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Coherent-potential and average f-matrix approximations for disordered muffin-tin alloys.
II. Application to realistic systems
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In an earlier article, the electronic spectrum of the disordered alloy A„B, „, using the coherent-potential

(CPA) and the average t-matrix (ATA) approximations, was discussed within the framework of the muffin-

tin Hamiltonian. Using the illustrative examples of Cu„Ni, „and Cu„Zn, „, the present paper exposes the
physically relevant aspects of the electronic spectra of disordered transition and noble-metal alloys. Bloch
spectral densities, complex energy bands, impurity levels, and average total and component densities of
states are considered. We also discuss how the effects of transfer of charge between the constituents on their
atomic potentials can be included in a semiempirical manner in the present framework.

I. INTRODUCTION

The electronic structure of disordered alloys has been the subject of many recent theoretical and experi-
mental studies. On the theoretical side, attention has been focused on the so-called muffin-tin Hamil-
tonian for a random binary alloy A„B, „. It is well established that, in closed packed systems in general,
and in perfect crystals of noble and transition metals in particular, a realistic description of the elec-
tronic structure is possible on the basis of the muffin-tin Hamiltonian. It is clear, therefore, that to ob-
tain a comparably detailed description of alloys of transition and noble metals, the muffin-tin framework
must be used.

In the preceding article, ' the relevant formal aspects of the coherent-potential approximation (CPA) and
a new version of the average t-matrix approximation (ATA), which has many advantages over the current-
ly used form, were discussed. Our main purpose in this article is to delineate the dominant features of
the alloy electronic spectrum in light of these formal developments. Since we have studied Cu„Zn, „and
Cu„Ni, „before, it seemed best to use these same systems for the present illustrative purposes. In par- .
ticular, the Cu, Ni, and Zn muffin-tin potentials used here are based on those used earlier in Refs. 5 and
6. (See the appendix for a summary of the atomic potentials. ) Using the examples of Cu„Ni, „and Cu„Zn, „,
a comparison of the new ATA and the CPA electronic spectra is also presented.

To make this paper self-contained, the relevant expressions for (p(E)) and (p„z)(E)) are now summa-
rized. In this connection, we consider the equations
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with (pe(E})'f' obtained from E(I. (2}using inter-
changes A 8 and x y. Here p,(E)=- (V/4v'N)E'~'
is the free-electron density of states, with N de-
noting the number of atoms and V the volume of the
crystal. I —= (I,m) is a composite angular momen-
tum index including both orbital and magnetic quan-
tum numbers. B~(E) is the matrix of usual Kor-
ringa —Kohn —Rostoker (KKR) structure functions.
Yg, 7g, and v,«, respectively, are the on-the-
energy-shell matrix elements of A, B, and the
effective atom scattering operators. These are re-

l

lated to the phase shifts 5, ' via the familiar
equation

[r„(»(E)],= -E ' 'exp[i6", ' '(E)]sin5", 'e )(E) . (3)

'The quantities Tpp are defined by

eff 1 ~ 1
X ~ r-'-E-(E) ' (4)

which is implicitly a matrix equation in the angular
momentum (I ) space. The k summations in E(ls.
(I), (2), and (4) only extend over the first Bril-
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ll&,P, -&;(&)II= 0

and also from those of

(7)

(8)

Physically, the solutions of Eq. (7) give Bloch-
type states in the average effective medium, and
those of Eq. (8) give the impurity levels which re-
sult when an A. or B atom is placed in the effective
medium.

An outline of the this paper is presented as fol-
lows: Section D discusses the CPA effective scat-
tering amplitudes rcp. A comparison of the CPA
and ATA'amplitudes reveals that the self-consis-
tency in treating disorder has significant influ-
ence on the scattering matrices.

Section III presents and discusses the results
pertaining to the Bloch spectra, l densities (p(k, E)),
the complex energy levels, and the density of
states. The structure in (p(k, E)) arising from
the Bloch-type states and from virtually bound
impurity-like states is considered. 'The Bloch-
type complex energy solutions of Eq. (7) have
been discussed previously in connection with the
ATA,"-' but the importance of impurity-like
contributions from Eq. (8) has been recognized
only recently. '

The total and component densities of states in
Cu„Ni, „and Cu„Zn, „, presented in Sec. III, show
that the CPA and the new ATA spectra are in good
agreement with regard to their positions and
widths in energy over a wide range of alloy com-
positions. Aside from the greater overall smooth-
ing of the CPA densities of states, the differences
between the two approximations would largely ap-
pear to be confined to the details of the spectra.

Section IV discusses how effects of transfer of
charge between the constituent atoms can be in-
corporated within the present framework. We

louin zone.
Equations (1) and (2) yield the densities of states

in the ATA or the CPA depending upon the choice
of the effective scattering matrix 7 ff If 7 ff

=(r), where

(r) =x7„+yes,
then Eqs. (1) and (2) yield the ATA spectrum.
(Note that in Ref. 4, these were referred to as
ATA2. ) If on the other hand, r,« =vcp, where
7cp is determined as a solution of the C PA equa-
tion

cp A+V B ( cp A) 00( cp B)&

then Eqs. (1) and (2) yield the CPA spectrum. '
The structure in the spectral function (p(k, E))'"'

in Eq. (1) arises from complex zeros of the equa-
tion

show that Friedel's sum rule, which for present
purposes amounts to the requirement that
dE~(x)/dx-0 for x-0 [Egx) denotes the Fermi
energy in an alloy with impurity concentration x Po

can be used to determine the impurity potential in
dilute alloys. In general, however, one or another
feature of the atomic potentials may be adjusted to
force agreement between the theory and one par-
ticular experiment. The atomic potentials so de-
termined can be used to test the theoretical pre-
dictions concerning other independent experi-
ments. The aforementioned adjustments may be
looked upon as a way of including dominant
charge -transfer effec ts on atomic potentials
semiempirically. Although our discussion pro-
ceeds with the example of Cu„Ni, „, the ideas
presented in this section should be applicable
more generally to transition- and noble-metal
alloys.

II. EFFECTIVE SCATTERING AMPLITUDES

In discussing the effective scattering amplitudes,
the function sin5, (E) is plotted in Fig. 1." The s
and p phase shifts for the CuNi and CuZn systems
of present interest vary slowly as a function of
energy and are very similar in the ATA and CPA,
and for this reason are not considered. " The po-
sition of the d resonance in a pure A(B) crystal
(which corresponds to 5, -«/2) appears as a peak
in sin5„making this a convenient function for
presenting effective scattering amplitudes. Fig-
ure 1(a) for Cu, »Ni, » shows that the peaks in
the real as well as the imaginary parts of sin6,

' arising from Ni impurities (marked by arrows) are
shifted to higher energies by approximately 0.05
Hy in the CPA compared to the ATA. " We find
such movements in the positions of the impurity
peaks more generally in Cu rich as well as
Ni rich Cu„Ni, „„.This, however, as noted above,
does not imply that corresponding differences will
be present in the energy locations of the impurity
spectra given by the ATA and CPA.

Figure 1(b) shows that the Zn d resonance
around 0.1 Ry in Cu, ,Zn» is much narrower than
the Ni d resonance in Cu„Ni, „. Furthermore,
the separation between the energy positions of Cu
and Zn d levels is roughly twice as large as that
between the Cu and Ni d levels. Both these fac-
tors tend to make the constituent d bands more
independent of each other in Cu„Zn, „ than in
Cu„Ni, „. Indeed, the Re(sin5, ) ATA curve in Fig.
1(b) is seen to consist of two well-defined peaks,
the lower of the two being characteristic of pure
Zn and the upper of pure Cu. By contrast, the
CPA phase shifts in Fig. 1(b) show much greater
influence of Cu and Zn resonances on each other.
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out the bumps in the plotted curves in the energy region of the Ni impurity resonance in CPA (t2, solid; e, dashed)
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Figure 1 also shows that the Im(sin5, } is generally
larger in the CPA compared to the ATA. This
leads to an increased overall damping of electronic
states in the CPA, and will be seen more clearly
in other connections below.

III. BLOCH SPECTRAL DENSITIES, COMPLEX ENERGY

LEVELS, AND DENSITIES OF STATES

The Bloch spectral density (p(k, E)) and the rep-
resentation of its structure in terms of the com-
plex energy solutions of Eqs. (7) and (8) are taken
up first.

Figure 2 gives (p(k, E)) as a, function of E at the
symmetry point I' in the bcc Brillouin zone. The
positions and half-widths of peaks in (p(k, E)) are
seen to be respectively well correlated with the
real and imaginary parts of the corresponding
complex energy levels obtained from Eq. (7) for
both the ATA and the CPA." (These levels are
marked along the horizontal axis in Fig. 2.) As
noted above, solutions of Eq. (7) do not give all the
structure in (p(k, E)); additional structure arises
via Eq. (8). A striking example of this is the peak
marked by an arrow in Fig. 2(a). Figure 3 shows
(p(k, E)) at the symmetry point X, and once again
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FIG. 2. Bloch spectral density (p(k, E)) in Cup &&Nip

at the point I' in the Brillouin zone. The decomposition
of (p(k, E)) into contributions of symmetry I'25 (dashed)
and I &2 (dot-dashed) is shown. The complex energy so-
lutions of Eq. (7) for k= (0, 0, 0) are marked along the en-
ergy axis. (Horizontal width of the shading around each
level equals twice the imaginary part of the energy. ) As
discussed in the text, the peak marked by an arrow in

(a) arises from complex energy solutions of Eq. (8).
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FIG. 3. Bloch spectral density (p(k, E)) in Cuo 75Ãio
at the point X in the Brillouin zone. The complex energy
solutions of Eq. (7) for k= (1,0, 0) are marked along the
energy axis. (See caption to Fig. 2 for meaning of the
shading. )

the correlation between the complex bands and the
spectral peaks is evident. We have carried out
additional calculations at other points in the Bril-
louin zone and find that for sharp peaks (i.e. ,
peaks with half widths at half maximum of less
than approximately 0.01 Ry), this correlation
holds very we11.. However, for values of half
widths exceeding on the order of 0.05 Ry, the
spectral peaks become rather poorly defined, and
the calculation of the corresponding complex lev-
els also becomes somewhat uncertain.

We now discuss solutions of E&I. (8). In the li-
mit x (or y)-0, since r,« -rs(or 7„), E&I. (8)
gives real localized impurity levels for a single
A (or B) atom placed in a perfect crystal of B
(or A) atoms. In general, v;«corresponds to a
complex effective potential and this equation yields
complex solutions, which are physically akin to
virtually bound impurity levels in the alloy. These
corresponding d-like impurity levels can be ob-
tained by solving for the complex zeros of the ap-
propriate elements of the matrix fg &

=—&&&s1
—To&0&

x (r,&',
—r„'&»). Figures 4 and 5 show plots of what

may be called impurity factors, i.e. , 1/f„"&'» (only
the imaginary part is drawn) in Cu, »Ni, » along
with the corresponding complex energy solutions
of E&l. (8). The location and widths of the peaks in
the impurity factors in Figs. 4 and 5 are seen to
be in good agreement with the real and imaginary
parts of the corresponding complex levels.

Although the positions and widths of the spectral
peaks are well represented by complex levels,
these levels carry no information about the
weights of the spectral peaks. The only qualitative
statement that can be made in this regard is that if
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an energy level remains unsplit on alloying (e.g. ,
levels such as X... L„, and 1", in Cu„¹,„), then
its total weight approximately remains unity, as
in a perfect crystal. However, each of the levels
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FIG. 4. Imaginary parts of the ATA impurity factors,
fcui) = 1/[1—Top (7'eff Tcu&$))], with v&f ——(7') in
Cuo 75Nio 25 for (a) a Cu impurity and (b) a Ni impurity.
(Real parts off c~~+&& are not shown for ease of drawing. )
The corresponding complex energy solutions of Eq. (8)
are marked along the horizontal axis. (See caption to
Fig. 2 for meaning of the shading. ) The curves as well as
complex energy levels of t2~ symmetry are shown solid,
while those of symmetry 8 are shown dashed.
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such as 1"»., +y2 X2 and X, leads to two distinct
levels of the same symmetry in the alloy, one of
which may be viewed as having its origin in Cu-
like d states and the other in Ni-like d states. In
this case, the weights of the two levels in the alloy
are roughly proportiorial to the concentrations x
and 1-x of the Cu and Ni atoms.

In comparing the complex energy bands in
Cuo 75Ni, », Fig. 6 shows that the center of gravi-
ty of the Ni d bands E~

' [defined as E~
' —= —,

' E(l'„,)
+ —,E(I'»), where I'», and I'» ax'e the upper pair of
levels in Fig. 6] lies at 0.57 Ry in the ATA, but
that it has moved to 0.62 Ry in the CPA. This up-
ward movement of the Ni d resonance in the CPA
may be viewed as the result of increased d-d re-
pulsion of the Bloch-type d states given by ac~ in
comparison to (r)." If the impurity density of
states (pN, (E)) were determined solely by the
Bloch-type states in the alloy, Fig. 6 would imply
that the Ni-impurity spectrum in the ATA would
lie approximately 0.05 Ry lower in energy than the
CPA. However, to obtain(p„, (E)) we must, in ad-
dition, consider contributions from solutions of
Eq. (8). In this connection, Fig. 7 shows that for
the Ni impurity the ATA impurity levels are lo-
calized in two groups around 0.66 and 0.53 Ry.
Correspondingly, in this energy regime the CPA
shows Ni-impurity levels in the vicinity of 0.67
and 0.58 By, and the situation is not as clear-cut

as in the case of Bloch-type contributions. Never-
theless, as Fig. 8(a) shows, the final impurity
spectrum (pNf(E)) in the ATA and CPA comes out
in good agreement with regard to its location and
width in energy in Cu, »Ni, ». In fact, Fig. 8(b)
shows that (p„,(E)) in the two approximations is in
even better agreement in Cup g5Ni, „. It i.s inter-
esting to note that the Ni resonance for the ATA in
the (p(E)) curve in this figure is not as well de-
fined as in the corresponding CPA curve. This,
however, in view of the (p„,(E)) and (pc„(E))
curves in Fig. 8(b) is not because the impurity
spectrum is given poorly by the ATA, but arises
from the fact that the edge of the Cu d band is
somewhat broader in the ATA than in CPA in this
alloy.

Figure 9 for Cu, ,Zno, shows that although the
Zn d band in the ATA is split into a two-peaked
structure, its overall width and position is in ac-
cord with the corresponding CPA result. That
the Zn d levels in CuZn are largely independent
impurity levels, well separated from the host d
bands, is also evident from Fig. 9. The CPA
spectra in Figs. 8 and 9 are generally smoother
than the ATA. This is to.be anticipated in view of
Figs. 6 and 7, which show that the CPA complex
levels generally possess larger imaginary parts
as compared to ATA. This appears to be a gen-
eral feature of the CPA scatterers. It is note-
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FIG. 6. Complex energy bands in Cuo 75Nio 25 along the direction 6 in the Brillouin zone for (a) the ATA and (b). the
CPA. The vertical length of shading around bands equals two times the imaginary part of the energy.
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function (p(k, E)), whereas the usual photoemis-
sion experiments measure the average density of
states (p(E)). The component densities of states
are related to the soft x-ray emission profiles,
using simplifying assumptions about matrix ele-
ments, relaxation effects, etc. The density of
states at the Fermi energy has been estimated by
the specific heat and magnetic susceptibility mea-
surements.

IV. INTEGRATED DENSITIES OF STATES AND CHARGE

TRANSFER

0.5

0.4

FIG. 7. Cu and Ni impurity level solutions of Eq. (8)
in Cup ygNlp 2g Heal parts of the levels of t&~ symmetry
are shown as thick horizontal lines, while those of the
e~ symmetry are given by lighter lines. The vertical
length of the shading around each level equals two times
the imaginary part of the energy.

worthy that the Cu d band for CPA in Fig. 8(a)
is somewhat broader than for the ATA. This is
also seen by comparing the corresponding complex
levels in Fig. 6. A similar level of differences be-
tween the two approximations for the electronic
spectrum in the vicinity of the band edges can be
expected more generally.

In concluding this section we note that aspects of
the spectral density or of the corresponding com-
plex levels are accessible to current experiments
on disordered alloys. ' The Fermi-surface radii
k(E~) even in concentrated alloys can be measured
by positron annihilation and Compton scattering
experiments. With improvements in resolution,
the positron annihilation experiments, especially
in their present two-dimensional form, should also
allow a determination of the smearing hk(Ez) of
the Fermi surface in k space. For dilute alloys,
specific Fermi surface radii as well as the damp-
ing of the corresponding electronic states (directly
related to the imaginary part of the complex lev-
els) are observable via de Haas-van Alphen mea-
surements. The changes in the energies of transi-
tions between some of the complex levels have
been monitored by optical experiments. Finally,
the recent angularly resolved photoemission ex-
periments, neglecting surface and matrix ele-
ment effects, are related to the spectral density

The integrals of the component densities of
states (p„(E)) and (ps(E)) up to the Fermi energy
Ez determine the total charges Q„and Qs associ-
ated with A. and B atoms and allow the discussion
of charge transfer between these atoms. Figure
10 shows the magnitude of charge transferred to a
Cu site in Cup 75Nlp 25 as a function of the shift
AE„' in the position of the Ni d resonance. The
agreement between the ATA and the CPA curves
in this figure is seen to be reasonable. For
dE~'=0, AQc„= -0.03 electrons per atom spin,
the negative sign meaning that charge is depleted
from Cu sites. (Owing to charge neutrality of the
average alloy, xbQc„+ (I-x)&Q„,= 0, and hence
the corresponding value of 6QN, = -[x/(I-x) J

x AQc„.) As the Ni d resonance is moved to higher
energy (i.e. , &E," increases), Fig. 10 shows the
expected increase in EQc„. In fact, for &E~'
=0.1 Ry there is a net depletion of charge from
Ni sites in the alloy. It is clear that, if the quanti-
ty bQc„(or &QNq) is known from some experiment
(e.g. , Knight-shift or isomer-shift measure-
ments), then the position of the Ni d resonance can
be determined by treating it as an adjustable para-
meter. " So far we have assumed that &Q„(or
QQs) is known from an experiment. We empha-
size, however, that this is not essential. In
Cu„Zn, „ in Ref. 5, for example, position of the
Cu d resonance was obtained by requiring agree-
ment between the theoretically predicted and ex-
perimentally measured composition dependence of
the energy of the edge in optical absorption. [In
this case, the theory would predict the value of
bQc„(and AQz, ) in the alloy. J The important
point is that once the nature of the adjustable pa-
rameter is chosen, its value is determined unam-
biguously via an appropriate experimental mea-
surement. The constituent atomic potentials so
obtained can then be used to make predictions
about other aspects of the alloy electronic spec-
trum.

For dilute alloys, the impurity potential can be
determined by using arguments based on Friedel's
sum rule. Our present interest is in its implica-
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FIG. 10. Magnitude of the charge AQc" transferred to
a Cu atom in Cup 75Nip 25 as.a function of the shift AE&
in the position of the Ni g resonance. b E& = 0 corre-
sponds to the Ni potential used in the ATA work of Bef,
6 and Aq " =f dE (pcu(Nt)(E))-Zcu&gi~
Zc«N&) denotes the number of electrons per atom in a
perfect Cu(Ni) crystal.
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FIG. 11. Variation of the CPA Fermi energy in
Cu„Ni& „as a function of the Ni concentration for three
different Ni potentials. The light-dashed (lowest) curve
is for the Ni potential used in the ATA work of Bef. 6,
whereas the heavy-dashed (uppermost) curve employs a
potential in which the Ni d resonance has been shifted
upwards by AE&N~= 0.03 By. The solid curve corresponds
to a weakly concentration dependent shift, 4' ~(x)
—= 0.03x+ 0.01 035(l —x) Ry.

tion that dE~/dx„«c„& must go to zero for the im-
purity concentration x„, (or x„.„)-0." For
&E"„'=0.03, the heavy dashed curve in Fig. 11
shows that dE~/dx«-0 as x„,-0. By giving a
small concentration dependence to &F-d', the solid
curve in Fig. 11 [which corresponds to &E"„'(x)
=: 0.03x+0.01035(1 —x) Hy in Cu„Ni, „] is seen to be
consistent with Friedel criteria in both the Cu-
and the Ni-rich alloy. A reference to Fig. 10
shows that for 4F"„'=0.03, Cu and Ni atoms in
C up 7+Nip 25 ar e essentia lly charg e neutral. In fact,
we have found that for the Ni potential correspond-
ing to the solid curve in Fig. 11, the Cu and Ni
atoms remain charge neutral to within approxi-
mately +0.018 over the entire composition range,
in accord with the available experimental data on
this alloy. '" It suggests therefore that the Ni
potential corresponding to the solid curve of
Fig. 11 has, in some sense, incorporated com-
plete self -consistency.

In concluding this section, we emphasize that
the present discussion of Cu„Ni, „has largely been
illustrative, and that similar semiempirical treat-
ment of charge transfer and self-consistency ef-
fects should be useful more generally in transi-
tion- and noble-metal alloys.

APPENDIX: DETAILS OF THE Cu, Ni, and Zn

MUFFIN-TIN POTENTIALS

As already noted in the introduction the C u, Ni,
and Zn muffin-tin potentials used in this paper are
based on those used in the earlier ATA work on

Cu„Ni, „and Cu„Zn, „. In particular, these poten-
tials are l dependent and have been obtained by the
renormalized atom technique. "

The Cu potential is the same as was used for
several density of states calculations in Ref. 6.
This potential was denoted by V»" in Ref. 6, and
differs from another potential V,", which was
also used in the earlier work on CuNi and on
CuZn. V," and V„"differ only in that the Cu d
band in V~c," is moved to an energy of approxi-
mately 0.06 Ry higher than in V,". This was done
in Ref. 6, because V„"gives a better agreement
with relevant experimental data pertaining to the
placement of Cu d bands with respect to the Fermi
energy in crystalline Cu.

I'he Ni potential, aside from minor differences,
is the same as was used in the earlier CuNi ATA
work. ' The present paper, however, also uses
several other Ni potentials, which differ from this
basic potential only in that the position of the Ni d
band is moved in order to change the relative
placement of the Cu and Ni d bands in CuNi. As
discussed in Sec. IV, such movements of the
d bands allow dominant effects of charge transfer
to be included in transition- and noble-metal
alloys.

Finally, the Zn atomic potential corresponds to
the neutral atom potential used in our earlier
CuZn work, ' except that the Zn d band has been
moved to somewhat higher energies. All calcula-
tions in the present paper use the fcc lattice
structure with the crystalline Cu lattice constant
of 6.8309 a.u. and a muffin-tin zero of -0.83414
Ry.
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