screen the Coulomb interactions,
with increasing efficiency at higher momenta.
As previously observed in Si, the correlation
screening is not simply proportional to the

exchange screening at low momenta (V„„/V„
varying by as much as a factor of 3 over the
first reflections) whereas at high momenta the
ratio V„„/V„ is roughly constant (=0.05).
'This enables an approximate simulation of
correlation effects at high monzenta by artifical-
ly increasing the exchange coefficient by 5% (i.e. ,
o. = 0.70). The last column of Table VII gives for
comparison the Fourier components of the 1=0
pseudopotential. The screening field is seen to be
about 1(Pjp of the core pseudopotential for the lowest
reflection and of the order of 1/o for higher reflec-
tions. The slow decay of the screened core pseudo-
potential IVc „, + V„+V„„+W,(r)] dramatizes the
difficulties in describing the electronic properties
of these systems within empirical procedures em-
ploying truncated pseudopotential form factors.

III. APPLICATION TO CRYSTAI PHASE SEPARATIONS

A. Orbital radii and valence properties

As the valence electronic structure near the
Fermi energy is determined primarily by rela-
tively-low-momentum scattering events, it has
been possible in the past successfully to describe
the one-electron optical spectra and the Fermi
surface of many solids assuming conveniently
truncated model pseudopotentials with q,„~3k„
(i.e. , smoothly varying near the core region). The
freedom hence offered by the insensitivity of the
dispersion relation e,.(k) to the repulsive nature of
the core potential has been exploited to obtain
model potentials that are rapidly converged in

FIG. 12. Total valence
pseudocharge density in
tungsten in the (110) plane.
Full dots represent atomic
positions. Results are
given in e/cell (normalized
to unity).
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TABLE VII. Fourier components (with respect to individual unsymmetrized plane waves) of
the self-consistent pseudocharge density p (in units of e/eel. l) and the Coulomb (&c „&), ex-
change (&„), and correlation (&«~) components of the screening field in tungsten. The last
Coulomb gives the Fourier components of the l =0 core pseudopotential. The origin is taken
at the atomic site. The potential is given in By.

Star No. &=o(G)

1
2
3
4
5
6
7
8

15

6,0000
0.6905

-0.0235
0.0339

-0.0755
-0.1755
-0.0431
-0.0751
-0.0113

0.073 60
-0.001 25
-0.001 20
-0.002 01
-0.003 74
-0.000 77
-0.001 14
-0.002 20

-0.741 00
-0.025 00

0.004 47
0.002 84
0.003 53
0.006 04
0.001 63
0.002 64
0.000 82

-0.11760
-0.001 29

0.000 35
0.000 14
0.000 23
0.000 33
0.000 11
0.000 16
0.000 07

0.4403
0.4157
0.3349
0.2678 .

0.2157
0.1760
0 ~ 1454
0.0538

reciprocal space and hence amenable to per-
turbative treatments" and plariewave represen-
tations. In contrast, the first-principles
pseudopotentials are usually characterized by
strongly repulsive core components represented
by the Pauli potential U, (r) for I present in
the core." This gives rise to zero-energy classi-
cal turning points V(ro) =0 that occur as a balance
between the repulsive Pauli term U, (r) and the nu-
clear attraction -Z„/r, modified by screening,
core-orthogonality, and exchange-correlation non-
linearity effects."' We have seen that although U, (r)
is confined primarily to the core region, it is in-
timately related to the properties of the wave func-
tions in the valence regions. By way of construc-
tion, its repulsive nature is a direct consequence
of the constraint of maximum similarity between
the smooth pseudo-wave-functions g and the real
wave functions P (in the valence region), imposed
within the linear relationship of y and g.' It is
hence not surprising that the l-dependent turning
points r, tend to scale as the valence properties-
in much the same way as the radii of minimum po-.

tential' r, '", their variation with the position of the
atom in the Periodic Table reflects the underlying
chemical regularities of the valence states.

Recently, Simons, "Simons and Bloch~ (SB), and
St. John and Bloch ' have observed that if a "hard-
core" nonlocal model potential is assumed, instead
of the more conventional smooth model semiem-
pirical potentials, its classical turning points r,
form powerful structural indices, capable of sep-
arating the various crystal phases of the octet
A ~gg' "non-transition-metal compounds. The SB
effective potential is

Here 8, is an adjustable constant and V„(r) is the
potential due to the valence field. Vs«&(r) repre-
sents the repulsive potential experienced by the
valence states having the same angular momentum

l as in the core, due to the explicit relaxation of
the core- valence orthogonality constraint. %&hen

this potential is specialized to the case of a single-
valence-electron system, the complicated valence-
valence interelectronic interactions vanish and

V„(r) is given in the central-field limit as

V„(r) =-Z„/r + l(l+ 1)/2r',

where Z„ is the valency. As in the early work of
Fues, "they showed that the eigenvalues Q„) of the
central field problem associated with V&,','(r} are
analytically solvable in terms of B„allowing
thereby a simple determination of the latter (and
the turning points ro) in terms of the observed
spectral excitation energies. These are simply
given by

(8)

The realization that these empirical orbital radii
r, =B&/Z„+ l(I+ 1)/2Z„are characteristic of the
atomic core and as such are transferable to atoms
in various bonding situations has led to the con-
struction of a number of new phenomenological
relations G =f(r', ) that correlate physical observ-
ables G in condensed phases with the orbital radii
of the constituent atoms. Some examples are the
elemental work functions 4" given by Chelikowsky
and Phillips" as

a4A ~ +y
-0 rg

the melting point T"~ of binary AB compounds":

with the repulsive part chosen as

(6}

T&8 —C + C g&&+ (

4 o o 5 (10)
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where the structural coordinates R and A", are
given by '

pAB (rA rA) + (r B rB)

pAB (rA+rA) (rB+rB)

St. John and Bloch ' have shown that a two-dimen-
sional topological map of R", vs Fi!„accurately
separates the various structural phases of the octet
binary compounds including the wurzite-zincblende
and diamond-graphite systems. Machlin, Chow,
and Phillips have subsequently' found that the
same orbital parameters provide an excellent
structural delineation of the suboctet A"B, 3
&P & 6 compounds. Further, a least- squares fit-
ting of the forms 9 and 10 to the available experi-
mental data on CA and T"B (where a„b, and C,—
C, are adjustable parameters, independent of the
atom) produced very good correlations with the ob-
served values of the work function and melting
points. ' The same authors were able to represent
the two phenomenological coordinates of Meidema
et a/. "which predict the signs of the heat of form-
ation of about 500 binary alloys using element-de-
pendent adjustable parameters, by using two simple
functions f,(r, ) and f2(r, ) in which the only ele-
ment-dependent parameters are the spectroscopic
turning points r, .

What has been realized~ ' " ""is that the
essential characteristics of an isolated atomic
core, as implicit in the spectroscopically deter-
mined anisotropic turning points r„contain the
fundamental constructs which describe the struc-
tural systematics in polyatomic systems. This can
be contrasted with other phenomenological mea-
sures of the "electronegativity" parameters which
are based on various observables pertaining to the
Polyatomic systems themselves, (e.g. , the thermo-
chemical Pauling scale, " the dielectric Phillips-
Van Vechten scale,"or the Walsh scale, ' which is
related to diatomic vibrational force constants).

Whereas the model potential that have been suc-
cessfully used for fitting the low-energy electronic
band structure of solids" usually lack turning points
(e.g. , Fig. 1) and hence cannot be used in the pres-
ent framework to define structural parameters,
the structurally significant Fues-Simons-Bloch ion
potentials ' ' do not yield a quantitatively satis-
factory description of the electronic structure of
atoms" or simple polyatomic systems. ' " The
reason for that" lies both in the unphysically long
range of the repulsive Pauli field B,/r' in the
simple analytically solvable model [Eqs. (5)-
(7}]and in the fact that the core potentials pertain-
ing to relaxed atomic orbitals [e.g. , the ions used
infittingEq. (8) are H~, C", N~, O~, etc. ] do not
adequately describe the valence states of atoms

that occur in bonded phases as nearly neutral
species. One is hence faced with the situation
where the different emphasis of the Fues-Simons-
Bloch potential on one hand and the band-structure-
derived empirical. pseudopotentials" on the other
hand in fitting their corresponding forms in differ-
ent momentum transfer regimes (the high-q and q
=2k„regions, respectively), results in the lack of
a unified approach to electronic properties and
structure. We show here that the currently devel-
oped first-principles pseudopotentials, which

describe well the electrohic properties of atoms
and solids in the LDF framework, can also
be used to separate all the structural phases of
both the octet and suboctet binary compounds with
an accuracy that is at least as good as that based
on the empirical Fues-Simons-Bloch scheme.

B. Construction of orbital radii and comparisons with

empirical schemes

We note that the Fues-Simons-Bloch potential
(5) and (6}corresponds to the first two terms in our
first-principles potential [Eq. (19) in I] where U, (r)
is replaced by its asymptotic form C, /r' [Eq. (21)
in I] at small r Howe.ver, as U, (r) decays much
faster than r ' in the outer core region, "the first-
principles pseudopotential does not lead to unphys-
ically compressed valence wave functions. "The
remaining terms in the first-principles potential
are related to interelectronic interactions in the
valence system and the orthogonality hole effects,
which are absent in the single-electron representa-
tion used by SB. As discussed in I, these are im-
portant in producing an accurate description of the
electronic structure in nzany-electron systems
such as atoms or solids.

In order to define generalized core radii that can
be used as nearly system-invariant transferable
quantities one has to assess the importance of the
(system-dependent) screening effects on the turning
points of the potential. As the pseudopotential ap-
proach replaces the all-electron potential (N„,
electrons) by a sum of a static core potential W, (r)
(replacing the effects of N, core electrons) and a
dynamic valence screening field V„(r) (representing
the interactions of N„v lean ecelectrons), the
properties of g, (r), including its turning points,
would clearly depend on the choice of N, =N„, —N„.
We have previously indicated' that there are few
equally plausible divisions of N« into the subsets
N, and N„; the decision is normally dictated by the
assumed passivity of a certain core subspace to-
wards external perturbations of interest. Hence
while the 3d, 4d', and 5d orbitals are viewed as
valence states for atoms at the center portion of
rows 3, 4, and 5, respectively, they can be treated
as a part of the inert core towards the end of these
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rows for the purpose of studying their low-energy
valence spectra. Clearly, any physically signifi-
cant pseudopotential structural parameter should
not depend on the arbitrary assignment of N, and

p/„. We find that the screened potential V'„','(r) is,
however, invariant under the redefinition of
the core-valence subspaces (for fixed outer val-
ence states). The reduction of N, in favor of N„
produces deeper core potentials due to the reduced
kinetic energy cancellation and this is counterbal-
anced by the enhanced screening of the increased
valence subspace. Numerically, we find that
whereas the turning points r, and r, of the core
Potential of Zn change from 0.74 and 0.86 a.u. ,
respectively, when the 3d orbitals are treated as
core, to 0.44 and 0.47 a.u. when the 3d orbitals are
treated ss a valence state, the radii ro and r, of the
screened (effective) core potentials are 0.82 and
1.06 a.u. , respectively, for both partitioning
schemes. Further, we find that the screened po-
tential radii are insensitive to the particular choice
of valence configuration (e.g. , changing from an
s'p' to an s'p' configuration in column-IV atoms or
from s'p'd' to s'P d' in Ge and As, etc. ) to within
about 0.01 a.u. and hence can be meaningfully used
as transferable parameters.

The core radii determined from the screened
first-principles potentials are given in Table VIII.
Self-interaction corrections" have been included
for the single-valence-electron alkali atoms
(using a so Spa' configuration). The s and P
radii of the nontransition elements are depicted
graphically in Figs. 13 and 14 according to
their position along rows. In general, r', contracts
with increasing valence charge Z„ for any row in
the Periodic Table (left to right in Figs. 13 and 14)
due to core-attraction effects and expands with the
core charge Z, (from the lower to the upper part
of Figs. 13 and 14) due to the improved pseudo-
potential cancellation associated with the increased
core. The regularities of r, are qualitatively sim-
ilar to those of the minimum potential radii r, "
discussed in I and will not be repeated here.

The reciprocal classical turning points r, ' scale
linearly with some of the conventional electroneg-
ativity schemes. Indeed the idea of an electroneg-
ativity parameter of pure Coulombic nature dates
back to Gordy, "who proposed the scale Z,«/8,
where Z, ff is the effective charge experienced by a
valence electron at the covalent bond radius 8,.
The idea of assigning a direct 0rgitgl character to
the electronegativity was first pioneered by Mul-
liken in the thirties. " The currently developed
radii offer a simple generalization of these ideas
to directly incorporate the anisotropy of the val-
ence states (i.e. , angular-momentum dependence)
into an electronegativity scale. The quantity r,

TABLE VIII. Values (in atomic units) of the classical
crossing points ~",ff(~, ) =0 of the first-principles
screened ground-state pseudopotential (r„r&) and the
stripped-ion Simons-Bloch empirical potential (r,~

&& }
(Befs. 63, 64, and 67). Interpolated values are denoted
by asterisks.

Element 's

Li
Be
B
C
N

0
F
Ne

Na
Mg
Al
Si
P
S
Cl
Ar

K
Ca
Cu
Zn
Ga
Ge .

As
Se
Br
Kr

Rb
Sr
Ag
Cd
In
Sn
Sb
Te
I
Xe

Cs
Ba
Au

Hg
Tl
Pb
Bi
Po
At
Rn

0.985
0.64
0.48
0.39
0.33
0.285
0.25
0.22

1.10
0.90
0.77
0.68
0.60
0.54
0.50
0.46

1.54
1.32
0.88
0.82
0.76
0.72
0.67
0.615
0.58
0.56

1.67
1.42
1.045
0.985
0.94
0.88
0.83
0.79
0.755
0.75

1.71
1.515
1.21
1.07
1.01
0.96
0.92
0.88
0.85
0.84

1.465
0.44
0.315
0.25
0.21
0.18
0.155
0.14

1.78
1.13
0.90
0.74
0.64
0.56-
0.51
0.46

2.15
1.68
1.16
1.06
0.935
0.84
0.745
G.67
0.62
0.60

2.43
1.79
1.33
1.23
1.11
1.00
0.935
0.88
0.83
0.81

2.60
1.89
1,45
1,34
1.22
1.13
1.077
1.02
0.98
0.94

0.465
0.315
0.24
0.19
0.16
0.14
0.12

0.51
0.43
0.37
0,33
0.295
0.265
0.245

0.68
0.61
0.215
0.32
0.33
Q.32
0.31
0.295
0.275*

0.725
0.68
0.225
0.355
0.38
0.38
0.36
0.345
0.33*

0.81
0.775
0.13
0.30
0.345
0.36
0.36
0.355*
0.345*

0.94
G.465
0.31
0.235
0.19
0.16
0.135

1.18
0.715
0.54
0.445
0.38
0.33
0.295

1 .38
0.935
0.805
0.61
0.52
0.46
0.415
0.38
0.37*

1.475
1.045
0.83
0.66
0.585
0.535
0.485
Q.445
0.425*

1.59
1.17
0.70
0.63
0.58
0.545
0.51
0.49*
0.45*

forms here a direct measure of the scattering pow-
er of a screened atomic core towards valence elec-
trons with a given angular momentum character.
It is easily seen that r, ' is directly proportional to
the energy eigenvalue e„, [cf. Eq. (8)]. We note
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FIG. 13. I =0 classical turning points of the screened
pseudopotential along rows in the Periodic Table.

larger range for all angular momenta and show
greater separation between the various rows.

Note that whereas the present s and p radii for
Cu are smaller than the corresponding radii for
both Ag and Au, the empirical SB scheme yields
the order r", "

&r, u &r',""for all )=0, 1, and 2. As
the empirical &=2 radii for these elements (r~c"

=2.945 a.u. , x, '=2.950 a.u. , and y2A" =2.935 a.u. )
are equal to within 0.5/~, only the variations in the
g and p radii along. this series are responsible in
the SB scheme for the special ordering of the cor-
responding solid phase work functions [vis. the
correlation 4 -Q, r P in Eq. (9)] and electronega-
tivities: 4„„&bc„&4„~.In contrast, the present
first-principles scheme shows a much larger vari-
ation in both the g, p and in particular in the d
radii: ~, "=0.185a.u. , x,"-=0.39 a.u. , and z,"" =0.49
a.u. (for Sd, 4d, and 5d, respectively). The above
order of C would result in the present scheme
from the variations in the nature of the val-
ence d electrons in these systems. Indeed the
character of the valence d electrons changes
substantially in this series (Cu lacking any
core states of I =2 symmetry) as also reflected in
the corresponding d-orbital kinetic energies per

I I I I I I I I

that this is in line with the suggestion of Slater"
that the energy eigenvalues of a local-density Ham-
iltonian form a sensitive electronegativity scale in
that they dictate the flow of charge towards the
sites characterized by a lower available unoccupied
state. Our present treatment, based on a pseudo-
potential transformation of the all-electron local
density Hamiltonian, expresses these energy-
eigenvalue electronegativities in terms of the turn-
ing points r, .

Although the general trends in r, are similar to
those obtained with the empirical Simons-Bloch po-
tential, ~ "(Table VIII), important quantitative dif-
ferences are apparent. Our /=0 radii for the first-
row atoms are about a factor of 2 larger than the
SB radii whereas the /=1 radii are equa1 to within
a few percent. For atoms from the second row',
the present )=0 radii are still about a factor of 2
larger but the correlation with the I = I radii is
lost. The ratio between the present radii and the
SB values for the noble metals Ag and Au is 4.64
and 9.31 for E=O and 1.60 and 2.07 for 1=1. As the
experimental term values for Br", I", Po", and
At" are incomplete, the corresponding SB radii
had to be obtained by extrapolation. " Similarly,
no empirical radii were obtained for transition
metals as the spectra of the corresponding single
valence electron ions is largely unavailable. In
general, the currently developed radii cover a

Na
1.6—

Li

AU

Ag

1.2—
Cu

1.0—
D
O

0.8—

Rn

Xe

0.6— Kr

0.4—
Ar

0.2—
Ne

I I I I I I I

I A II A III A IVA VA VI A VII A VIII A
I B II B

FIG. 14. l =1 classical turning points of the screened
pseudopotential along rows in the Periodic Table.
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electron: T c„=9.131 a.u. , 7« =V.813 a.u. , and &A„

=8.1VI a.u. It would seem that many of the varia-
tions in the properties of the monovalent Cu, Ag,
and Au compounds are better rationalized in terms
of the underlying differences in the properties of
the outer metal d electrons rather than the s and p
electrons (e.g. , the optical and photoemission
properties of CuC1, AgC1, and AuC1 showing the
interchange of the order of the metal derived d val-
ence subband with the halogen-derived p-valence
subband and the rapid decrease in the metal-d-
nonmetal s, p hybridization along this series). The
failure of the Simons-Bloch scheme to adequately
reflect the variations in the properties of the d
electrons of the Cu-Ag-Au series in r, is related
to its confinement to treat single valence electron
systems [viz. Eq. (V)]. Consequently, the outer
3d, 4d, and 5d electrons in Cu, Ag, and Au, re-
spectively, are considered as a Part of the irert
core and the r, coordinate is fixed from the spec-
troscopic term values pertaining to excitations into
the lowest unoccuPied 4d, 5d, and 6d levels, re-
spectively. The near constancy of the empirical r,
values in the Cu-Ag-Au series hence reflects the
properties of the virtuaL d orbitals that have a les-
ser bearing on the d bonding in the related noble-
metal systems than the vaLence d states. As the
present first-principles scheme includes directly
valence-valence interelectronic interactions, it is

not restricted to single-electron models and the
occupied d electrons are treated as (dynamic) val-
ence states. Note also that the restriction of the
SB scheme to single-valence-election systems
poses a severe problem in treating transition met-
al elements.

Recently, Andreoni et al."have attempted to
remedy the deficiency of the SB potential in de-
scribing correctly the ionic wave functions by ex-
ponentially damping the repulsive B,jr' term in
(6). The new repulsive term Vs&'&(r}=Q, e""&"Ir
has been fitted (varying A, and y, ) to both the ionic
term values and the HF stripped ion orbitals. As
the latter were available only for the first-row
ions, the resulting radii could not be used to ex-
amine structural regularities. Their radii for the
first-rom atoms are, however, similar to the cur-
rently developed radii, their L=0 values being
1.01, 0.66, 0.49, 0.39, 0.33, 0.28, 0.25, and 0.22
for Li to Ne, compared with the present results of
0.985, 0.64, 0.48, 0.39, 0.33, 0.285, 0.25, and
0.22. For L=i their radii are 0.84, 0.41, 0.28,
0.22, 0.18, 0.15, 0.13, and 0.12 compared with the
present results of 1.46, 0.44, 0.315, 0.25, 0.21,
0.155, and 0.14. The origin of these similarities
can be understood by comparing the behavior of the
repulsive potentials in the two approaches. %'e
show in Fig. 15 the variation of r'V„(r) for the
alkali atoms. The regular SB model [Eq. (6)J mim-
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FIG. 15. Plot of r 2 Vz(r) for the l =0 and l =1 symmetries in the alkali atoms, where Uz(r) is the first-principles
pseudopotential, excluding the -Z„ /r part.
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ics this behavior by a constant line r'V„" '(r) =B,
while the modification of Andreoni eI; al."yields
r'y„"'(r) =A, e "&" for this function. As the first-
principles-derived r'U, (r) function decays expon-
entially in the outer core region (Fig. 15), the lat-
ter approximation seems valid. Quantitative dif-
ferences occur, however, both in the inner cor'e
region (where the present results are nonmonotonic
due to the shell structure of the real core) and in
the values of Q, and y, necessary to fit the present
results in the outer core region. The latter dis-
crepancy (which is more noticeable for I =1) stems
directly from the differences between the Z„—I
ionized wave functions used by Andreoni et aI,."
and the neutral ground-state wave functions used
in the present study. As we have indicated before,
we feel that the latter are more appropriate to de-
scribe realistic pseudopotentials for molecules and

solids. As the ground electronic state of solids
and molecules is largely determined by the config-
uration interaction between the multiplets of the
constituent atoms induced by the interelectronic
interactions in the lower symmetry polyatomic
system (e.g.; those arising from the s'p', s'p',
etc. , for carbon), the highly excited '9 configura-
tion of the Z„—1 ion does not characterize the
ground state of the polyatomic system. One would
further expect that as the average of the neutral
atom multiplet yields lower ionization and excita-
tion energies than those obtained for the stripped
ion, larger equivalent orbital radii [viz. Eq. (8)]
would result. This is indeed borne out by the com-
parison of the SB and the Andreoni et al. radii with
the present result. However, as these multiplet
corrections are similar along columns (due to the
same number of valence electrons and smoothly
varying coupling coefficients), it would seem rea-
sonable to expect that. the regularities in the SB
radii would parallel those obtained for neutral
atoms.

The empirical approach to orbital radii enjoys
the following advantages over the first-principles
radii: (i) the radii are determined as easily for
light and heavy elements, whereas the determina-
tion of the first-principles potential is increasingly
more time consuming as the atomic number in-
creases; (ii) implicit in the construction of the
empirical potentials are effects that are absent in

the presently developed potentials such as relativ-
istic corrections [although limited by the L-S cou-
pling from underlying ('6}]and core polarization
effects. The latter are apparent from the small
nonzero values obtained for B, even for states that
have no matching symmetry in the core (e.g. , 2p
for first-row atoms). In contrast, U, (r) is ident-
ically zero for such cases due to the absence of
pseudopotential cancellation.

C. Phase separation in the orbital-radii model
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FIG. 16. R~ vs R~ p&ot for the octetAB compounds,
obtained with the first-principles pseudopotentials.

Following St. John and Bloch" we have con-
structed a topological R „vs B, [Eq. (9)] map for
77 of the octet AB compounds (Fig. 16). A similar
map has been constructed for 56 suboctet com-
pounds (A "B~ " 8 ~p & 6, Fig. 17). Only the most
stable forms are included.

It is seen that these coordinates separate re-
markably well all the crystal phases involved, in-
cluding the most sensitive wurzite and zinc-blende
phases (which differ only in third-nearest neigh-
bors). Among the notable exceptions we observe
that CuF appears near the wurzite-rocksalt line
vghi1e it was thought to crysta&li. ze in a zinc-blende
form. A recent reexamination of the data" has
suggested that this compound does not exist in fact
in its stable phase as a AB structure.

The general pattern of phase separation is simi-
lar to that obtained by St. John and Bloch ' and

Chelikowsky and Phillips ' with the empirical ra-
dii. Some of the notable differences are: (i) The
present scheme places the Cu and Ag halides near
the zinc-blende- wurzite- rocksalt border in their
appropriate places, whereas the empirical scheme
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FIG. 17. B„vsR+~~ plot for the suboctetAB com-
pounds, obtained with the first-principles pseudopoten-
tials.
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places them as a nearly separated group at high 8
values. (ii) The empirical R„coordinate shows
only a very small separation of the sulphides,
selenides a.nd tellurides of Sr, Cd, Zn, Mg, and

Be, and the (extrapolated) R, values do not separ-
ate the bromides from the iodides of I i, Na, K,
Rb, A g, and Cu. 7his can be viewed from Fig.
18(a) where the corresponding R„coordinates are
plotted for these series. In general, the slopes of
the corresponding curves and their separation is
distinctly higher with the present radii, indicating
larger structural sensitivity. Similarly, the em-
pirica. l radii place the silver and copper halides
between the alkali halides on the A scale, while
in the present scale they are more logically placed
as a separated group. Both these 8, curves and

similar g curves indicate that the empirical pa-
,rameters of Cu and Ag compounds are nearly de-
generate. A plot of r~-r, vs r~+r, for these ele-
ments shows approximate linear dependence. To a
lesser extent a similar effect characterizes the
Cd-Zn pair. (iii) The empirical R„coordinate
places the Mg chalcogenides [Fig. 18(b)] which are
mostly rocksalt, below the Zn and Cd chalcogen-
ides (mostly wurzite and zinc blende). The present
scale places the Mg chalcogenides closer to the
rocksalt Sr salts.
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=No
-Ag
-Cu
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F. IG. 18. Variation of the B~ coordinates of the em-
pirical Simons-Bloch (right-hand. panels) and the first
principles pseudopotential (left-hand panels) along (a)
the monovalent halides and (b) the divalent chalcogenides.
The symbols A, S', and ZB indicate rocksalt, wurzite,
and zincblende, respectively.

The R„coordinate measures the sum of the s-p
pseudopotential nonlocalities for the pair A-B.
Indeed the electronic band structure of many of the
compounds characterized by small R (e.g. , GaAs,
A1As; Si, Ge, ZnSe, etc. ) has been treated suc-
cessfully by local pseudopotentials. ' It is also a
measure of the g-p promotion energies in element-
al semiconductors and insulators (e.g. , Ro &Rp
&R~~'&R„") as the difference r, ' —r~' is proportion-
al to e, —e~. A correlates successfully with the
inverse of the homopolar dielectric gap E„', '
whereas A, correlates well with the ionic dielec-
tric gap C."

The A~ vs A, map for the suboctet compounds
(Fig. 17) separates not only the two broad group of
bcc-like structures (full symbols) and anion val-
ence coordination compounds (open circles) but al-
so works well for most of the individual space
groups considered. Qf the notable exceptions,
CaAg(833) and NaPb(tj64) have special proper-
ties." The region of intermixing of the B32 and
B2 structures which occurs in the empirical sepa-
ration map of Machlin et a/. ,

" is largely eliminated
with the present scale.
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The & coordinate has been shown to correlate
successfully with the deviations ~ from the ideal
c/a ratio (I.633) in wurzite structures. 6' Using
the 20 AB compounds for which crystallographic
data exist, given by Lawaetz" (Table I in Ref 7.9),
we obtain a correlation coefficient of -0.702, com-
pared with a correlation of -0.788 obtained from
the empirical radii" and -0.842 obtained by
Lawaetz' using the empirical (e~Q/lou&~)' coordin-
ate (where 8*, C, and ~, are the experimentally
deduced effective charge, Phillips's heteropolar
gap, and the plasma frequency). In view of the
nonempirical nature of our scale and its applica-
tion to systems that have phases more stable than
the w'urzite, we view our classification as success-
ful. Based on this correlation, we suggest that
HgS, . HgSe, HgTe, would have a stable wurzite
form. Similar conclusions are borne by their lo-
cation on the A -A map.

IV. CONCLUSIONS

We have demonstrated that the first-principles
nonlocal pseudopotentials developed in I not only
reproduce the energies and wave-function' charac-
teristics of atoms and ions very accurately, but;

they can also be used to obtain a good descrip-
tion of the electronic structure of solids as
diverse as covalent semiconductors and transition.
metals. In addition, they are shown to contain
structural information through their characteristic
electronegativity parameters ~, . As these poten-
tials are constructed in a nonempirical fashion,

their characteristic features can be conveniently
analyzed in terms of the underlying interelectronic
interactions. This enables the systematic improve-
ments in the understanding of the interaction model
by way of comparison with experiment. Although
obtained in numerical form, the knowledge of their
limiting behavior at small and large radius enables
their accurate fitting to convenient analytical forms
such as

This would allow their use for a wide range of
problems including electronic properties and crys-
tal structure.
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