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The Hubbard model is extended to include long-range Coulomb interactions between electrons on

different atomic sites. This results in a screening of the effective correlation energy by free carriers. Both the

cases of an integral number of electrons per atom and a general electronic density are considered. The

electronic free energies of both insulating and metallic states for finite bandwidths are calculated and

compared. These results are used to generate complete phase diagrams as functions of temperature and

bandwidth. A wide range of electronic behavior can be understood by use of the model. For certain

materials, insulator-to-metal transitions are predicted as the temperature is increased. However, for

somewhat larger bandwidths, a metallic ground state. is present and two transitions are predicted: metal-to-

insulator and, at a still higher temperature, insulator-to-metal. The model is used to analyze the anomalous

transport properties of the Ni, ,Co„S, system.

I. INTRODUCTION

Metal-insulator transitions have been studied
intensively for the past 50 yea. rs (for an excellent
review, see Ref. 1), and yet remain one of the
least understood and most controversial areas of
solid-state physics. One of the reasons for the
profound interest in this subject is the fact that
such transitions often focus on the regions of vali-
dity of the one-electron approximation, the basis
for much of the quantitative theory of solids. This
approximation neglects the correlations between
electrons in the material and often leads to the
prediction that some of our most insulating mater-
ials should be metallic. ' Another reason for
the interest in the transitions themselves is the
wide diversity of systems in which they have been
observed; in particular, they are often found in
transition- metal ' and rare-earth compounds,
organic charge-transfer salts, ' and disordered
solids, which all are systems where electronic
correlations play an important role. Mott was
the first to suggest that such correlations could
result in an insulating ground state, even when
one- electron theory predicts metallic behavior.
He also presented arguments that the transition
between such an insulating state and the metallic
state of ordinary band theory should be sharp;
such metal-insulator transitions are now called
Mott transitions.

Despite a great deal of experimental work on
te mperatur e- induced metal- insulator transitions
in systems in which correlations are important,
there has been a singular lack of quantitative theo-

retical investigation in this area. There have
always been some major difficulties with models
which explicitly include electronic correlations.
In a series of papers, Hubbard introduced a
Hamiltonian which is exact in the two opposite
limits of small correlations (one-electron limit)
and narrow bandwidths (atomic limit). Thus this
Hamiltonian could be used to analyze major as-
pects of both the insulating and metallic states of
such systems, as well as the transition from one
of these states to the other. The essence of Hub-
bard's approximation was to consider explicitly
short-range intrasite correlations between elec-
trons and to treat the remaining Coulomb interac-
tions with a mean-field (Hartree-Fock) descrip-
tion. Several investigators have suggested mecha-
nisms for semiconductor-to-metal transitions in-
volving a temperature-induced collapse of the
semiconducting gap. In fact, Doniach has
shown that any system with an energy gap which
varies as &o(f) = &o(0) —U„,f, where U„, is a
positive effective interaction and f is the fraction
of excited carriers, may exhibit a cooperative
first- order transition.

In this paper, we develop a model which de-
scribes screening- induced metal-insulator tran-
sitions in Mott-Hubbard insulators. We first ex-
tend the Hubbard model to include long-range
Coulomb interactions between electrons on dif-
ferent atomic sites. A detailed analysis then
shows that excited carriers can screen the on-site
Coulomb repulsion. In Sec. II, we derive an ex-
pression that describes this screening. We then
generalize this derivation in Sec. III to include

20 Qc 1979 The American Physical Society



20 THEORY OF TEMPERATURE-INDUCED MOTT TRANSITIONS 4045

systems in which free carriers are present. We
find significant modifications of the screening
behavior due to these free carriers. In the zero-
bandwidth limit, we obtain two equations which
simultaneously determine the value of the intra-
site correlations and the density of excited car-
riers. We show in Sec. IV that the self-consis-
tent solution of these equations predicts that the
insulating state often cannot exist above a certain
critical temperature. The remainder of this
paper is devoted to an in-depth investigation of
various aspects of the finite-bandwidth system.
Section V deals with the screening-induced beha-
vior of the insulating gap. In Sec. VI, we intro-
duce the self-consistent metallic state and exa-
mine its properties. In order to describe the
transition behavior, it is necessary to calculate
and compare the free energies of the insulating
and metallic states. We do this in Sec. VII and
then generate complete phase diagrams as func-
tions of temperature and bandwidth for these sys-
tems. In Sec. VIII, ideas presented in the previ-
ous sections are applied to Ni& Co+2, a system
which exhibits many anomalous transport proper-
ties not explainable on the basis of conventional
one-electron models. ' However, we show that
these anomalous properties can be understood in
terms of a model in which excited carriers screen
a Hubbard gay.

II. SCREENING OF THE CORRELATION ENERGY:
HALF-FILLED-BAND CASE

The major feature of the Hubbard Hamiltonian
is its explicit treatment of the on-site interaction
U between electrons in the same band. Interband
and intersite processes do not appear explicitly
and enter only through the Hartree-Fock field.
For the systems we have chosen to consider, the
correlated electrons are sinzultaneogsly the con-
duction electrons, so that these materials have no
highly mobile conduction-electron gas to screen
the intersite interactions as in the model of Fali-
cov and Kimball. Consequently, the off-site
terms cannot be ignored. In the following, we
develop a formalism for treating the effect of the
most important class of intersite interactions on
the effective intrasite Coulomb repulsion U.

The complete Coulomb-interaction matrix ele-
ments are given by

(ij — k() —= q f drdr P*(r —R,)'("(r' —)(.)
1-, y(r —R„)y(r'-R, ),

j r- r'l

where the wave functions (}I) are Wannier orbitals
centered on sites i, j, k, and l. In terms of these
interactions, the Hubbard Hamiltonian can be
written

(2)

where T&&, is the transfer integral for a spin-0
electron from site j to site i, e~, (c&,),creates (an-
nihilates) a spin-o electron on site i, and

v~&, ~ Ng vf——~ exp[-ik ' (R~ —K&)],

where p„-, is the average occupation number of the
Bloch state ~k, o).

Because the overlap of localized wave functions
centered on different lattice sites is so small,
the direct Coulomb term

1
(ij — ij)-

of the next-largest nearest-neighbor term (ii
~
1/

r~ ij). Thus, for a three-diinensional lattice,
there are 10' direct interactions that are stronger
than the nearest neighbo-r exchange term (ij ~1/r~ji).

Suppose we include the entire set of direct Cou-
lomb interactions, where i and j are now unre-
stricted. Kemeny has considered these corre-
lations in his general formulation of the Hubbard
Hamiltonian, although he obtained solutions only
for the case J;&(i&j)=0. If the number of elec-
trons N equals the number of lattice sites No and
the state is nonmagnetic (vqq, ———,'}, then E(I. (2)
reduces to

is much larger than the other off-site integrals
. (ij

~
I/r

~ hl), all of which involve at least one such
small overlap factor. In fact, i and j must differ
by ten lattice constants before 4&& falls to the size

H — E T'g~ecf c~ +U n~nt
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where n;, = c&,c&,.
Consider the term

Jq) n; —1 n~ —1

Using definition (1) and the fact that the charge
(operator) on site i, Q;, equals -q(n&- 1), we
can rewrite the sum as

where we have assumed negligible overlap between
wave functions centered on different atomic sites.
Note that this term has the form of a long- range
Coulomb interaction between sites having nonzero
net charge. [Kaplan and A rgyres have considered
these intersite terms and have shown rigorously
(for N=NJ that the charged sites occur only in
excited states of the system. ] Thus not only do
the electrons on site i interact but, in addition,
the charges Q& are correlated with the charge on
site i. Although the Q~ are fixed to the lattice
points R&, the values Q& may vary from -1 to +1.
By influencing the charge density over regions
surrounding R, , the charges Q& can screen the on-
site interaction U. The most important intersite
interaction takes the form of a Coulomb interac-
tion between charged sites. %e shall not attempt
to solve the Hamiltonian (3) exactly. Instead, we
shall approximate it by incorporating the effects
of the Coulomb terms into a dielectric screening
function.

A static potential applied to a system of elec-
trons leads to spatial variations in the local chem-
ical potential e~, '2' and, consequently, in the local
electron density n. Such behavior is described by
the static dielectric screening function

e(q) =1+47tq dn

d+

which holds for small wave vector q™." This de-
scription is strictly valid for "weak coupling"
only, i. e. , in the limitwhere there are many
cIlarges within the screening volume. When Boltz-
mann statistics (and Debye-Huckel screening)
apply, this requirement reduces to kT» q /r, i. e. ,
the thermal kinetic energy must dominate the
Coulomb interactions. For the cases examined
here, the pseudoparticle bandwidths (and, hence,
kinetic energies) are much smaller than, or com-
parable to, the on-site Coulomb repulsion ener-
gies. However, even for localized electrons,
spatial variations in average site occupancies do
lead to static charge fluctuations, and the intra-
site repulsion is then reduced as a result of the
interaction between a charged site and its altered
neighborhood. Consequentl)t, when the screen-
ing length exceeds the average interparticle dis-
tance, we can treat the charge redistribution as
an effective screening mechanism.

In the atomic limit of the Hubbard model (T;,,
=0, i 0j), the grand partition function corres-
ponding to the Hamiltonian (2) is

=(1 + 2 exp[-P (To —er ) ]

+exp[ P(2T, +U ——2&r)]) ',
where Tp-= T;;, and g„~„and &, are respective-
ly the degeneracy, energy, and occupation num-
ber of single-site configuration "s"; the site may
be empty, singly occupied, or doubly occupied.
Since N= (1/)8)(S InZ/Sar), we obtain

2 exp[-P(TO —er)]+ 2 exp[-P(2TD+ U —2Er)]
0 1+2 exp[-P(TO —e„)]+exp[-t](2T()+ U —2e„)] '

where no is the site density and n is the electron density. Taking the derivative dn/der, we find

de
&

exp]-))()'e —e )]+ 2 exp(-))(2Te+ ))-2e )]+exp(-()(S)'e+ ()—Se )l)
d&]e [I+2 exp[ P(TO —E-F)]+exp[-P(2TO+ U- 2&)e)]P

(5)

For an average of one electron per site, n=np, '

Eq (5) can th.en be solved to obtain er ——To+ —,'U.
Substitution of this result into Eq. (6) yields

dn Pnp

Eked 1+e

np
2(1+e'a") '

Equations (7) and (8) then give

dn = 2Pn~,
G&y

(8)

However, we find from the grand partition func-
tion Eq. (4) that the density of doubly occupied
sites n„ is

and Fq. (3) becomes &(q, 0) =1+ (4]]q'/q')(2Pn~).



20 THEORY 0 F T E M P E R A T U R E - I N D U C E D MOTT T R A 5 S I T I 0 N S

Thus the Coulomb repulsion q / r is screened to

V (r ) = q exp[- [4p q'P ( 2n„)]"'
p ] .

Hubbard introduces the bare intra site Coulomb
repulsion U, by defining Up =(ii

~
I/p ~ii) .. By ana-

logy with this, we appr oximate the screened inter-
action (ii

~
V(r)/q

~
ii) by

Up exp[- [4mq'P(2n, )]"'d],

wher e the average inter site distanc e

d = dr dr' r —r' p& r p&
r'

is typically 0. 5-3.0 A, depending on the orbital
configuration. Thus the on- site C oulomb repulsion
can be written

U= Up exp]- [4vq P(2n~)d ] (i2)

U = Up exp[ —(4vq Pn„d )' ] . (i3)

By making this approximation to the exact Ham-
iltonian (3), we have generated an effective Hamil-
tonian whic h depend s on temperature. When a
careful free- energy variational procedure is used
to derive an approximate Hamiltonian, fundamental
thermodynamic and statistica 1 relations are con-
sistent. Unfortunately, with the method des crib-
ed here, if the density operator p = Z exp[ —P(H
—pN)] and the thermodynamic potential 0 —=-kT lnZ,
it is no longer true that the entropy -k Trp 1n p
=-8 0/BT. In order to define the free energy un-

ambiguously, we make the ansatz that U(n„)
—= U(n„'), where the n„' are determined by the self-
consistency requirements

Note that the inverse screening length (q,
= [4vq P(2n„)] ) increases with the number of
doubly occupied sites . This follows from the fact
that these sites (and the empty sites with density
n, =n~) are the charge centers involved in the
long- range Coulomb interactions, as discussed
earlier (Not s. urprisingly, Rice and Brinkman,
using Gutzwil ler ' s ' var iational approach to study
the Mott transition, find that the screening param-
eter in the strongly correlated metallic state also
increases with n~. ) In the atomic limit, the den-
sity of doubly occupied sites is one-half the density
n„of electrons in the upper Hubbard pseudoparti-
cle level . The screened interaction is there-
fore

With thi s condition, the inconsistency mentioned
above is resolved and we can use the ther mody-
namic potential to determine, e. g. , the eq uili-
brium density of excited carriers n„: Q(n„)
= min[n(n„') ].

Although we have derived Eq. (13) in the atomic
limit, -we wish to use it to study screening effects
for finite bandwidths. For the case U» 4, but
with ~ & 0, we demonstrate in the Appendix that

q, = (4vq'Pq, ) d when the Boltzmann limit applies,
just as the usual Debye-Hu eke 1 screening formula
depends on the total number of conduction elec-
tr ons, independent of the density of states in the
band or the details of the level occupation. W e
shall then use Eq. (13) for the full range of model
parameters in the insulating state. Equation (13)
is an important result because it shows that the
siz e of the Hubbard gap decreases as electrons
are excited across it. Whenever the energy gap
obeys a relationship of this form, we can expect
a transition to occur. We shall examine the de-
tails of this transition in the sections that follow.
But first, in 3ec. III, we extend the results of the
present section to those systems for which the
number of electrons does not equal the number of
sites (n 4 np). In that case, Eq. (13) must be modi-
fied in a signif icant manner .

III. SCREENING OF THF CORRELATION ENERGY:

GENERAL CASE

In Sec. II we derived an expression governing
the screening of the Hubbard gap for sy ste m s in
which the number of electrons equals the number
of lattice sites (n =n,) ~ However, it is often the
case that these numbers are not equal, for exam-
ple, in compounds that mix ionic charges (such as
Ni& „Li„O) ' or in materials having incomplete
charge transfer from cation to anion [ such as
tetrathiafulval enium- tetra cyanoquinodimethanide
(TTF-TCNQ)]. ' Here we extend the results of Sec.
II to include n +n, .

Using the general expression Eq. (4) for the
grand partition function 2 in the atomic limit, we

obtain

npg, exp[- P(E, gI N, )]
1 + 2 exp[- P(Tp pp)]+ exp[- P(2Tp + U- 2&@)]'

(14)

where n' is the density of lattice sites in state s .
When we now relax the assumption that n =n„we
modify the derivative Eq. . (9) which becomes

and

3 n&(

~n„)g,g

U = Up exp[- (4vq'Pn„'d')"'] .

c ~ - c=—(nn +4nn +nn ) ~

dip no

Here, n, n ', and n are the de nsi tie s of sites that
are empty, singly occupied, and doubly occupied.
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(Note that n —= n~. ) Clearly the superscript
indicates the net charge of the site in the state s.
Note that Eq. (15) is symmetric about n =n„s o
that extra carriers of either sign contribute equal-
ly to the screening.

Eliminating n and n' from Eq. (15), we obtain

=P[2n +n(1-n/no)]=P[n„+n(1 —n/no)]. (16)
d&~

Consequently, the modified expression for the
screened interaction is

U= Uo exp(- {4mq P [n,„+n(1-n/nJ]d'P~') . (17)

The most important difference between Eq. (17)
and Eq. (12) is that as T-0, ~„-0; whereas n„
+n(1 —n/n, )-n(l —n/n, ) WO. Of course, the as-
sumptions of our derivation break down as T-O.
However, the point we wish to make is that in the
general case, even at low temperatures, screen-
ing can occur by means of extrinsic carriers and
does not require intrinsic thermal excitation.
Consequently, we expect that U will decrease as
the value of n deviates from n, . In fact„ex-
perimental measurements of the energy gap &~
of Ni|„Co@2, ' for example, show that &, does
decrease with x. (The bandwidth of Nii „Co„82 is
expected to increase with added Co, so that the
shrinking of the gap most likely results from a
combination of both effects. )

We can thus conclude that extrinsic carriers can
rearrange themselves in order to enhance the
screening. In Sec. IV we shall return to the in-
trinsic case in order to study the transition in
the limit of zero bandwidth.

ly determine the transition temperature. How-
ever, the insight we gain from the analytic ap-

~proach will help us understand the more detailed
numerical calculations for finite bandwidths that
follow.

U is determined by the equation

U=Uoexp[- (sPl)' ], (18)

f=l/(1+ e~i2). (20)

The coupled equations, (1&) and (20), can be solved
graphically for f and U by plotting Eq. (18) and the
inverse of Eq. (20):

where f=n„/no is the fraction of electrons in the
upper Hubbard band, and the screening parameter
s is s —=4mnoq d; s depends only on no, the density

2 2.

of atoms, and d, the average on-site interelectron
distance. Although no will generally depend on
temperature, the dependence is so weak that we
can, with negligible error, treat s as a constant.
For typical values of these parameters, s -0.01-
1 eV. But f is also given by

g„(&)«f 1++(EM/2)

Thus we have a pair of coupled equations deter-
mining U and f. As the temperature is raised,
positive feedback occurs: as more carriers are
excited across the gap, the Coulomb repulsion is
more effectively screened [cf. Eq. (18)]. At the
same time, as the gap shrinks, the fraction of
electrons in the upper band grows [cf. Eq. (19)].
We must solve these equations self-consistently.

In the atomic limit, g„(E) =' &(& —U), so that Eq.
(19) reduces to

U= (2/P) ln(1/f —1) . (21)
IV. PROPERTIES OF THE INSULATING STATE IN THE

NARROW-BAND LIMIT

In Secs. II and III we derived an expression de-
scribing the screening of the Hubbard energy in an
intrinsic material and extended the result to sys-
tems having a general ratio of electrons to lattice
sites. Although we have demonstrated that Eq.
(13) is valid for finite bandwidths, we shall con-
centrate in this section on the case of n=n, in the
narrow-band limit. The reason that we look at
screening in this limit is that we can easily solve
self-consistently for the number of carriers ex-
cited to the upper -pesudoparticle band. We then
obtain an equation determining the temperature
at which the insulating state vanishes. Unfortu-
nately, detailed solutions to the microscopic
screening problem generally assume weak coupling
between the electrons. Because, in the zero-
bandwidth case, this assumption breaks down in
the vicinity of the transition, we cannot accurate-

U=Uo[I- (»f) "l. (22)

As long as the bandwidth is very small, Eq. (22)
will be valid for any value of PU. Nevertheless,
suppose we first restrict ourselves to the Boltz-
mann limit, where

&U/2

This equation then becomes

f= exp[ —(0UO/2)[1 —(»f)"'0 (24)

In this method, each value of T generates a uni-
que pair of curves. However, because we would
like to find f(T) and U(T), it is clearly best to
simplify the problem analytically .first.

As a result of our discussion in Sec. II, we must
require that the average distance between screen-
ing electrons be much less than the screening
length. Consequently, q,d will certainly be much
less than unity and we can approximate Eq. (18) by
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or alternatively

/g
('''&

) 1/2) 1/2) I/2) I/2
]( ~)1

x=$ (23)

ln Fig. 1 we plot x (which is x =fe 0' ) as a
function of x "=g (which depends only on tem-
perature for fixed Uo and s). The most important
feature of the curve is the essential singularity
that occurs in x (hence in f) at the temperature
corresponding to x "=g=e '. We can obtain
f (T) for any choice of Uo and s from this single
curve. For any temperature, we can first locate
the appropriate point on the horizontal axis of Fig.
1 by using Eq. (27). Then, reading the corres-
ponding value of x from the curve, we obtain f
from Eg. (26). The value of U then follows easily
from Eq (22). .

The dashed portions of the curve represent un-
physical solutions, Ecluation (2V) shows that the
entire temperature range 0 & T «corresponds to
1 ~ x " ~ e +; thus x + 1 does not correspond to

Equations of this form were dealt with by Adler
and Brooks.

Defining n—= exp(-P Uo/2) and y= exp[-,'(P 'Uos )],
Eg. (24) becomes

(25)

With the additional definitions

(26)

and 5—= y, we obtain

{27)

real temperatures. The segment x & e corres-2

ponds to a free-energy maximum.
Figures 2 and 3 show f (T) and U(T) for Uo —1 eV

and several different screening strengths s; Figs.
4 and 5 show the same functions for s=0. 625 eV
and several different values of Uo.

First, let us look at Fig. 2. There are several
important features to consider. At low tempera-
tures, the fraction of excited carriers f (T) shows
exponential activation. Furthermore, for all
values of the screening parameter s, the functions
f (T) fall on a common curve. Both of these effects
occur because there are not yet enough excited
carriers for the screening to be appreciable.
Each curve exhibits a singularity at a temperature
above which we find no solution for f(T). The
singularity temperatures decrease as s is increas-
ed; The values of f(T) at these temperatures
range from -10 to 10" .

%e can further understand this behavior by
looking at Fig. 3. At low temperatures the gap is
essentially unscreened for all values of s. It is
interesting that, as s decreases, the transition
not only occurs at a higher temperature but also
at a smaller screened value of U.

Finally, from Pigs. 4 and 5, we see that, for
fixed s, the singularity temperature increases
with Uo.

The function f (T) has an essential singularity
at the temperature P, given by

s(eV) = 0.35

lo—

I
I

I

I
I
I
I

I
I
I

I

I
I
I
I

V

O—-5—
O

I l

l. 5 2
l /~&

e2/e

lO~/T (K ~)

I

3

FIG. 1. Plot of x vs x ~. This curve can be used to
find the fraction of excited carriers at any temperature.

FIG. 2. Temperature dependence of the fraction of
excited carriers for Uo-—1 eV and several values of
screening strength s.
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1

IPO 300 500 700 900
Temperoture, T f K)

1
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07—

0.5— 0.75

FIG. 3. Temperature dependence of the correlation
energy U for Up

——I eV and the same values of p as in
Fig. 2.

O. I

g~l I l I I l

300 500 700 900 1100 1500 1500
Temperature, T(K)

exp [-,'[ p', t'Uos exp(-P, U,/4)$ = e

The value of f at the singularity is

f, = exp(2 —P, Uo/2) .

(29)

(3O)

FIG. 5. Temperature dependence of the correlation
energy U for screening strength s = 0.625 eV and the
same values of Up as in Fig. 4.

In Fig. 6 me plot the singularity temperature as
a function of log&ps for various values of Up. Note
that for each Up there is a critical screening
strength s „less than which there is no singular-
ity. From Eq. (13) we find that s „=~eUO and
that P,(s,,) = 6/Uo.

The significance of the singularity in f is that
a self-consistent insulating state [as described
by Eqs. (22) and (23)] cannot exist at higher tern

I U (eV)=f5

-2—

2000—

I 800—

1600—

1400—
hC

1200—
L.

E I OOO—
)-

o 800

V) 600—

, (ev)
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0.75

-9 200— 0.5

2 3
io~rT (K I)

l

—1.2 -0.8 -0.4
l l

0 0.4 0.8
log)o s

l

1.2

FIG. 4. Temperature dependence of the fraction of
excited carriers for screening strength s = 0.625 eV and
several values of Up.

FIG. 6. Temperature of the singularity in the fraction
of excited carriers as a. function of the log&0 of the
screening strength.
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pexatures. At this temperature or below i.t,
there must be a transition to another stable state.
Although we have not yet described what the nature
of this state might be, we do know that the final
configuration will be the one with the lowest free
energy.

Finally, we must check the results shown in
Figs. 2-5 to verify that the assumptions made in
our derivation of Eqs. (22) and (23) have not been
vi.olated. In all cases, the Boltzmann approxima-
tion is accurate to well within 5%%u~. In deriving Eq.
(22), we also assumed that the screening length
is much greater than the average interparticle
distance. This condition reduces to

gPf (31)

the function f(T) has a singularity at the tempera-
ture satisfying the equation

[~ (&dU p
~a+1 8 ~s~o&&a)] = el ~ la (33)

At this temperature f, = exp[(1/5) —(P, UO/2)]. No

singularity occurs when the screening strength is
less than the minimum value

1 yeU 'I
0

( ( I)-(a+1)
d 2 )

(34)

Thus we see that the type of singular behavior
obtained from our previous calculation is not con-
fined to one particular screening theory, but
occurs whenever the interaction creating the in-
sulating gap has the form given by Eq. (32).

Recall that the critical carrier density at the

This is the requirement of weak coupling. The
inequality (31) is most difficult to satisfy at
temperatures near P„where the f 's are largest. For
the cases shown in the figures, (31) is satisfied
at all temperatures sufficiently lower than the
singularity point. However, at that point, sP,f '
-1. It is hoped that the stronger coupling at the
highest temperatures will introduce only rriinor
deviations from the predictions of the weak-coup-
ling theories, as the detailed microscopic screen-
ing problem has been solved only in the weak-
coupling limit.

Thomas-Fermi screening theory, which is also
confined to weak coupling, requires a much larger
density of carriers than can exist in our systems,
especially at temperatures well below the singu-
larity temperatures. Nevertheless, we wish to
emphasize that the type of singularity we are dis-
cussing is not limited to Debye-Huckel screening
but will occur whenever the screening length de-
creases with the number of thermally excited car-
riers.

For a screened potential of the general form

V(r) = (q /r) e px(-A 'fP'x), (32)
V. PROPERTIES OF THE INSULATING STATE AT FINITE

BANDWIDTHS

In the previous sections, we have shown that we
can expect transitions to occur as a result of the
screening-induced collapse of the insulating state
in the atomic limit. Hubbard has calculated the
pseudoparticle density of states corresponding to
an unperturbed density of the form

(8/«) 1-(,a)
p(E) =

0, /Zf &-,'~.
(35}

The solid curves in Fig. 9 show the resulting state
density for several values of the ratio U/&. On
the insulating side of the transition (which occurs
at U/& =-,'v'3), we see that the band shape is very

Mott transition is n~=(0. 25/ao) . It is interest-
ing to note that the transition densities we have
been discussing here are typically two to four
orders of magnitude smaller than n&. Consequent-
ly, whereas a Mott transition could occur in these
materials only under applied pressure, the tem-
perature- induced transitions under consideration
here can take place at equilibrium lattice spacings
and nondegenerate electron densities.

We can also solve Eqs. (18) and (20) using the
graphical method described earlier. In this case,
we do not need to assume that we are in the Boltz-
mann limit. For Uo ——1 eV and various screening
strengths, we obtain solutions for f(T) and U(T).
In Figs. 7(a)-, 7(i), we show the behavior of f(T)
for increasing values of s, while the corresponding
U(T) curves are given in Figs. 8(a)-8(i). [These
solutions f (T) are f (T) =n„/no, where n„are the
densities discussed in Sec. II. ]

As we expect from the behavior of our analytical
solution, a singularity in U appears for s greater
than a critical value, s „-0.95 eV. (The assump-
tions made earlier gave s „=0.20 eV. ) It is
interesting to observe the change in the character
of the solutions as s passes through the critical
value [cf. Figs. 7(e), 7(f}, 8(e), and 8(f)]. Using
this method, we find that f and U have solutions at
all temperatures and that, without the approxima-
tions given by Eqs. (22) and (23), a third solution-
large f, small U—appears. Most likely, the
transition that takes place in the vicinity of the
singularity is to a state of this sort. However,
no matter how small U is, as long as it is greater
than zero, there will always be an energy gap.
Consequently, the system is never really "metal-
lic." This is a problem which occurs only in the
zero-bandwidth treatment. In the following sec-
tions, we shall present finite-bandwidth calcula-
tions.
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4 (U'+z)l 2

(V-~)/2

1 U'tii2 1/ 2—2

)
I + P(EMI21 (3V)

so that f is a function of T U d 4. A, an &. At the
same time, we can invert Eq. (18) to obtain

f=(1/sP) ln'(U/U ) . (38)

In this expression, f depends on 7 U Up, and s.
p o qs. (37) and (38) as functions of U, the

point at which they intersect determines the self-
consistent solution f (I", U, U & s). F

q. does not involve s, so we can solve the
pair of equations for various values of s by
changin'g only Eq. (38); this involves shifting the
entire curve Eq. (38) vertically by an amount
equal to

& logf=- log(s/so), (38)

which is indicated in the figure by the da he as ed line.
ven or values of U/& as small as 1 E (3 )

g pproxxmati6n to the calculated curves. In
wi integralsany event, we shall be concerned with

'

over these densities of a slowly varying probability
function so that the result will t b
the re precise form of the pseudoparticle spectrum.
Using Eq. (36), f becomes
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FIG. 11. Temperature dependence of the correlation
energy in the insulator for 6= 0.325 eV and several
values of s. The diagonal line indicates where the size
of the gap equals kT.

for various values of screening strength, with the
parameters Uo ——0. 625 eV and &=0.325 eV. We
see that three different types of behavior occur.
For weak screening (s & 0. 11 eV), the gap collap-
ses slowly with increasing T. It approaches a
finite value at high temperatures. For larger
values of s (0. 11&s & 0. 13 eV), the gap closes
more rapidly, falling continuously to zero. When
the screening is very strong (s) 0. 13 eV), the gap
collapses discontinuously. Typical values of the
fraction of excited carriers just below the collapse
of the gap range from 10 to 10" .

The diagonal line in the figure indicates where
the size of the gap is equal to kT. When the gap
shrinks below this value, the precise form which
we have used for the screening is no longer strict-
ly valid. Nevertheless, we can see that much of
the interesting behavior, ' including the abrupt gap
collapse, occurs well before this limit is reached.
In addition, we expect that the error introduced by
the use of our screening expression all the way to
the point of overlap is not too great. In general,
the amount of screening will be underestimated by
such a procedure. This problem is offset by the
advantage gained from the ability to treat the prob-

lemm

analytically.
Using Fig. 10, we can easily determine for each

s the ranges of T and & for which the self-consis-
tent insulating state can exist. The results are
shown in Fig. 12. Below the curve for each value
of s, insulating states are possible. Unless the
screening is very strong, there is a minimum
bandwidth corresponding to each value of s for
which insulating behavior can occur at all tem-
peratures. For s~ 0.26 eV, a. transition occurs

l I

0.2 0.25
l

0.3 0.35 0.4 0.45 0,5
Bandwidth, Q (eV)

FIG. 12. Hegions of temperature and bandwidth where
insulating behavior can occur for Up= 0.625 eV and sev-
eral values of s.

even when &=0.
Although the ratio of U to & is the critical factor

in determining the state of the system, it is im-
portant to remember that the variation of U//4

occurs via a change in U with ~ heId at a fixed
value. The more familiar case is that treated by
Hubbard, in which U is a constant and & is vari-
ed. The choice of Particular values for the ratio
&/U and either U or & will, of course, be suffi-
cient to determine most quantities of interest.
Nevertheless, the behavior of these quantities
(e.g. , the density of states at the Fermi level and
the position of the band edges), as a function of
U/&, as well as the Physically realizable range
of U/&, depends very much on which of the two
parameters is varied.

VI. CORRELATED METALLIC STATE

Before we can properly discuss the insulator-to-
metal transition, we must also make the nature
of the metallic state precise. In a manner simi-
lar to that used for the insulator, we can approxi-
mate the metallic density of states by

E
lw(~+ U) —,'(~+ v) l E[ —,'(~+ v)

llo, lEI)z(~+U), (4o)

as shown in Fig. 9. The overall agreement be-
tween the approximations and the actual band
shapes is very good, except for a small range of
U/& just to the metallic side of the transition. As
we shall see, this region of U/4 is excluded for
most of the abrupt transitions anyhow. It is im-
portant to understand that the value of the un-
screened correlation energy Uo moist be the same
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provided & & k T. For very small 4 ~ kT, we
must replace this equation by

(b, +U)12
tip

-{/+{/&/~ ~(++ f )

+ex({(z—e )/(T|()dz
Integrating Eq. (41) and taking the derivative with

respect to &~, we find

dn 8np 4&~

dE~ m(A+ U) (6+ (/) )

(42)

(43)

which, for an average of one electron per site, is

dn 8np

v(A+U) '

Consequently,

for both the insulator and the metal. These states
are alternative solutions to the same screening
problem with the physical parameters Up, &, and
s. The value of U must again be determined self-
consistently. Because the bands have merged,
the fraction of carriers in the upper Hubbard band
is no longer a meaningful quantity. As mentioned
in Sec. II, Rice and Brinkman, using the varia-
tional method of Gutzwiller, ' found that the
screening in a strongly correlated metal at T =0
increases with the number of doubly occupied
sites. Instead, we adopt an approach where the
effect of correlations is incorporated into the
metallic density of states using the approximation
of Hubbard. We find that the density of elec-
trons in the vicinity of the Fermi level determines
the extent to which U is screened.

To calculate an expression for U, we again use
Eq. (3), where &~ is determined by the equation

ep 2 1/2

{gy{{)/2{r(6+U) . p(b + U)

increases the screening strength. ) This behavior
is similar to that of Thomas-F ermi screening
for which the screening parameter is proportional
to the square root of the effective mass. We have
the additional requirement that & is greater than
U, i. e. ,

4& Upexp -1.6 6+U (46)

This condition is barely met for s equal to

s =0.78&ln —.2 Up
mfa (47)

I 000—

800—

For values of s greater than s „, a self-consis-
tent metallic state is possible. We can see from
Eq. (45) that the screening strength decreases
with increasing &. However, there is a concomi-
tant decrease in the energy gap so that as the
bandwidth increases, the value of s „decreases.
Because we treat the volume as a state variable,
the screening parameter s, which depends only
on the physical parameters no and d, is fixed at
essentially the same value for both the insulating
and the metallic states.

I et us consider the range of parameters for
which the insulating and metallic states can both
exist. Recall from Fig. 12 that, for & less than
a certain value, we find self-consistent solutions
for the insulating state at all temperatures. At
the same time Eq. (47) indicates that, for a given
value of s, a minimum bandwidth is required to
support a metallic state. Figure 13 shows that
the critical value of & is the same in both cases.
For the example in which Up ——0. 625 eV and s
=0. 16 eV, this bandwidth is &=0.25 eV.

As a result, the &-T plane is divided into three
regions for each value of s: Below a critical band-
width, metallic states cannot exist; above a cer-

so that

32tl p

q'(&+ U) '

32~pq2d2 "'
U = Up exp 4+U

y/ 2»
S= Up exp —1.6 a+U (45)

{

I— 600—

0

METALLIC
STATE
CANNOT
EXIST200—

When the effective bandwidth &+ U decreases,
the density of electrons near && rises. This in--

creases the strength of the screening. (Alter-
natively, we can say that as U decreases; the
increase in the number of doubly occupied sites

I I I I

0.2 0.25 0.3 0.35 0.4 0.45 0.5
Bandwidth, h, (eV)

FIG. 13. Allowed range of temperature and bandwidth
for the insulating and the metallic states for Vp= 0,625
eV and s=0.16 eV.
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FIG. 14. Ratio U/4 in the strongly correlated metal
as a function of 4 for several screening strengths.

tain temperature (which decreases with increasing
bandwidth), insulating states are not possible;
in the remaining region of the plane, both states
may exist. In order to determine which state
actually occurs, we must calculate and compare
their free energies. This is done in Sec. VII.

I.et us first look in more detail at the metallic
state. It is interesting to examine the values of
U which satisfy Eq. (45). In Fig. 14 we plot the
ratio U/b, as a function of &. In the metallic
state, Vj& is less than one. We see from the
figure that for s ~ 0.26 eV, metallic states occur
when the bandwidth is greater than a certain mini-
mum value. For large enough values of 4, U/&
eventually decreases, independent of the screen-
ing strength. When s~ 0.28 eV, Eq. (45) has a
metallic solution for all bandwidths. For these
values of s, U' decreases at small & as a conse-
quence of the larger density of states at &~, which
enhances the screening.

In Fig. 15, we plot U as a function of s for Vp

=0.625 eV and & =0.325 eV. We can obtain di-
rectly from this curve the values of U that corres-
pond to the final states of the transitions that were
indicated in Fig. 11. The discontinuities in U at
these transitions are shown. We should emphasize
that even in the metallic state, the electrons are
strongly correlated.

VII. PHASE DIAGRAMS

In the regime where kT is sufficiently larger
than & /U that the system has no long-range mag-
netic order but is too low to excite a significant
density of electrons, the free energy per electron
in the insulating state can be written

exp[-(U- ~/2)/2kr]
3/2

2kT
The electronic free energy of the metal can be

I I I I I I I I I I

0.2 0.4 0.6 . 0.8 I.O
Screening Strength, s (eV)

FIG. 15. Screened value of the correlation energy in
the metal as a function of 8, for Up=0. 625 eV and 6
= 0.325 eV. The discontinuity in U(6U) at the transition
from the insulating to the metallic state is shown.

calculated using the grand partition function and
the density of states [Eq. (40)j. It can be expres-
Sed aS:

8& —4 2& 8&(kT)
8m 8v 8(~+ U)

8 4kT= (0.29U —0. 21&)— 6+0 (49)

We can easily interpret this result. The first
term (0. 29U- 0. 21&) is the average energy which
is obtained from the integral fp(E)EdE. The
second term is (-T8), where the entropy 8 reflects
the spin degree of freedom of the electrons within
approximately 2kT of the Fermi energy. The
product

k ln2 &&p(~~) X4kT

32k2T qk2T

m(~+U) (~+ U)
*

which is very near our value for S, S = 8. 4k T/
(6+ U). Chao and Berggren have extended Gutz-
willer's variational method ' ' to calculate the
free energy +, of strongly correlated metallic
electrons. They found that

F.(T) =F(T)[1—UIU (T)P, (50)

where F(T) is the free energy per electron in the
uncorrelated system and the critical correlation
energy Uo is -8F(T), which is always non-negative.
The function F(T) is given by Eq. (49) with U set
equal to zero. That is,

F(T)=- —— (kT}
8m'

3m 3&

It then follows that
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To first order in U/&, the correction to the free
energy due to the correlations is just —,'U, which
is precisely the increase we would expect from a
Hartree-Fock treatment of the electronic interac-
tions. The free energy is then

l000—

800—

t-. 600-

O
h 400—
E
I-

METAL

E,=O. 25U- 0. 21&—8. 4(kT) /4,
which is very close to Eq. (49) for small values
of U/&. Both our result and the calculations of
Chao and Berggren are unreliable in the immedi-
ate vicinity of the transition. However, as pointed
out previously, we have chosen to use our method
because we can derive boN the insulating and
metallic densities of states from one model that
is continuous across the transition.

%e can now combine the results we have deve-
loped so far in this paper in order to construct
complete phase diagrams illustrating the effects
of screening on Hubbard insulators. These are
shown in Figs. 16-18 for Uo ——0. 625 eV and sever-
al different screening strengths s. The low-tem-
perature metal-insulator boundaries are a conse-
quence of the free-energy minimization discussed
above and correspond qualitatively to those ob-
tained by Kaplan and Bari using the thermal
single-determinant var iational approximation.
For several lattice geometries, Kaplan and Bari
have also obtained transitions, which occur with
increasing T, back to the delocalized state.
However, because U is taken to be constant in
their calculations, there is no immediate corres-
pondence between their high-& transitions and

I

0 0;I
I

0.2 0.3 0.4
Bondwidth, 6(eV)

I i

0.5 0.6 0.625

FIG. 17, Regions of insulating and metallic behavior

as a function of temperature and bandwidth for Uo

=0,625 eV and s =0.11 eV.

the screening-induced ones presented here. Fig-
ure 16 shows the regions of insulating and metal-
lic behavior for the screening parameter s =0. 16
eV. For small values of & (& & 0. 25 eV), the gap
decreases as the temperature is raised. How-

ever, because the gap [-(U- &)] is so large, few

carriers are excited across it. As a result, the
strength of the screening is insufficient to cause
a transition to the metallic state, and the system
is insulating at all temperatures. For larger &

{0.25 & r & 0. 4 eV), the gap closes more sharply
with increasing T. At a critical temperature,
which decreases as ~ increases, the screening
becomes strong enough to cause the insulating
state to vanish. The value of U undergoes an

abrupt change at the transition. In general, the

energy gap will be finite just before the transition.
In the final state, U is determined self-consistently
by taking into account the screening due to the
metallic electrons in the vicinity of the Fermi
level.
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FIG. 16. Regions of insulating and metallic behavior

as a function of temperature and bandwidth for Uo

= 0.625 eV and s = 0.16 eV.

FIG. 18. Regions of insulating and metallic behavior
as a function of temperature and bandwidth for Uo

=0.625 eV and s=0.077 eV.
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For still larger bandwidths (0.40 & n & 0. 45 eV),
the system is metallic at low T, insulating at
inter mediate T, and again metallic at high T. The
low-temperature transition can be understood in
terms of the electronic free energies [Eqs. (48)
and (49)]. The low-temperature metallic state is
a consequence of energy reduction due to elec-
tronic delocalization in the wide band. However,
at higher temperatures, the large entropy in the
insulator results in a metal-to-insulator transi-
tion. Finally, we have the high-temperature dis-
appearance of the insulating state caused by
screening. When ~ & 0.45 eV, the system is
metallic at all temperatures.

Figures 1V arid 18 demonstrate the similar be-
havior that occurs for two other screening
strengths s=0. 11 eV and s=0. 077 eV. We see
that, as s is decreased, the range of insulating
behavior expands, as expected. For most values
of bandwidth, the gap decreases slowly with tem-
perature but never vanishes. On the other hand,
when s is increased much beyond its value in Fig.
16, i. e. , s=0. 16 eV, an insulating gap cannot
appear at any temperature and the system is al-
ways metallic.

In discussing these phase diagrams, we have
traced the behavior of the system, as the tempera-
ture is raised, at a fixed value of &. We ca,n

equally well specify T and look at the effect of an
increase in bandwidth (due, e. g. , to a decrease
in lattice. . constant or to an increase in the overlap
of electronic wave functions brought about by
pressure or compositional changes). It is clear
from the figures that the system will eventually
become metallic at any temperature if the band-
width is increased to a sufficiently large value.

We have not extended our analysis to the tem-
perature regime in which long-range magnetic
order is present. The Hubbard insulator is known"
to be antiferromagnetic below the Neel tempera-
ture T~ -& /U. However, in our model, U is
greater than & /U and thus the system remains
insulating above T'&. In this case there is a wide
range of temperatures for which we clearly have
a nonmagnetic insulator. This nonordered insulat-
ing phase is the one considered in the present cal-
culations.

As we discussed previously, it is often the case
that there are excess electrons or holes present
at low temperatures. These carriers, which
do not require thermal activation, then can result
in metallic behavior which suppresses the low-
temperature insulating phase ordinarily occurring
at small bandwidths. Such is the ca,se for the
system Niq „Co+2, which we analyze in detail in
Sec. VIII.

Another subject which must be addressed is the

order of the transitions shown in the phase dia-
grams. The low-temperature transition, driven
by the spin entropy of the electrons in the insula-
tor, is unambiguously of first order. The free
energies of the two states intersect with different
slopes at the transition. The gap closes abruptly,
and the number of carriers increases discontinu-
ously.

We reemphasize that we have calculated elec-
tronic free energies only, with the assumption
that the energies of the lattice and the electron-
lattice interaction do not va, ry much with the
electronic state. Consequently, the plots of free
energy versus volume which we have calculated
should be used only to compare the relative ener-
gies of electronic states, and provide no informa-
tion about the equilibrium volume of the system.

The order of the higher-temperature insulator
to metal transition is more difficult to determine.
In many ways this problem is similar to that of the
pressure-induced Mott transition, which has been
studied for nearly three decades but for which the
order of the transition is still a subject of contro-
versy. The difficulty is due partially to the
fact that the precise form which we have calculated
for the screening parameter breaks down in the
immediate vicinity of the transition. A more exact
treatment would necessitate extending the general
screening theory to the limit of strong coupling,
a problem which has not yet been solved.
Nevertheless, it is very likely that the transition
is of first order and is accompanied by an abrupt
collapse of the insulating energy gap. In fact,
it could well be the case that the actual transition
occurs at a temperature slightly below that at
which the self-consistent insulating solution
ceases to exist. In either event, we can say un-
equivocably that the number of carriers will in-
crease dramatically at the transition. This change
should be reflected in the transport behavior of
these systems.

In Sec. VIII, we discuss the application of these
ideas to Ni~ „Co„S„for which transitions occur as
a function of both temperature and cobalt concen-
tration. Although our screening analysis dealt
only with nondegenerate s states, it is reasonable
to expect that the qualitative behavior we have de-
scribed carries over to the case of degenerate
d bands, ' especially since much of the- degen-
eracy is lifted by the crystal field.

VIII. APPLICATION TO Ni) „CO„S2

Previous studies of the Ni, „Co„S system sug-
gests that NiS2 is a, Mott insulator. ' ' In col-
laboration with Mabatah, Eklund, and Dressel-
haus, we have shown in an earlier paper that fea-
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tures of the transitions observed in this system
can be quantitatively explained by a model which
involves the collapse of the semiconducting gap
with increasing temperature. Here, we briefly
review the pertinent experimental results. We
suggest that the reason for the gap collapse can
now be understood on the basis of the screening
model presented in this paper.

The experimental phase diagram obtained from
the data of Mabatah and co-worker s at MIT
is shown in Fig. 19. For temperatures above the
solid line, the data suggest that conduction by a
large number of electrons is taking place in one
collapsed band. In fact, Kautz et al. extrapola-
ted their optical absorption data on nominally pure
NiS2 and found that the gap should close in the
vicinity of 720 K. Unfortunately, the material
decomposes at &75 K, so there is no direct ex-
perimental test of this extrapolation. In the re-
gion between the solid and curved dashed lines,
an insulating gap exists and the number of car-
riers is activated. Finally, there is a third, low-
temperature region below the curved dashed. line in
which conduction occurs within the lower band.
The addition of Co (as well as of impurities and
nonstoichiometry) introduces holes into the valence
band which dominate the conduction until the tern;
perature is high enough for there to be an appre-
ciable number of excited carriers.

In addition, we find that the mobility activation
energy decreases with increasing Co and disap-
pears at a Co concentration of -13%. (This is
indicated by the vertical dashed line. ) Note,
therefore, that the band collapse, which occurs
with increasing temperature, is not the same as
the insulator-to-metal transition caused by adding

800—
EXTRAPOLATED CLOSING OF.FOPTICAL GAP [t&AUTZ, et ol. )'

700—

600

500—
I-

400—

I- 500—

200

Co. This latter transition is due to a change in
the mobility mechanism as a result of the increase
in bandwidth.

We suggest that the screening mechanism we
have discussed is responsible for the collapse of
the gap. First, it is likely that ¹i82is an insulator
by virtue of the interelectronic correlations.
Studies have shown that Ni~ „Co 82 is an antiferro-
magnetic insulator at low temperatures. The
Neel temperature T& ranges from -40 K at @=0
to -150 K at @=0.1 and then decreases for larger

An important feature of this material is
that it remains insulating for & & T&. Consequent-
ly, the insulating gap does not originate solely
from the antiferromagnetic ordering. This is
precisely the situation to which our model should

apply.
There is direct evidence from the optical-ab-

sorption measurements that the semiconducting
gap decreases as the temperature is raised. In
addition, both conductivity and thermoelectric-
power measurements suggest that the number of
carriers is no longer activated at high T, and that
conduction takes place in just one band.

The mobility mechanism is apparently unaffected
by the band-collapse transition, which manifests
itself instead as a change in carrier concentration.
This is consistent with the assumptions of our
model.

Finally, the model predicts that charged impuri-
ties or excess electrons or holes should lower the
temperature at which the energy gap collapses.
The introduction of Co into the lattice creates such
screening charges and increases the bandwidth as
well. We see from Fig. 19 that the transition
temperature does decrease with increasing Co
concentration.

It is important to note that the transition in this
case is not characterized by sharp discontinuities
in the transport properties. We can therefore
infer that the bandwidths for these systems lie
near, but below, . the minimum width required for
a first-order transition. This is just what we
would expect for narrow-band materials. Never-
theless, the strength of the screening of the cor-
relation energy is sufficient to close the gap,
which is &~ = U- &. This collapse of the correla-
tion-induced gap is driven by the screening inter-
action and occurs at a critical temperature, as
shown in Fig. 19.

I QQ—
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0.05 Q. I0 0.20 0.50 0.40 0.50 0.60
Cobalt Concentration, x

FIG. 19. Experimental diagram indicating regions of
transport behavior for the system Ni~ „Co„S2.
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APPENDIX

g, (E) +g„(E)n=n, +e„= d& ' ~(~", )1+e (A 1)

In this appendix, we demonstrate, for the parti-
cular case U» n, but with & & 0, that Eq. (13)
is a general result that holds for correlated sys-
tems when the Boltzmann limit applies.

For a general two-band system,

ume) in the lower and upper pseudoparticle bands.
Taking the derivative of n with respect 'to &~, we
obtain

"dE &[g)(E)+g.(E)]
(1+ep(~'~'}(1 + e '~ 'e-')

dn
"

(&g, (E)/&n)+ (& g„(E)lan)
de~ 1+e'~ &'

where n, and ~„are the electron densities, and

g, and g„are the densities of states (per unit vol- Rearranging terms, this expression becomes

(A2)

P(8;(@)+g.(&))
"

g ('Ir(E)l», )+(&r (E)l»„))
( 1+ e'~ F')(-1+e"~ ")-1+ep~-F) (A3)

We examine a system which has a density of states
for uneorrelated electrons given by

g(E) = (2,/6)8(E —T, + ,'n.)8(T, +——,
' b. E) .

Hubbard considered this case and found

g, (E) = (2n, /S)e(E E, ,)e(E, , E),

g.(E)=(2 /&)~(E-E, )0(E, —E),
where

(A4a)

(A4b)

U P4 it'U Pb, Pb, U "
E =T+ —+ —+n I

———: +0&8 0 2 4 iI 2 4 4&

(A5)

In order to illustrate the range of validity of
Eq. (13) analytically, we use Hubbard's first solu-
tion to the Hamiltonian (3) (with d—= 0). This solu-
tion is invalid near the overlap transition & = U

and below the Neel temperature T~ -& /U so that,
in addition to the Boltzmann requirement IpT «(U
—&/2), wehave the restrictions U»b and T& 6 /
U. However, we expect that a solution within the
Boltzmann limit, but additionally valid for U'= &

and kT ~ 6 /U, would also satisfy Eq. (13). Be-
fore setting n =n„we must find the derivatives
() g/Rn. We obtain

3g (E)
Bn 4 4 16

=- ——+— [5(E—E i i)+ 5(E —E g g)]t t

and
(A6a)

3g„(E) U U'

an 4 4 16
—+— [5(E—Eg i)+ 5(E —Ei i)].

(A6b)
'

exp[-P (~ U +~ & ) '] sinh&P&/
a.'ep

[1+-'U(-'U'+ ~ ~')-" ']

()~p p sinhgP&
=Pnpe (A7)

In a similar manner, we can evaluate n„ in the
Boltzmann limit. We find

~D q2 sinh&P&n„=noe
gp

(A8)

Therefore dn/dee=Pn„, so that the screened in-
teraction is again given by Eq. (13). Thus we
have shown that this result is not only a zero-
bandwidth approximation, but it also holds for
finite bandwidths whenever the Boltzmann limit is
valid. As does the conventional Debye-Huckel
screening formula, the screened value of U de-
pends on the tota/ number of conduction electrons,
independent of the density of states in the band or
the details of the level occupation.

The form of these derivatives ()g(E)/()n is precise-
ly what we would expect: as we fill rectangular
bands, we add states symmetrically to both edges
of the upper band and subtract them in the same
fashion from the lower one. We can now let n =n,.
Solving Eq. (Al) for &~, we find ee =Tp+ —,'U, just
as in the .atomic limit. Substituting this result
and Eq. (A6) into Eq. (A3) and taking the Boltz-
mann limit e ' ' »1, we obtain
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