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Generalization of the random-walk process
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A generalization of the random-walk process is given. To this end, two simple models for
"memory functions" are proposed. They are a step-dependent memory (model I) and a site-

step-dependent memory (model II). Recursion relations representing the processes are convert-

ed to generalized Fokker-Planck equations. Specifically, it is to be noted that the basic equation

for model II is the same as the nonlinear equation describing turbulence, or solitons. Based on
these model processes, modifications due to memory effects on traveling waves are studied. A

method of determining the memory function for model II in concise form is sho~n.

I. INTRODUCTION

Recently, the dynamical macrosystems have been
extensively studied by using the stochastic equations,
due to the fact that successful phenomenological
descriptions have been obtained by this approach. In
particular, it is well known that the diffusion equation
is easily derived from the random-walk process. ' In
general, however, the basic equation which governs
the time evolution of the macro variable B(x, t) at
position x and time t is expressed in nonlinear form

shown that a projection of motions in the above
processes onto an axis yields "random"-walk
processes with memory: generalized random walks
(GRW). In Sec. III, two models for jumping proba-
bilities with memory are introduced. Recursion rela-
tions for these processes are converted to generalized
Fokker-Planck (GFP) equations. In Sec. IV, based
on truncated GFP equations for the two model
processes, modifications due to memory effects on
traveling waves are studied. In Sec. V, a method of
determining the memory in model II is shown.

BB(xr) B 8B
Br Bx II. SPECIAL WALK PROCESSES

To derive Eq. (1.1) from the stochastic point of view,
some memory effects must be included, as shown
later. The problem of non-Markov processes is very
difficult and requires specific considerations.

In this paper, to clarify the memory effects in the
stochastic equation, two simple models for "memory
functions" are utilized and the random walks are ex-
tended in more general form; generalized random
walks (GRW). 2 3 The GR~'s are different from the
generalized random walks as given by Montroll
et a1.4 The present two models for memory functions
are a step-dependent memory function (model I) and
a site-step-dependent memory function (model II).
The basic equation for model II is the same as the
nonlinear equation, the Burgers equation' describing
a freely decaying, homogeneous turbulence. This
fact suggests that the non-Markov processes generat-
ed by model II are reduced to the random-walk
processes after making the Hopf-Cole transforma-
tion. This result may be readily understood from
the fact that the turbulence described by the Burgers
equation is, in its broadest sense, a random motion
of a continuous medium.

In Sec. II, a basic expression which describes a spe-
cia} "walk" process with memory is given. Next, it is

WN /(x
~
aN I ~ a.N 2 ~ —a I x—1)—

—
J Pz (x ixN y)

"WN-2 (xw-ala~ 2, ...,a~,x,) de it,

(2.1a)

W, (x ~a),x() = P, , (x ~x() Wp(xr),

I

P, (x~x~ )) dx =1,

(2.1b)

(2.1c)

where Wp(x~) = I and xN ~ is a position on the shell

N-2 ~

For a special case in which positions x and x& are

First, consider a stochastic process with no
memory, which is characterized by a set of positions
x, and the distances of each step, a; [see Fig. 1(a)].
In this process, the probability density that the walker
starting at x; arrives at x after N —1 steps, irrespective
of intermediate positions, WN ~(x a~ ~, a~ 2, . . . ,
a~,x~), is expressed by W~ 2(x~ ~ a& q, , a&,x&)
and jumping probabilities P, (x~x~ t)
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Ist, 2nd, 3rd,

(b)

X
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FKJ. 1. (a) Stochastic processes specified by Eqs. (2.1a), (2.1b), and (2.1c). (b) Stochastic processes represented by Eqs.
(2.5) and (2.6). Positions of sites on (N —1)th layer, xN 1, are expressed by (k —1,N —1—k), where k is integer, 1 ~ k ~ N —1.

restricted to a set of lattice points in the first qua-
drant [see Fig. 1(b)], the set of jumping probabilities
P, (xIxN () is reduced to a pair of jumping proba-

bilities PN ( and QN (

where k is integer (1 «k «N —1),

(x,y) =x, (k —1,N —1—k) =xN ( (2.3)

and the distance of each step is a. The sum of PN 1

and QN ( is normalized as

Pg ((xy) I k 1 N 1 k)) PN (sg (+(k ()

+ QN-(gy, (+(N-(-k)

PN-(+ QN-( =1
The recursion formula for this process is written

(2.4)

N-1

fVN((xy) Ia, a, ..., a, (0, 0)) = X P, ((xy) I(k —1,N —1—k)) WN (((k —1,N —1—k) Ia, a, ...,a, (0, 0)), (2.5)

W2((xy) Ia, (0, 0)) =P, ((xy) I(0, 0)) W(((0, 0)) =P(8,,(+Q, gy ( . (2.6)

Here it is noted that the suffixes of the layers are changed such that on the Nth layer there are N sites.
A method of including memory effects in the process under consideration is a rather difficult problem. For

some processes, however, the memory effects may be expressed by replacing PN ~ and QN ( by PN ~ and QN (,
respectively, which are related to a set of jumping probabilities at the previous step as follows:

PN (f(PN 2~ QN 2)-~ QN-I g (P-N 2r QN 2)— ——

where functions f and g specify the memory. The sum of P„and QN is normalized as

PN+QN-1

(2.7)

(2.8)

for each N steps.
Substituting relation (2.3), with PN ( and QN ( replaced by PN ~ and QN (, respectively, into Eq. (2.5) gives

~iv((x y) I a a'" a (0.0)) = PN-(' ~w-(((x —l,y) la, a, ...,a, (0, 0)) + QN-(' Wiv (((xy 1) I a, a, ...,a,-(0, 0))—, (2.9)

where

PN (' = PN ~(1 —&„p), QN (' = QN )(1 —8 p), (2.10)

and Wt(0, 0) =1 and

&N((x'y) la, a, ,a, (0, 0)) =0...
when (x,y) is not on the ¹hlayer.

As is seen in Fig. 1(b), the processes represented
by Eqs. (2.9) and (2.10) may be understood as a kind
of "self-avoiding" walk. Moreover, it is noted that
the walker has the memory specified by Eqs. (2.7)
and (2.8). For this reason, this process will be called
a special walk process.
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III. MEMORY-FUNCTION MODELS

In Sec. II, a special process with "memory function"
was derived [see Eqs. (2.7), (2.9), and (2.10)l.
Here, by projecting the motions generated by Eq.
(2.9) onto a single axis, the GRW axis as shown in

Fig. 2, they can be reduced to a generalized-random-
walk (GRW) process in the one-dimensional case.
Similarly, two models for memory functions are in-

troduced in the GR%.
In order to represent positions projected onto the

GR% axis, a different notation is required as follows:

m = (x,y), m +1 = (x,y —1), m —1 = (x—l,y) (3.1)

(see Fig. 2). Moreover, it is assumed that Ptt t and

Q& t depend on the positions as well as on the steps:
Ptt t(m~m —1) and Q~ t(m~m+1).

Then the recursion formula (2.9) can be rewritten
in the form

W(m, N) =P, , (mmmm-l) W(m-l, N-I)

+Q~ t(mim+I) W(m+1, N —I), (3.2)

Ptt t(m+1~m) +Q~ t(m —1~m) =I . (3.5)

As simple models for memory function, consider
the following two cases:

Model I (site-dependent case)

P. i=P. z(I Q. z~-. », -
QN t= Ch -z(I+PN-z~. z) .

(3.6)

for N ~ 3. Both first terms in Eqs. (3.6) represent
the constant part of each jumping probability and the
second terms express the memory specified by M~ 2,
which depends on the step.

Model II (step-site-dependent case)

larly, the relation (2.7) is expressed by

P, , (m~m —I)

=f(P„,(m —1)m —2), Q„,(m —1~m)),

Qg t (m[m+I)

=g(Pg, (m+I ~m), Qg z(m+1 ~m+2)), (3.4)

with

where, to avoid the complexity of a subscript on 8',
an abbreviated notation is used, as follows:

W(m, N) [= W((xy), N)]

PN 1(m Im —I)-= —,
' [I + bW(m 1,N —2))—

QN t(m ~m+I) = 7~[1 —bW(m+I, N —2)] .
(3.7)

= WN((xy) ia, a, ...,a, (0,0)), (3.3)

and primes on P and Q have been omitted. The ex-
pression (3.2) has a form identical to the random-
~alks processes, except for the memory effects
denoted by PN t(m ~m —1) and Q~ ~(m ~m+1). Simi-

The second terms in Eqs. (3.7) represent the memory
specified by a parameter b. Namely, it is assumed
that the memory in model II depends on the proba-
bility density at the previous step, W(m I+, N —2).

To convert Eq. (3.2) using Eq. (3.4), that is Eq.
(3.6) or Eq, (3.7), into continuous form, introduce a
set of continuous variables z and t and put

z(=x —y) = am, t =, N/v (3.8)

N th layer

{N-l)th layer

"
, LLL

2rtd layer

(a: unit step; I/v' . unit time) when x and yare on
the Nth layer. Expanding the functions concerned
with these variables around 1/v =0 and a =0, rewrite
Eq. (3.2) in the differential form

9w 9 av=av —(q —p)w+ (p+q)w (3.9)
Bt Bz 2 Qz'

(a v finite) where P, q, and w represent continuous
functions which correspond to P, Q, and W, respec-
tively.

Similarily, Eq. (3.6) can be rearranged to give'0

GRW oxis with

p(t) q (t) m (t),-Bp(t)
9t

Bq(t) = q(t) p(t) m (t),
Qt

(3.10a)

(3.lob)

FIG. 2. Relation between a special chalk process specified

by Eqs. (2.7), (2.9), and (2.10) and a generalized-random-
walk process given by Eqs. (3.2), (3,3), and (3.4).

p(t)+q(t) =1. (3.1 1)

The condition (3.11) is derived from the normaliza-
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tion of Eq. (2.8). For model II, Eq. (3.7) is rewritten
in the form

P(t)

P (z, r:tv) = —[1+bw(z, r)],

q(z, r :w) =. -,
' [1 —bw(z, r)] .

(3.12a)

(3.i2b)
I: mo=-2, b=ioI

]I: m =- —,b= I
l

0 2&

Consequently the basic equation for model II is given
by mo= O, M = I

+Cw~ —Dp~ =0,
Qt Bz 9z

where

Ct -2a yb, Dp = azv/2 .

(3.i3)

(3.i4)

I: me=a, b=lO
Ig. (no= ~, b= l

This equation is a nonlinear equation defined by Eq.
(1.1) and it is the same as the so-called Burgers equa-
t10n.

0

W(z, t) (b)

IV. MEMORY EFFECTS ON TRAVELING WAVES

In this section, a study of memory effects on trav-

eling waves is made. Two simple models for memory
functions are used to determine their effects on the
traveling waves which are obtained by truncating the
differential equation (3.9). Namely, for simplicity, it
is assumed that tv(z, r) is a slowly varying function
such that tl'W/tlz' can be neglected.

Ao

Zl

Bo
2ZI

Zl
'', A
I

t

Z =QVf+ Z[

A

Z

A. Time-dependent memory function (model I)

p(r) = (4.1)

pt
M' (r) = Cp exp( —

&~ m(t') dr')
Jp

Cp -=pt/(I —pt), (4.2)

First consider the case in which the memory effects
on the process are expressed by Eq. (3.10a). Under
the initial conditions p(r =0) =pt and q (r =0) = qt,
the solution is

FIG. 3. (a) Here put pi = 2, m(i') =mp(1 e '),
where mp is a "residual memory" and b is a parameter which

specifies the memory effect. (b) As an initial condition for
e, put w(z, 0}=0 (0 ~ z (zi), 2 —z/zi (zi «z (2zi),
0 (z ~ 2zi). A profile of w(z, t) is preserved along a charac-

teristic curve z —a v U(t') dt =zp, where zp belongs to

the interval [zt, 2ztl. %hen M' = I, a set of characteristic

curves is located in the strip &pBpA'B'. A strip ApBpAB
denotes a memory effect in which M' is a very large con-

1
stant, that is for mp = —

2
and t

and the memory effect is expressed as

P(r) -q(r) =, = U(r) .
M' —1

M'+1 (4.3)
memory effect on the traveling wave of Eq. (4.4) is
shown graphically in Fig. 3(b). The memory effect is
related to changing the trajectory of w(z, t).

In Fig. 3(a), the behavior of p(t) is shown by taking
a suitable form; m (t) -mp (1 —e a'), where mp

and b are parameters. "Substituting Eq. (4.3) into
Eq. (3.9) gives

8. Space (site) and time (step)
dependent memory function (model II)

U() 0" =0, (4.4)
Here the memory effect is expressed by

where the term ti'tv/Bzz has been neglected. It is

well known that the solution to Eq. (4.4) denotes a
traveling wave with a phase velocity ai U(r). The

p (z, r, w) —q (z, t; tv) = bw (z, r) + 0 —,a, (4.5)1 9w 9e
P Qz Qz

and the basic equation is given by Eq. (3.13). The



HIROAIG HARA

z [ I + b (
—+Aa)j~c]

which describes a "compressive" or "divergent" wave,
according to its boundary condition. ' For the pur-
pose of comparing the solution of Eq. (4.8} with the
solution of Eq. (4.4},choose the same initial condi-
tion for w

0

,
0

(O~z &z,)

w(z, 0) = i 2 ——(zi ~z & 2zt) .z

Zf

(z ~2zt) .

(4.9)

—]+5 (—-Ao

=z =z-Xtl

FIG. 4, Behavior of the jumping probability density p(z')
in non-Markov processes.

The behavior of this solution is shown in Fig. 5. In
this model, the memory effect is related to changing
a profile of w(z, t).

z' =z —
A. t,

1

Ao = —w(z')
C) ~ OO

nonlinear equation (3.13) is solved for a steady
state as

T

C]Ap
w (z') — = A 0 tanh —— z'

2Dp
(4.6)

V. HOPF-COLE TRANSFORMATION
OF MEMORY FUNCTION

In Sec. IV, the memory effect has been investigat-
ed by using two simple models, characterized by Eqs.
(4.4) and (4.8), respectively. For model II, using the
Hopf-Cole transformation ', one can obtain the
memory function in a more concise form.

From Eq. (3.13) and model II as defined by Eq.
(3.12a), a basic equation for m(z, t)(=p(z, t) —q(z, t)]
is then given by

where X is constant and C~w(z'=0) —X=O. Replac-
ing w in Eq. (4.6) by a velocity field u (z, t), the
steady-state solution sho~s a "shock wave". '3'4 By
substituting Eq. (4.6) into Eq. (3.12a), the behavior
of p(z, t) or q(z, t) can be plotted. Figure 4 shows
the behavior of the jumping probability density
p(z') l= l —q(z')]. To study the memory effects ex-
plicity, truncate Eq. (3.13) as follows:

em+C em D
0'm

0
Bt Bz 9z

where C2=2at C&lb.

Now define a function M(z, t) generated by m(z, t)

t t

] Pz D
M(z, t) =exp — m (z', t) dz', Do =

2D() p, C2
i t

+C Qw 0 (4,8) (5.2)

Note that Eq. (4.8) is the same as the basic equation.

vr(z, t }
B

[cf. Eq. (4.2)]. By substituting Eq. (5.2) into Eq.
(5.1), Eq. (5.1) can be rewritten as the diffusion
equation

BM(z, t) D d'M(z, t)
2

(5.3)

z/

C

z =C]t+z,
A

2Dp 8M
M Qz

goo z — z

M(y, 0)m(y, 0) dy
4Dpt

m(z, t) =—

J exp—

and hence the solution of Eq. (5.1) is expressed as'~

Ao
ZI

Bp
UZI

(z —y)'
exp — M(y, 0) dy4 — 4Dpt

(5.4)
FIG. 5. For the sake of simplicity, assume that p~ = q~ in

the Markov process and regard a trajectory deviation from
c4pA to ApA to be a memory effect due to the non-Markov
process.

Note that Eq. (5.3) can be reinterpreted by introduc-
ing a suitable transition probability
p(y, t ~y

—sty, t —dt) between the two quantities
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M(y, r) and M(y —hy, t —hr)

M(y, r) =
J p(y, !Iy hy—, r dr)—

XM(y —4y, r hr) d—(hy),

where

(5.5)

assumption, the equation which specifies the memory
of model II, m (z, t) [=p (z, t) —q (z, t)], is reduced to
Eq. (3.13) or Eq. (5.1); i.e., the Burgers equation.
Next, it is noted that by considering Eqs. (3.13) or
(5.1) as a continuity equation for w, a nonlinear flux
Jcan be expressed as follows:

p(y. r Iy
—~y r —~r)=,&,

exp-
4rrDohr '~' 4Dohr

(5.6)

m(z, r) =

where

reoo
1y exp —

, F(z,y, t) dy
2D1

t

f+OO

exp —,F(z,y, t) dy
2D(~)

, (5.7)

The memory specified by Eq. (5.1) is determined in
terms of the initial values m(y, 0) and M(y, 0) and
the transition probability p(z, t Iy, 0).

Finally, with the aid of the relations (5.2) and
(5.4), m(z, t) is obtained as follows:

J(w) = avbw D, -QN

$Z
(Do= —,

' a'v) . (6.1)

This paper has been confined to the case in which Do
is constant (from the condition p+q =1), but extend-
ing the present procedure to the more general case in
which the jumping probabilities p, q, and r appear, Do
can be modified to the form D(z) or D(w), as
shown in Ref. 3. Moreover, in the present paper,
terms up to the second derivatives with respect to x
have been included in the expansion of the recursion
formula for the GRW's [e.g. , Eq. (3.13)]. Including

- higher-order terms gives a considerably more compli-
cated nonlinear equation. i.e.,

F(z,y, t) = + m(y', 0) dy'
(z-y)'

2tC2
(5.g)

a3vb 93m

3 ez3
' (6.2)

This form suggests that in the present treatment the
memory m(z, r) may be interpreted as an averaged
quantity for (z y)/Czr in a "me—mory field" specified
by exp[ —F(y, z, t)2Dot ].

VI. CONCLUDING REMARKS

with the corresponding flux expressed as

J(w) =avbw' — (Dw) +—a3v 92 (w'), (6.3)
Qz 3 e.

where D =-, [a'v(p+q)]. Further studies related to

the works in Refs. 16-19 would be interesting.

In this paper, it has been shown what happens
when memory is included in generalized random
walks (GRW). The basic equation which governs the
GR%'s is obtained by taking the continuous limit in
the recursion formula for the GRW's. To clarify the

memory effects in the GRW, two simplified models
were used.

The most important assumption of the present ar-
guments is Eq. (2.7) [or Eq. (3.4)]. By allowing this
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