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The average density of states (p(Z)) and the component charge density associated with an A (B) atom
in the alloy, (p„&s&(E)), are discussed for the disordered alloy A„B, „within the framework of the muf6n-

tin Hamiltonian. A new version of the average t-matrix (ATA) is developed. The structure in the spectral
density function, (p(k,E)P, in the coherent-potential approximation (or the new ATA) is seen to result
from not only the Bloch-type states in the medium of coherent-potential effective atoms tzp (or the average t-
atoms (t)) but also from non-81och-type impurity levels arising when a single A or B atom is embedded
in an otherwise perfect effective medium. The proposed ATA equations would allow a simple yet reliable
treatment of many aspects of the electronic spectrum of disordered transition and noble-metal alloys.

I. INTRODUCTION

It has become clear in recent years that, in
order to obtain a realistic description of the elec-
tronic structure of disordered metallic alloys,
the atomic potentials must be treated within the
framework of the muffin-tin model, as is usually
done for the corresponding perfect crystals. In
particular, the simple one- and two-band tight-
binding model Hamiltonians are not adequate for
dealing with the detailed experimental information
which is now becoming available, pertaining to the
electronic spectrum of transition and noble-metal
alloys. ' '

The application of the multiple-scattering theory
techniques to the disordered muffin-tin alloys has
proceeded rapidly. In this connection, two of the
most commonly used approximation schemes have
been the coherent-potential (CPA) and the average
t-matrix (ATA) approximations. " Both belong to
the class of the so-called single-site approxima-
tions. However, of the two only the CPA treats
the disorder self-consistently and is to be pre-
ferred. The attractiveness of the ATA derives
mostly from its relative simplicity in application
to realistic mode1. s.4 ' In spite of the significant
progress made with regard to the application of
the CPA and the ATA to the muffin-tin alloys,
difficulties have persisted with each of these
schemes. The CPA formalism is well develop-
ed, ~' but its practical implementation to the
muffin-tin Hamiltonian has not been undertaken
until recently, ""owing to the difficult and re-
peated Brillouin-zone integrations necessary to
solve the CPA self-consistency equations. Addi-
tional difficulties involving the free-electron poles
must also be faced in order to evaluate the com-
ponent density of states (p„t»(E)) [i.e., the elec-
tronic charge density associated with an A (or 8)
atom in the alloy]. With the ATA, on the other

hand, the difficulties are formal in nature: Al-
though the currently used ATA expression for the
average total density of states (p(E)) appears to
give reasonable results in all cases studied so
far, the corresponding expressions for the com-
ponent densities (p„(E)) and (pn(E)) yield negative
results in many cases and are not reliable. '

In this series of two papers, we address some
of the questions that have arisen in the application
of the CPA and ATA to the disordered muffin-tin
alloys. The present paper discusses the relevant
formal aspects. A new set of ATA equations
(designated as ATA2 for convenience) is consider-
ed. The comparison of the ATA2 spectrum with
the currently used form of the ATA' ' (referred
to as ATA1) is presented. However, the bulk of
the results for the CPA and ATA2 and their com-
parison is undertaken in the second following
paper. '

We emphasize that a fully self-consistent calcu-
lation of the electronic spectrum of the disordered
alloy requires not only the self-consistent treat-
ment of disorder but also that of the atomic po-
tentials. The CPA treats just the disorder self-
consistently in the sense of a single-site approxi-
mation. The problem of self-consistency of atomic
potentials has been handled to date only via semi-
empirical models"' in which the effect of dis-
order on atomic potentials is taken into account
by adjusting one or another feature of the constit-
uent atomic potentials to force agreement between
theory and one particular experiment. Our ability
to do accurate calculations of the component
charge density (p„,»(E)) has important conse-
quences in this regard. This point is discussed
further with the example of Cu„Ni, „ in the article
that follows. "

An outline of the present paper is as follows:
Section II considers the exact equations for (p(E))
and (p„&n&(E)). The formula for (p(E)) is well
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known. ' " The expression for (p„,» &(E)), which is
the focus of our discussion, has also been sug-
gested in an earlier paper. " However, several
delicate features inherent to this definition were
not recognized at that time. We clarify the exact
meaning of our definition of (p„&»(E)& and its
relationship to the more conventional definition in
which this quantity is defined as the integral of
the charge density over a signer-Seitz unit cell at
the center of which an A (or B) atom is placed. ' In

fact, our definition of (p„&»(E)& may be more ap-
propriate for considering transfer of charge bet-
ween the constituent atoms of an alloy, because
this definition does. not artificially carve out the
Wigner-Seitz unit cell as the basic region of space
to which the transfer of the electronic charge is
restricted. In any event, our conclusion is that
even though the two viewpoints of charge transfer
are somewhat different, they are li'Rely to yield
similar results for physically relevant quantities
sensitive to the environment of the A and & atoms
in the alloy.

Section III specializes to the CPA. The expres-
sions for (p(E)&c~ and (p„,.»(E)&c~ have already
been discussed in Ref. 13. While the free-electron
singularities cancel exactly in (p(E}& owing to
the translational symmetry of the average alloy,
these singularities are present in an essential way
in the expression for (p„,s&(E)& . (The techniques
used for handling this prob].em are outlined in
Appendix A. ) The focus of our discussion in this
section concerns the symmetry properties of the
CPA equation. First, we show that the CPA equa-
tion is symmetric to the interchange Cc~(E)-
Cc&(E), where Ccp(E) denotes the matrix of cotan-
gents, of CPA phase shifts. The solution with
Im[Cc&, (E)](0 satisfies the unitarity constraint
and is physically relevant. Second, we show that
for cubic systems, 7~~ is diagonal if only s, p, d
phase shifts (i.e., I ( 2) are used for pure con-
stituents. While this statement is by no means
surprising, an explicit proof is useful and indi-
cates how CPA can be implemented most con-
veniently for /) 2 and for other symmetries.

The ATA formalism is taken up in Sec. IV.
This discussion concerns the manner in which the
restricted averages of the path operators
(T .&o.„&»& are decoupled in terms of the corre
sponding path operators T„'„", for an ordered crystal
of effective atoms t, «=(t&. The currently used
form of the ATA decoupling"o (referred to as
ATA1) and the proposed ATA2 decoupling are dis-
cussed. The density of states in the disordered
alloy involves contributions from not only the
91och-type complex bands but also from the im-
purity levels which arise when an A or J3 atom is
embedded in an otherwise ordered medium of ef-

fective atoms. The physical content of the new
ATA2 decoupling is that it treats the single im-
purity contributions better than ATA1. We show
that if (&& is replaced by ac~ in the ATA2 expres-
sions for (p(E)) and (p„,»(E)&, the CPA spectrum
will result. In this sense, ATA2 can be viewed as
the lowest-order approximation to the CPA, and
the ATA2 spectrum may be improved systemati-
cally by simply replacing (w& by successively
better approximations to 7~p. Finally, using the
illustrative example of Cuo 75Ni, », the spectral
density and densities of states in ATA1 and ATA2
are compared in order to elucidate some of the
important differences between these two approxi-
mations.

Q(E) =- (E -H) '

by the relation

p(E) = —(vN)-'Im T r[8 (E')]

(w)() tm jd «()(r,—r;K').

(2.2)

(2.3a)

(2.3b)

Here E =—E+s0 and iV xs the total number of atoms
in the system. By using the coordinate representa-
tion explicitly, Eq. (2.3b) expresses p(E) as an
integral over the charge density, which is pro-
portional to Im9(r, r; E').

An exact expression for the average density of
states (p('E)) can be obtained by using the Lloyd' s
formula" for the density of states of an arbitrary
assembly of muffin=tin atoms. This well-known
result is"

dv' '
(5p(E)& = -&& 'im Tr~ x(Too&o „„"+ y(Too&o s

(2.4)

II. EXACT EQUATIONS

T-he substitutionally disordered binary alloy
A„B, „will be discussed within the framework of
the one-electron Hamiltonian

If =p'/2m++ o"'s&(r). (2.1)

Here the crystal potential j.s assumed to be given
' as the sum of nonoverlapping spherically sym-
metric muffin-tin potentials v" 's '(r}= v"~s '(

~

r—
—R ~) centered on atomic sites (8 ). The A and
B atoms are assumed to occupy the sites (R~) ran-
domly, so that the probability that a given site is
occupied by an A, (or B) atom is proportional to its
concentration &(: [or y —= (1-x)].

The electronic density of states p(E) (per atom,
per spin) is given most conveniently in terms of
the Green's function
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where ( 5p(E)) —= (p(E)&; p, (E). po(E) is the free-
electron density of states. T„„,, B„„,, &„and &~,
respectively, denote the usual path operators,
structure functions, and the on-the-energy-shell
matrix elements of the A. and 8 atom-scattering
matrices. The trace in (2.4) refers only to the
angular momentum space. The symbol (. ..) de-
notes the complete random average, whereas
(...)„.„&B&

denotes a one-site restricted average.
We will not discuss formula (2.4) except to note

that the integrations over the electronic coordi-
nates r of Eq. (2.3b} have been carried out ex-
plicitly in obtaining this equation. For this reason,
the detailed real-space charge-density information
contained in Im(Q(r, r; E')) can no longer be ex-
tracted in any simple manner from Eq. (2'.4). This
observation is important in the consideration of
the component charge density &pA&B &(E)&, which is
traditionally defined" in terms of the restricted
average Green's function

(p„„,(E))= -v 'Im d'r&e(r, r; E')),.„„,, (2.5)
(0)

where the subscript (0} indicates that the integral

extends only over the 0th %igner-Seitz cell
volume. Equation (2.5) physically defines &pAB»(E)&
as the average total charge in a unit cell of the
alloy containing an A (or B) atom fixed at its ori-
gin.

%e emphasize that when anA or B atom is hei, d
fixed at the origin, the translational symmetry of
the average alloy is broken and there is no com-
pelling reason to choose the %igner-Seitz cell as
the basic region of integration. Indeed, the mag-
nitude of the charge transferred between constitu-
ent atoms will vary depending upon how the region '

,
of integration in definition (2.5} is chosen. It is
also noteworthy that since the geometrical shapes
of Wigner-Seitz cells in crystals are not so simple,
the integration in Eq. (2.5), which extends over the
volume of the unit cell, is likely to pose practical
problems for realistic systems. It is clear that a
definition of component density of states which does
not involve an integration over a specific region of
r space will have certain advantages over the de-
finition (2.5). One such definition suggests itself
from the expression (2.4) for (p(E)).

Using &T«&=x&T «&,. +A(1 —x)(T«&,.B, Eq. (2.4)
may be rewritten as

dB„.,&5p(E)&=-v 'ImTr x((T„&,„"-Q&T, ),„"')+y(&T„&,. „-Q (T,„,&,. ') (. (2.6)

The form (2.6) naturally suggests the definition

t d'rA&B&
&5pA{B&(E)& v I™Tr~ &TOO&0 A(B& dE p &TO &0 A{B) dE (2 7)

for the A (B) component density of states. Here,
as in (2.4), &5pAB»(E}&-=&pA{B&(E}&—pG(E). Note that,
in view of Eqs. (2.6) and (2.7),

&p (E)&'+3&p (E)&=&p(E)), (2.8)

which represents the constraint of charge neutral-
ity of the average alloy.

In Ref. 10, expression (2.7} was suggested as
being equivalent to the definition (2.5) of the A (B)
component density of states. However, as noted
before, the real-space integrations over the elec-
tronic coordinates have already been carried out in
Eq. (2.4) for (p(E)) and, for this reason, this for-
mula can no longer be viewed as an integral of the
charge density over a Wigner-Seitz unit cell. In
particular, the quantity (p„&»(E)) in Eq. (2.7) can-
not be equivalent to the expression (2.5) for
(p„&»(E)&, because the latter involves the Wigner-
Seitz unit-cell volume in an essential way. "

To understand the nature of Eq. (2.7) for the
component charge densities, we rewrite Eq.
(2.3b) by using the equation

9(E) =G (E)+Q G,(E)'l„(E)G,(E)
n

to decompose the Green's function in terms of the
scattering operators &„. Thus

(2 9)

00(0)=-(r2)) '1m' f r) r(r[G, f„G '(2) (2.102)'
—=N ' 5p„E, (2.Iob)

where (2.10b) defines

00„(0)=--r-'rm f 0'r(r)~G, rG1,
)~

r) . (2.11)

In particular, for n=0,

00 (0)=- —r '1m f rPr(r[G r G (2.12)

I

By carrying out a restricted average of both sides
of (2.12), we obtain

(00(G)),.„m=-r '1mf 0 r(r(G (r ) „tm'G Igr. .
(2.18)
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Thus far the quantity (5p, (E)), „+& is merely a
definition. However, it is possible to show, by
straightforward though somewhat lengthy mani-
pulations, that the right-hand side of Eq. (2.13)
reduces to the expression (2.7) for (5pd, &»&(E)).

Hence Eq. (2.7) is equivalent to the definition

(5pA &B&(E)) —(5Po(E))o A&B=& (2.14a)

= -7t' 'Im d'~ r Gp V p o-g(Q)GQ

(2. 14b)

To discuss the relationship between the defini-
tions (2.5) and (2.14) [or equivalently (2.7)], it is
instructive to consider first the case of a perfect
crystal, where the two definitions must be identi-
cal. Suppressing the subscripts A (B), the total
charge density associated with the 0th site based
on Eq. (2.5), in view of (2.9), is

&&», =-r'rmE f d'r(r~o, G,r~r&
m (0)

=-v- im~ d'r(r)C, 7;G, (qr
(o)

(2.15a)

+E f d'r&r~G„r'„G„(r&J. &d. ldb&
m& (0)

[Since we are considering a perfect crystal, the
ensemble averages in Eq. (2.5) have been sup-
pressed in writing (2.15b);]The translational
invariance of the operators & in an ordered
crystal can be used to manipulate the second term
on the right-hand side of (2.15b) to obtain

5p, (E) = -» 'Im~ &I'r(r
~
G,f,G, P)'

(o)

rQ f d'r&r
~

&:,d,G, [ r&
[

m&0 (m)
(2.16a)

=-m 'Im d'r r GoVoGo r . (2.16b)

Equation (2.16b) now involves an integral over all
space and is identical to the definition (2.14) [or
(2.5) l.

For the disordered alloy, since the translational
invariance does not hold for restricted averages,
the above manipulations do not carry through.
Equations (2.5) and (2.14) may, however, be re-
written [in analogy with (2.15b)] as

0&»„d»=-r '& f d'r(r~G&d &, „, &d, ~r&
(o)

+g f d'r(r&G, &
r'

& .„, ,G ~r& l

mW . (o)
(2.17)

vapo
"='-m ' d x r GotoGo r . (2. 19)

Comparing Eqs. (2.19) and (2.12), it is immediate-
ly seen that vapo can be obtained from vapo( "by the
replacement t, - &o. In this sense, vapo is the per-
turbation of the free-electron medium associated
with the 0th site when the atom in the 0th cell is
surrounded by N —1 other atoms. If these N —1
atoms are removed, then the perturbation is just
vapo~ . By their very definitions, both vapo™and

vapo involve integrals over the entire crystal.
It is noteworthy that Eqs. (2.5) and (2.14) imply

a somewhat different picture of the transfer of
charge between the alloy constituents. Equation
(2.5) can be used to monitor changes in charge in

a unit cell surrounding an A (B) atom in the alloy
as compared to a pure crystal. By contrast for
definition (2.14) the reference system with respect
to which changes are considered is an A(B)
atom embedded in the free-electron medium, and
the perturbed charge distribution is integrated
over the entire crystal.

To summarize our discussion, we emphasize
that both definitions (2.5) and (2:14) of the com-
ponent density of states are likely to yield simila, r
results for physically relevant quantities such as
the transfer of charge between A and B atoms in

0»&„„&=-r 'r f d'r(rIG&d». „,G. ~qr

(o)

+Q &I'r(r ~G,(7,)', ~&G,
~

r) ).
(2.18)

In order to compare (2.17) and (2.18), note that
each of the G~f' Go terms in Eq. (2.15b) may be
viewed as giving the contribution to the charge
density at the 0 th site from some sort of a "muffin-
tin orbital" located at the mth site. (This as-
sociation for our present purposes is only meant
to be qualitative, ) Both Eqs. (2.17) and (2.18) then
contain identical contributions from the muffin-tin
orbital located at the 0th site (i.e. , from (7',), „&s&

term). In addition, (5&o„&~) involves the 'tails" on
the 0th site of the muffin-tin orbitals located at
m 40 sites By. contrast, (5p„&~P involves tails of
the 0th muffin-tin orbital on m4 0 sites. Hence
the differences between the second terms of (2.17)
and (2.18) have to do with the details of how the
tails of muffin-tin orbitals are averaged. In this
sense, the differences between (5p„&») and (5p„z)
may be expected to be small, particularly for
single-site approximations which are the primary
concern of this paper.

Note that when a single impurity is embedded in

a free-electron medium, the perturbation in the
free-electron density of states is given by
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an alloy. To date (p„+&(E)) based on Eq. (2.5) has
not been computed for any realistic muffin-tin
Hamiltonian. We have, however, evaluated com-
ponent charge densities based on Eq. (2.14) [or
equivalently Eq. (2.7)] in Cu,Ni, „and Cu„Zn, ,
for a range of constituent concentrations and have
found the results to be reasonable. "

III. COHERENT-POTENTIAL APPROXIMATION (CPA)

'The average total and component CPA densities
of states on the basis of Eqs. (2.4) and (2.7) have
been discussed elsewhere. " Here we discuss
certain symmetry properties of the muffin-tin
CPA equation and of the CPA effective scattering
matrix. 'To our knowledge, a proof of these pro-
perties has not appeared in the- literature.

The CPA condition for the on-the-energy-shell
matrix elements &~p of the C PA effective scatter-
ing matrix can be written as' "

Top ——xTg +pre +(icp —T~ )Too (rcp —T& ), (3.1)

where

TOO TCP —Bk E
k

is given as a Brillouin-zone summation.
Equation (3.1) can be rewritten in the form

(3.2)

(3.3)

Ap(E) = Bg(E) —i«. (3.5)

In Eq. (3.4) all quantities other than the unknown

C~(E) are real. Consequently, if C~(E) is a solu-
tion of (3.3), then Cc*v(E) must also be a solution.
'The physically relevant solution corresponds to
Im[(C~(E)),]-0, since it is easily shown to satisfy
the unitarity constraint. " 'fhis implies, for ex-
ample, that if during the course of solving the CPA
equation a solution with ImC, &0 is encountered,
then the physical solution should be obtained by
changing the sign of Im C, and not by some other
means of forcing the solution to satisfy the unitarity
condition.

To consider the symmetry properties of &~p, we
specialize to the case of a cubic system and to the
use of only s, p, and d phase shifts for pure A (B)
atoms. (This is a good approximation for many

= xC„(E)+ y C~ (E) + «(C„—Ccp)

x PP K'Ccp + Ak Cg Ccp 3 4
k

where C~,» and C~ are the matrices of the cotan-
gents of A (B) and CP atom phase shifts, respec-
tively. A&(E) is the matrix of real Korringa-Kohn-
Rostoker (KKR) structure functions" related to the
structure functions Bf(E) via the matrix equation

dA„- dQ„-, Ng' -&q Px Fq, Px'
P

(3.6b)

where 4, is the total number of elements in the
cubic group and I'~(x) is the Lth spherical har-
monic associated with unit vector g. In obtaining
(3.6b) the invariance of t(x, x') under the opera-
tions P of the cubic group has been used.

We now invoke the relation valid for seal spheri-
cal harmonics for l ~ 2 (see Appendix B):

P
(3.7)

where f ' '(x, x') is the same function for L values
belonging to a given representation of the cubic
group. In view of (3.7), Eq. (3.6b) shows that
t~~, o= 5~~, , i.e., the corresponding matrix & is
dj agonal 8 ll 13

It is interesting to note that formally the sym-
metry properties of the CPA amplitudes are built
into the CPA equation via the corresponding pro-
perties of the matrix T~ [cf. Eq. (3.1)]. For l ~ 2,
for example, by using relation (3.7), it is possible
to show that Tpp is a diagonal matrix, provided
the KKR structure functions are computed by using
real spherical harmonics.

IV. AVERAGE t-MATRIX APPROXIMATION (ATA)

In the context of the- one- and two-band tight-
binding model Hamiltonians, the A%A is defined
by replacing the disordered alloy by an effective
crystal of (I) = xt„+ (1 —x)ts atoms. " A closed
expre ssion for the ave rage density of states on
thi, s basis can be obtained, '"'"but it involves
the off-the-energy-shell matrix elements of. the
A. and B atom t matrices. Since the exact ex-
pression (2.4) for (p(E)) does not involve any such
elements, this is a deficiency of the usual muffin-
tin A'TA. For this reason, in R'ef. 10 alternative
expressions for the A'TA spectrum were proposed,
which were based on Eqs. (2.4) and (2.7). (We will
refer to these as ATAI in this paper. ) ATA1 has
been applied to a variety of transition- and noble-
metal alloys and found to yield reasonable results
for (p(E)) in all cases studied so far." By contrast,
the component densities of states based on ATA1

transition and noble metals. In any event, the
following discussion is easily generalized to sys-
tems with other symmetries and to include a
larger number of pure metal phase shifts. ) In the
angular momentum representation [with L = (I, m)],
the atomic scattering matrix t(x, x') can be written
as (suppressing the superscripts CP)

(x, x').=- f dO fd-, .A-„. Y (xlt(it, it')I' . (x') (3.6a)
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lead to negative results in many cases and are not
reliable. Thus the discussion of alloy properties
sensitive to the environment of A and B atoms
(in particular, the transfer of charge between A
and B atoms) has not been possible within the
framework of the muffin-tin average t-matrix
approximation. "

We now discuss an alternative form of the A'TA,
which overcomes many of the difficulties encoun-
tered with ATA1. The relevant equations giving
the decouplings of (Too)o „&» and (T,„),„,» are

oo&o=~'&B&= [1 —Too'(('& ' - TA&B))l
' oo' (4.1a.)

and

( T &AT2 ((T)-1 T-)}(T-l q=l)-&TAT1
On O=A B A B On (4.1b)

with a similar expression for (T,„)",TB' and with the
interchanges x~y and A.~B. Too and To„are the
path operators for the A'TA medium. The use of
the decouplings (4.1) in (2.4) and (2.7) immediately
yields the ATA2 spectrum

AT2

Ll —T* ((O ' —7 ') dd 1 —d'* ((T)' —T"') dd'dE (w)
' —8"j

(4 2)

(4.3)

and

't' 1
&p.(E)&'"=p.(E)-(«) 'lm»a I, TAT(&T)-1 T-&) dE" &(& & B)(~' AB') '

( 1 —Too ~ —~A dE X

(4.4)

and a similar expression for (pB(E)&A~, with
the interchanges A ~B and gory. The quantities
(p„&B&(E))"T'satisfy the charge neutrality con-
straint

~&PA(E))""+y&PB(E))" '=&P(E)&"" (4 5)

It should be noted that (p(E)) A'T[see Eq. (3.24a)
of Ref. 10] as well as (p(E)&AT' involve one term of
the form (k-independent factors) E„-((7) ' —B„-) '

T"„.For this reason, even thoughthe ATA2 Eqs. ,

(4.2)-(4.4) involve T"„T in the factor multiplying
(drd&'&»/dE) while ATA1 equations do not, the for-
mer are no harder to implement than the latter.

The decoupling (4.1a) physically represents an
A (B) atom placed in a medium of (t& atoms. Equa-
tion (4.1b), on the other hand, is not identical to
the corresponding single-impurity equation for
(T,„),„,». The reason for this is that if (T,„),„,»
were chosen to be of the single-impurity form,
then relation (4.5) would be violated. Furthermore,
the corresponding spectral function [cf. Eqs. (4.3)
and (4.4)] will contain unphysical free-electron
poles.

The ATA2 decouplings (4.1) are completely
equivalent to the corresponding CPA decouplings. '
This formal similarity between the A'TA2 and CPA
implies that if &c~ is inserted in the A'TA2 equa-
tions (4.2) and (4.4), the CPA spectrum will re-
sult. Since (T& may be looked upon as the lowest-
order approximation to the CPA solution, we can
view ATA2 to be the lowest-order approximation
to the CPA.

We emphasize that the average density of states
is not sensitive to how precisely the (T,„),„,»
term is decoupled. In fact, as Fig. 1 shows, the
density of states in Cu»wio» obtained by using
the decoupling (4. lb) for (T»), „,B& [i.e. , by using
Eq. (4.2), shown as a dashed line] is hardly dis-
tinguishable from the corresponding density of
states obtained by using the single-impurity de-
coupling

20—

h

4.

h.
10-

I

03 0.6
E+E+~& C+yJ

I

0.9

FIG. 1. Density of states (p(E&) in Cup 75Nip. pp. The
dashed curve is for the ATA decouplings of Eqs. (4.1)
[i.e., by using the corresponding ATA2 density-of-states
formula (4.2)]. The solid curve gives the results for the
case when instead of forms (4.1) the single-impurity
forms are used for both (Tpp&0 B&B &

and (Tp„&p-A&B)
(i.e., (Tpp) p d«B) is given by (4.la), but (T&p, )p Q&B)

00 ( ( & +A(B)H T0n )
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FIG. 2. Bloch spectral density (p(k, E)) at the point I'

ti.e„k= (0,0, 0)j in the Prillouin zone for. ATA1 (dashed)
and ATA2 (solid) in Cuo. &&Ni0.25. The arrow indicates
the peak arisixg in ATA2 from the solutions of (4.7) for
an Ni impurity.

(b)
„(E))

ll(.&-'- E;(E)ll = 0,

but also from those of

(4.6)

(II - 7'"Oor((~)-'- ~-„,»)ll = o. (4.7)

Equations (4.6) and (4.7) are completely analogous
to the corresponding CPA equations" and have a
similar physical interpretation, i.e. , (4.6) gives
the complex Bloch-type energy bands for an order-
ed system of ATA scatterers (7), and (4.7) gives
the A (8) impurity levels in an otherwise perfect
(~) medium. " In fact, the peak marked by an
arrow in Fig. 2 arises from the solutions of (4.7).
By contrast, the ATAI spectrum (dashed) in Fig.
2 has all its peaks associated with the Bloch-type
states obtained from (4.6). In this sense, ATAl
essential1y misses. the structure resulting from
the impuri, ty-like levels coming from sot.utions of
(4.7).'4

Figure S.compares' the densities of states in
ATA1 and ATA2 for Cu, „¹io„.As indicated

(shown as a solid line). Our experience is that the
net contribution to (~&»(E)) is not sensitive to how
the term proportional to (dB-„/dE) in Eqs. (2.4)
and (2.7) is approximated. This fact may usefully
be borne in mind in treating disordered muffin-tin
systems i.ri general. -

It is also intex-'esting- ta- compare the spectral
density in ATA1 and ATA2. Figure 2 is illustrative
in this regard. 'This figure shows clearly that the
spectral function for ATA2 (solid) has more struc-
ture than the ATAl (dashed). Indeed, a reference
to Eq. (4.2) shows that peaks in ATA2 arise not
only from the complex zeros of

0,5 0.6
ENER'GY (Ryf

0.9

FIG. 3. Comparison of the density of states (p(E)) and
the weighted A and B component densities of states
x (p~(E)) and (I-x) (ps(E)) in Cua )5Nio 25 in ATAI
(dashed) and ATA2 (solid).
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earlier, ATA1 yields negative values for impurity
spectrum (p„,(E)) [dashed in Fig. 3(c)j for a range
of energies. By contrast, A'TA2 gives positive
(p(E)) as well as (pc„&„,&(E)). Figure 3(a) shows
strikingly that the Ni impurity peaks in A'TA1 and
ATA2 are located at different energies. This- is
noteworthy since bath ATA1 and A'TA2 involve the
same (f) effective scatterers, and they both con-
tain peaks in spectral functions ari;sing from the
Bloch-type solutions of Eq. (4.6). The two versions
of the ATA differ physically only in that ATA2
contains impurity level contributions from (4.7)
while A'TA1 does not. In fact, in Cu, »Ni, » the
impurity level contributions (4.7) dominate, and it
is for this reason that the position of Ni virtual
bound state in A'TA2 and ATA1 turns out to be
dif fe rent.

%'e have applied A'TA2 and CPA to Cu„Ni, „and
Cu Zn, „over a range of constituent concentra-
tions and found that the two approximations are
generally in good agreement. In particular, A'TA2

has been found to lead to positive total as well as
component densities of states. Details of this com-
parison are taken up in Ref. 15.
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APPENDIX A: HANDLING OF FREE-ELECTRON POLES IN COMPONENT DENSITIES OF STATES

In the formulae for the component densities of states (p„,»(E)) in the CPA [see E(I. (3) of Ref. 13] as well
as the ATA, the free-electron poles do not cancel, and therefore the computation of (p„,»(E)) involves
integrals whose integrands still contain these singularities. We emphasize that this does. not mean that
these quantities are ill defined, because the prescription for evaluating densities of states is to set E=E
+i& and take the limit &-0.

In this appendix we consider the CPA formula"

( T (7' T')dE dE ' B)
1 1 dv„' dB-„1

Note that the term ()iN) 'Im Tr[(dB~/dE)(rc'~ —8„-) ']
in E(I. (Al) can be shown to vary as -1/[E —(k
+ K„)']in the vicinity of the free-electron poles" at
E = (k+ K„)'. Therefore, these poles willbe canceled
exactly by the corresponding contributions from the

p, (E) term in (Al). (Itis for the same reason that the
free-electron poles in the total density of states in the
C PA and the ATA do not cause any numerical diffi-
culties. ) By writing the form (Al), we have isolated
the free-electron poles in(p„(E))cP to the term

p *'(E) „' ) EZ =-(I ",', , —))
k

1 O'Bg

p(» k, E, (A2)
I

where p~(E)(k, E) is the spectral function whose inte-
grals along the special directions enter the com-
putation of p'"(E). We now explicitly add and sub-
tract free-electron poles from pz'E)(k, E) by writing

APPENDIX B: ORTHOGONALITY RELATION FOR
CUBIC HARMONICS

In this appendix, we prove that the cubic har-
monics satisfy the orthogonality relation

K!"'(Px)= g D', ,". '(P)Kj'"'(x) . (B2)

Z(") I & Kj(")Px'

= (N, /N. )v, „ao p K("'(x)K("(~'). (Bl)
l(w)

Here K("(x) denotes the ith cubic harmonic be-
longing to the p, th representation of the cubic
group. While the summation on the left-hand side
of (Bl) extends to all the N~ elements of the group,
the one on the right-hand side involves only the N„
elements of the p. th representation.

Since fK(,", i = I, . . . , NQ form a basis set, a
representation for the cubic group can be obtained
by simply considering the effect of the group ele-
ments on the functions fK(,.")]. The matrix D(E)(P)
representing P is then given by

pt "(ic, E) = (p("(k, E) -Q—
n E

& +

& ~ n

E —(k+ K„)E ' (A3)

Other representations can be obtained by using
other sets of cubic harmonics. 'The different re-
presentations satisfy the relation"

where the constant coefficients f~ „are easily
determined by calculating p~(E)(k, E) at two ~I)

~

values along the special direction of interest in
the vicinity of E= (k+K„)' and fitting it to the form

p(iE)(k, E) —f~ „/[E —(k+ K„)']+P~ „.

Q D(,,")(P)DE(", '(P) = (NP/N. „)5„„5,„5,, .

P

Using (B2) in (Bl) now gives

K'E)(P~)K(v)(Px')

(B3)

The free-electron singularities in (A3) have now

been transferred to the term ~~„f~ „/[E —(k+K„)'].
Since f~ „are constants, the contribution from this
term can be evaluated analytically.

D( ) / D(&) / ~(+) ~ ~(&) g
l(v) k(v) P

(B4)

The use of relation (B3) on the right-hand side of

(B4) immediately yields the relation (81).
To apply (Bl) to the case of spherical harmonics,
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ere note that the 9 y'eal spherical harmonics for
I ~ 2 (denoted by 1', to 1',) vary as (1,x, y, s, xy, ys,
rp -Ss', sx, (xp -y')). Each of these functions
transforms according to a representation of the
cubic group: Y, transforms as I'„(Y„1'„Y,) as
I'„., (Y„Y', , 1',) as I"„,, and (Y„Y;) as I"„. Since
none of these representations is repeated, it is
clear that (Bl) can be used to obtain the relation
for t ~2:

FL Px ~I, Px' =5sI, ( xyx B5
P

where f ' '(x, x') depends only on the representation
index I"y2 1"25 1"

5 and Fy of the cubic group,
We note in passing that our proof of (Bl) uses

relation (B3), which implicitly assumes that the
representations (p, ) and (v) are orthogonal. It
would seem that (Y„Yp) do not form an orthogonal
representation. Nevertheless, we have explicitly
ver'ified that Eq. (B5) holds for Y', and 1',.
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