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High-temperature specific heat of crystals
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The Monte Carlo method is used to estimate the specific heat of a model of rubidium. Both the specific
heat at constant volume, C„and the specific heat at constant pressure, C„, are obtained for a range of
temperatures up to the instability point of this lattice. These results for the fully anharmonic perfect crystal
are compared with those obtained by perturbation theory to lowest order in the anharmonicity, (i.e., only
cubic and quartic anharmonic contributions to the Helmholtz free energy are considered). It is shown that
the fully anharmonic Monte Carlo calculation yields a more rapidly increasing specific heat than the linear

temperature dependence given by lowest-order perturbation theory in the high-temperature limit. The
Monte Carlo calculations also indicate that, at temperatures much higher than the Debye temperature, large-
scale atomic displacements can occur without disrupting the lattice. When this happens, there is a further
increase in the specific heat.

I. INTRODUCTION

An anomalous rise in specific heat prior to melt-
ing has been observed in metals, ' ' alkali ha-
lides, ' ' and organic crystals. ' The value of the
specific heat at the melting point, T, may be from
20 to 100% greater than the classical (Dulong-Pe-
tit) value, the largest increases being observed
in the refractory metals' and alkali halides. ' The
rise takes place over a considerable portion of the
temperature range between the Debye characteris-
tic temperature, OD, and T . In the neighborhood
of O~ and at lower temperatures, the specific heat
can be quite well represented by lattice-dynamical
theory, ' but at significantly higher temperatures
(i.e. , 30D or greater) the lowest-order anharmonic
contribution to the specific heat is, in most cases,
insufficient to account for the experimental val-
ues.""The balance ("excess" specific heat) is
attributed to higher-order anharmonic effects"
and to the vacancies which are expected to be pre-
sent in a solid near its melting point. ' "'" To
evaluate these two contributions to the specific
heat is a not inconsiderable problem. The vacancy
contribution depends on both the vacancy concen-
tration, n~, and the vn. cancy formation energy, Ez.
Although reliable and consistent values of E& can
be derived from a variety of independent experi-
mental 'nvestigations, e.g. , tracer diffusion, "'"
nuclear' magnetic resonance, "electrical resistiv-
ity of quenched metals, ""and ionic conductivity
of alkali halides, "the estimates of vacancy con-
centration are less sure. The most reliable val-
ues of n ~ are obtained by the simultaneous mea-
surement of the lattice parameter (by x-ray dif-

fraction) and lattice dilatation. " These values are
smaller, typically by an order of magnitude, than
those needed to account for the anomalous rise in
specific heat. ' Estimates of n~ from quenching
experiments are less certain because of vacancy
loss during the quench, but they also give low' val-
ues of n~. In principle, n~ can also be obtained
from studies of the lifetime for positron annihila-
tion in metals, "but this promising method is in
the early stages of development and reliable val-
ues are not yet available. Although there are now
some arguments in favor of higher values for the
vacancy concentration, "one cannot expect to re-
solve the problem of the excess specific heat with-
out knowing the full anharmonic contribution to
the specific heat. At present, a typical analy-
sis'"'" represents the electronic and lowest-or-
der anharmonic contributions to the specific heat
by a term, linear in temperature, which is fitted
to the measurements at intermediate tempera-
tures (-8D) and extrapolated to high temperatures.
The excess specific heat above these extrapolated
values is then treated in one of two ways: either
(1) all the excess specific heat is attributed to
vacancies and fitted to the appropriate exponential
form, thus yielding values for E& and n„, or (2)
values of E& and n~ obtained from independent mea-
surements such as those mentioned above are
used to calculate the specific heat of the vacancies,
and then any remaining excess specific heat is
labeled "anharmonic. " Consequently, the informa-
tion gained from such an analysis will only be re-
liable if the linear approximation is a good one
for the anharmonic effects. For this reason, it
seems important to obtain, without approximation,
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the anharmonic contribution to the specific heat of
a lattice. This is the subject to be dis'cussed here.
As a first step, we considered a perfect lattice.
Theparameters of the problem were chosen to rep-
resent rubidium. In Sec. IIA we give details of the
Monte Carlo method used to calculate the fully an-
harmonic thermodynamic properties of this model
lattice. In Sec. IIB, we outline the lowest-order
perturbation theory calculation for the same sys-
tem. The two sets of results are presented in Sec.
III. In Sec. IV we discuss these results and com-
pare them with experiment.

II. CALCULATIONS

A. Monte Carlo method

The model system consists of 250 particles in-
teracting via a pair potential Q(r, ~), where x» is
the distance between particles j and k. The par-
ticles were located initially on bcc sites in a
5 x 5 x 5 cube of unit cells with periodic boundary
conditions applied at opposite cube faces to simu-
late an infinite system. The Monte Carlo method
of Metropolis et al."was used to compute the can-
onical ensemble averages for the potential part of
the internal energy, U, , and the pressure, I', ac-
cording to the relations

U, =(c)/x

(2)
where C =-,'Q,.„„P(r»)is the potential energy of
the lattice with N particles in volume V arid a is
the lattice constant. The second term in paren-
theses arises from the density dependence of the
interatomic potential. " The specific heat at con-
stant volume, C„, was obtained in the course of the
calculation from the relation"

C„=—,'Z+((~C)'&/uT',

where 54 = 4 -(I) is the fluctuation in the poten-
tial energy of the lattice and 8 is the gas constant.
The specific heat at constant pressure, C~, was

estimated from the relation

in which (sp/8 T)» was also obtained directly by
use of the relation"

)
= -+(Mrv)/aT',(

BP~ Nk

BT) y V

and (sp/8 V)r was obtained graphically. The can-
onical ensemble averages are estimated from 10'
samples obtained from 10' trials (with acceptance
ratio --, ) after an initial equilibration period of 10'
trials. The resulting estimates are stable to a

, few parts in 10 . %e shaG return to a discussion
of the accuracy of our results in Sec. III. The in-
terparticle potential, P(r»), is one appropriate for
rubidium" and it is cut off at the sixth-neighbor
distance. The parameters for this potential are
given in Table I. Rubidium has been quite well
studied experimentally. '"'" The specific heat
shows an anomalous rise over the last 100' prior
to melting (T =312 K) after a quite extensive re-
gion of linear temperature dependence above ea
(-55 K)'.

The calculated pressures and internal energies
are not'the total pressures and energies for ru-
bidium since the temperature-independent contri-
butions from the electrons have not been included.
These contributions are difficult to estimate re-
h.ably' so we have ignored them when determining
the specific heats. For this reason, our estimates
for C~ do,not strictly apply to rubidium, but rather
to the model lattice having the calculated pressure
variation with volume.

B. Perturbation-theoretic method

The formal expressions for the cubic and quartic
(lowest-order) terms in the Helmholtz free ener-
gy, I', and I'4, have been given by many authors. "
Details of the computation of these terms for po-
tentials of potassium and sodium in real space
have been given in Ref. 30, and we have used the
same method for rubidium with some modifica-
tions, to be described below, that speed up the cal-

'TABLE I. Parameters of the Hb potential function for different lattice constants.

Lattice const

= 0.89
m

c

(cm /mole)
54.638
55.776
56.914

(k
5.661
5.700
5.739

4.687 87
4.720 17
4.752 47

1.009 83
1.01031
1.01078

0.244 21
0.243 50
0.242 80

2.45
2.45
2.45
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culation. The interatomic potential is the same as
that used in the Monte Carlo calculation with the
cutoff at the sixth-neighbor distance. This enables
us to compare the two calculations in a precise
and meaningful way.

In the calculations of F, and F, [Eqs. (10) and
(9), respectively, of Ref. 30j, the eigenvalues
~(kj) and the associated eigenvectors e(kj ) for the
wave vector k and polarization (branch) index j are
obtained from the dynamical matrix D„&(k) for the
sixth-neighbor model of Hb by the method de-
scribed in Ref. 31. The high-temperature corre-
lation function arising in F~, viz

S„8(n)= ~ ",' ~ (1 —cos2vak n), (6)
xg ~ (4)

involves the sum k over the whole of the first
Brillouin Zone (BZ) and the suin over the branch
index j. The sum over the whole BZ in Eq. (6) for
a direct lattice point n can be reduced to the ~8th
portion or the irreducible sector of the zone by
the method given in Shukla and %ilk. ' %'e have
checked the convergence of the BZ sum, S 8(n),
for a cubic mesh of different steplengths Z =20,
.25, and 30, which in general yields 2Z points in
the whole zone, and found that the steplength Z= 20

gives the converged answer for S 8(n) for the
first six shells to better than 1 part in 10'. Thus
we have used Z = 20 (i.e. , 16 000 points in the
whole zone) in the calculation of F,. The cubic
term (F,) has been computed for the steplength
Z=6. Use of a longer steplength is not warranted
since considerable computer time (approximately
3 times greater) is needed for the steplength Z= 7
and there is only a very slight change (in the third
significant digit) in the value of F, compared to
its value calculated for Z=6.

In evaluating the Fourier transforms of the an-
harmonic coefficients C (k, j„k,j»k, j,, k,j,) and
C (k, j„k,j„k,j,) given by Eqs. (8) and (11), re-
spectively, of Ref. 30, the direct lattice summa-
tions (n) have been carried out to the sixth-neigh-
bor distance.

III. RESULTS

A. Monte Carlo method

The specific heat has been computed for three
volumes, V= 54.638, 55.776, and 56.914 cm'/mole
(V„V„and V„respectively), and for a range of
temperatures between 240 and 430 K. The results
are shown in Table II. In order to examine the

TABLE II. Specific heat at constant volume C„and specific heat at constant pressure
C& from Monte Carlo calculations; C„ from lowest-order perturbation theory. All quantities
are given in dimensionless units.

240
250
260
280
290

320
350

370
380

CQ/R

3.03

3.06

3.20
3.27

3.23

v,
Cp/R

3.30
3.39

C'"h/R

3.075

3.088

3.100
3.109

3.119

CU/R

3.25

3.46
3.12

3.38
3.31

Vg

C~/R

3.34

3 44

3.61
3.23

3.54
3.45

C811h/R

3,082

3.095

3.105
3.115

3.121
3.125

C„/R

3.43

3.32
3.19
3.48
3,33
3.52

3.42
4.02

V,
CA/R

3.58

3.46
3 31
3.66
3.49
3.71 '

3.63
4.37

C'""/R

3.082

3,092

3.101
3.111

3.120

390
400

415
. 420

' 430

4.20
3.87
3.76

3.46
3.77

3.99

4.49

3.98

3.65
4.04

3.125

3.128

3.130
3.131

3.134

3.42 3.60
3.74 3.98

6.34
6.41
4.58
4.92

7.54
7.26
5.03
5.71

3.75 4.01
5.04 ' 5.80

3.128
3.131

3.135

3.139

4 05

3.90
5.08
4.67

4.39

4.26
5.79
5.30

3.130

3.131

Moderate displacement of atoms from original sites during calculation.
Extensive displacements (see text).
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accuracy of these results, a number of calculations
were repeated for given Tand Vbut with a differ-
ent starting point in the random number sequence.
Although the energy and pressure stabilized in
each case, in some cases the values at which they
stabilized differed by as much as 5% from the first
set of values, showing that the sampling was not
uniform over a canonical ensemble even after 10'
trials. The effect on C„wa.s particularly pro-
nounced, e.g. , 30%% at V, and 410 K, corresponding
to a 1% change in U,. and P. Fortunately, we have
additional information which sheds light on this
situation. During the course of the calculation,
we have recorded the distribution of particles ac-
cording to their distance from their initial posi-
tions. A histogram of this distribution is used to
monitor the stability of the lattice structure. "
When the lattice is stable, the distribution peaks
at some value near the origin, and when the lattice
is unstable, the distribution is spread out uniformly
over a distance of several lattice spacings. This
criterion determined the highest temperatures
given in Table II. However, there can be an in-
termediate regime where some spreading of the
main peak occurs, but subsidiary structure is ob-
served for larger displacements. Such a result
indicates that a significant number of atoms have
moved from one site to another without destroying
the lattice structure. We found that this situation
obtained in some cases for our model lattice, with
consequent increases in the energy, presssure, and
specific heat over the values obtained when no
migration had occurred. In Table II, we have de-
noted by footnote a those cases where the atomic
displacements were moderate (-1 lattice spacing)
a,nd by footnote b those cases where the a.tomic

displacements were extensive (2 or more lattice
spacings). The case V, (400 K) is special in that
markedly different histograms were obtained from
different portions of the same run. These showed
that there was a, la.rge rate of migration in the
first part of the run (6x10' trials) but thereafter
the rate of migration wa, s low. The lower C„value
given here was obtained from the last 4x10' trials.
No subsidiary structure was observed in the his-
tograms for the remaining cases studied.

We have plotted the results for C„ in Fig. 1. For
cases with negligible atomic migration, the spread
in C„values is on the order of 5%% of the mean val-
ue. When extensive migration takes place, the
spread in C„values is on the order of 20%% of the
mean value. The spread in C~ values is somewhat
greater owing to the factor (8p /8 T)„in Eil. (4).

=-kT, = —2kT(P, +Il,) —= AT. ,8T2

Values of the total specific heat at consta, nt vol-
ume

C„'""/R = 3+AT (8)

are given in Table H. The effect of volume change
is insignificant. These results are plotted in Fig.
1, together with the results of the Monte Carlo
calculations. In Fig. 2 we compare the calculations
with the experimental results of Filby and Martin'
plotted as C'„/R=C„/R —yT/R, where the elec-
tronic coefficient y=2410 p. JK 'mole '. The lin-
ear portion of this curve has a slope of V.4x10 '
K ', i.e. , about twice that of C„'"". The calculated
C, and C„'""at volume V, are a.iso plotted here.
Note that the constant volume in the experimental
C„ is the equilibrium volume for temperature 7', ,

TABLE III. Cubic, F3, and quartic, F4, anharmonic
contributions to the gelmholtz free energy, and the coef-
ficientA in C„. F3 and F4 are in units of 10 Ã (PT)
erg ~ andA is in units of 10 K ~.

B. Perturbation-theory method

The cubic and quartic anharmonic contributions
to the Helmholtz free energy have been computed
for volumes V„V„and V,. The results are given
in Table III. The coefficient A. in this table is that
given by

3, L I ~A ~ ~

280 300 340 380 420
T (K)

FIG. 1. Specific heat vs temperature. Monte Carlo
calculations: C„,~ . Perturbation theory calculations:
C„, ---. (a) V, =54.638 cm ~ole, (b) V2=55.776
cm ~ole, (c) V3=56.914 cm3 /mole.

Lattice const (AI

5.661
5.700
5.739

F3

-2.233 865 1.102 169 3.124 889
-2.416 396 1.228 109 3.281 150
-2.621 062 1.474 647 3.165 532
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IV. DISCUSSION
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FIG. 2. Comparison with experimental C„. Experi-
mental results of Filby and Martin (Ref. 3), C'„,

, ——;Monte Carlo at V2, C„, ~ .

V(T). V, is close to the volume of rubidium at
room temperature t V(293 K) = 55.9 cm'/mole]. We
do not know how the melting temperature, T, of
our model system is related to the temperature
at which the lattice becomes unstable since the
instability we observe is not melting (see Ref. 33
for a discussion of this question). Further, our
model does not take account of the electrons ex-
plicitly, apart from their effect on the interatomic
potential through the dielectric function, and we
know that their presence is essential for the ru-
bidium structure to be stable at the volumes ob-
served. For these reasons, and since we are in-
terested here in the specific heat of a lattice at
high temperatures, the question of the model lat-
tice's melting point is not pursued further.

The results shown in Fig. 1 are, as far as we
know, the first to enable a. direct comparison to
be made between lowest-order anharmonic theory
a,nd the fully anharmonic system as computed by
the Monte Carlo method. At the lower temperatures
there is fairly good agreement between the two
sets of results, but at the higher temperatures
there is a. definite upward trend in the Monte
Carlo values, even in those cases where no ap-
preciable migration occurred, so we conclude that
the fully anharmonic calculation does indeed ac-
count for some part of the anomalous rise in the
specific heat. Further, the Monte Carlo results
have much more interesting implications insofar
as they associate high specific heat values with the
migration of atoms from one site to another.
Clearly such large-scale motion involving atom
exchange cannot be dealt with in the context of
classical lattice-dynamical theory. Much more
extensive studies (a larger number of trials, more
detailed sampling of the V-T space) need to be
done to satisfy questions of stability and statistical
significance, but even these limited results point
in a direction which appears promising, namely a
detailed study of the atomic motions at high tem-
peratures. To this end, molecular-dynamics stu-
dies with one or two vacancies in the lattice are
currently in progress.

ACKNOWLEDGMENT

The work of R. C. S. was supported by the Na-
tional Resea, rch Council of Canada.

A. Cezairliyan, M. S. Morse, H. A. Berman, and C. W.
Beckett, J. Res. Nat. Bur. Stand. 74A, 65 (1970).

2Ya. A. Kraftmakher and E. B. Lanina, Fiz. Tverd.
Tela (Leningrad) 7, 123 (1965) fSov. Phys. —Solid State
7, 92 (1965)j.

3J. D. Filby and D. L. Martin, Proc. R. Soc. London
A 284, 83 (1965).
L. G. Carpenter, T. F. Harle, and C. J. Steward,
Nature 141, 1015 (1938); L. G. Carpenter and C. J.
Steward, Philos. Mag. 27, 551 (1939).

~H. Kanzaki, Phys. Rev. 81, 884 (1951).
SK. Kobayashi, Phys. Bev. 85, .150 (1952).
~W. L. Freeman and A. L. Laskar, Bull. Am. Phys. Soc.

23, 605 (1978).
A. R. Ubbelohde, Trans. Faraday Soc. 34, 282 (1938).
D. W. Plester, S. E. Rogers, and A. R. Ubbelohde,
Proc. R. Soc. London A 235, 469 (1956).

' J. B. D. Copley, Can. J. Phys. 51, 2564 (1973); R. C.
Shukla and E. B. Cowley, Phys. Rev. B 3, 4055
(1971).

~ D. L. Martin, Proceedings of the International Con-
ference on Lattice Dynamics, Copenhagen, 1963,

edited by B. F. WaQis (Pergamon, Oxford, 1964),
p. 255.
L. G. Carpenter, J. Chem. Phys. 21, 2244 (1953);
D. L. Martin, Phys. Rev. 154, 571 (1967).
¹ L. Peterson, in Solid State Physics, edited by
H. Ehrenreich, F. Seitz, and D. Turnbull (Academic,
New York, 1968), Vol. 22, p. 409.

~4A. P. Batra and L. M. Slifkin, J. Phys. Chem. Solids
38, 687 (1977).

~A. Seeger, D. Wolf, and H. Mehrer, Phys. Status
Solidi 48, 481 (1971).

~6J. J. Jackson, in Lattice Defects in quencked Metals,
edited by B. M. J. Cotterill, M. Doyama, J. J. Jack-
son, and M. Meshii (Academic, New York, 1965),
p. 467; A. Seeger and D. Schumacher, ibid. , p. 15;
A. S. Berger, D. ¹ Seidman, and R. W. Balluffi,
Acta Metall. 21, 123 (1973).

YJ. Bass, Adv. Phys. 21, 431 (1972).
8J. K. Aboagye and R. J. Friauf, Phys. Rev. B ll, 1654
(1975); R. J. Friauf, J. Phys. (Paris) 38, 1077 (1977).

~SR. O. Simmons and R. W. Balluffi, Phys. Rev. 117, 52
(1960);119, 600 (1960);125, 862 (1962);129, 1533 (1963);



20 HIGH- TEMPERATURE SPECIFIC HEAT OF CRYSTALS

G. A. Sullivan and J. W. Weymouth, ibid. 136, A1141
(1964).

"M. Doyama and B. R. Hasiguti, Cryst. Lattice Defects
4, 139 (1973);M. J. Fluss, L. C. Smedskjaer, M. K.
Chason, D. G. Legnini, and R. W. Siegel, Phys. Bev.
8 17, 3444 (1978).

2 Ya. A. Kraftmakher and G. G. Sushakova, Fiz. Tverd.
Tela (Leningrad) 16, 138 (1974) [Sov. Phys. -Solid State
16, 82 (1974)];Phys. Status Solidi 53, K73 (1972);
Ya. A. Kraftmakher, in Proceedings of tlute 7th Sym-
posium on Thennophysical I'xoperties, edited by
A. Cezairliyan (ASME, Neer York, 1977), p. 160;
Ya. A. Kraftmakher, Fix. Tverd. Tela (Leningrad) 9,
1528 (1967) [Sov. Phys. -Solid State 9, 1197 (1967)];
14, 392 (1972) [14, 325 (1972)]; 13, 3454 (1971) [13,
2918 (1972)];ga. A. Kraftmakher and P. G. Strelkov,
ibid. 8, 1049 (1966}&bid. 8, 838 (1966)].
~C. B. Brooks and R. E. Bingham, J. Phys. Chem.
Solids 29, 1553 (1968); M. Sorai, J. Phys. Soc. Japan
25, 421 (1968);M. P. Tosi and F. G. Fumi, Phys. Bev.
131, 1458 (1963).

~3N. Metropolis, A. %. Rosenbluth, M. N. Rosenbluth,

A. H. Teller, and E. Teller, J. Chem. Phys. 21,
1087 (1953).
D. L. Price, Phys. Rev. A 4, 358 (1971).

5P. S. Y. Cheung, Mol. Phys. 33, 519 {1977).
6D. L. Price, K. S. Singwi, and M. P. Tosi, Phys.
Bev. 8 2, 2983 (1970).

27J. R. D. Copley and B. N. Brockhouse, Can. J. Phys.
51, 657 (1973).

~S. S. Cohen, M. L. Klein, M. S. Duesbery, and
R. Taylor, J. Phys. F 6, 337 (1976).
W. Ludwig, J. Phys. Chem. Solids 4, 283 (1958); A. A.
Maradudin, P. A. Flinn, and R. A. Coldwell-Horsfa11,
Ann. Phys. (N.Y.) 15, 337 (1961),"15, 360 (1961);
R. A. Covrley, Adv. Phys. 12, 421 (1963); R. C. Shukla
and E. R. Muller, Phys. Status Solidi 43, 413 (1971).
B. C. Shukla and B. Taylor, Phys. Bev. 8 9, 4116
{1974).

3~B. C. Shukla, J. Chem. Phys. 45, 4178 (1966).
B. C. Shukla and L. Wi.lk, Phys. Rev. B 10, 3660 (1974).
W, B. Streett, H. J. Bavechd, and B. D. Mountain,
J. Chem. Phys. 61, 1960 (1974).


