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A statistical-inechanical model for physical adsorption of a gas on a solid substrate is developed, based on
Van der Waals concept of dividing the interaction potential between a pair of molecules into a hard-sphere
repulsive part and an infinitely weak and long-range attractive part. The interaction between the substrate
and gas molecules is similarly modeled by a hard-wall repulsive potential with long-range attractive tail. For
a specific choice of the intermolecular and wall-molecule attractive terms, an explicit solution is obtained for
the model. This solution shows that three difFerent classes of adsorption isotherm are possible: in class I, the
adsorption is infinite in the limit that the gas pressure approaches the saturated vapor pressure, in class II
the adsorption remains finite in the limit, while in class III the adsorption becomes negative in the limit. If
the temperature of crossover between different classes is plotted as a function of c„/n, where &„and a are
respectively the minimum of the wall-molecule potential and the integrated strength of intermolecular
attractions, then the resulting curve has the same shape as the bulk phase coexistence curve. The model
shows agreement with experimental results for the adsorption of argon, krypton, and xenon on graphite, and
for argon adsorbed on xenon, as well as with recent computer-simulation results for argon adsorbed on
carbon dioxide.

I. INTRODUCTION

In this paper we examine a simple model of a gas
interacting with a solid substrate. Our main pur-
pose is to provide a statistical-mechanical inter-
pretation of the observation, recently made by
Dash'~' and by Peierls, ' that adsorbed films ex-
hibit three different classes of growth behavi;or.
In films of class I, the amount of adsorbed ma-
terial becomes infinite in the limit that the pres-
sure reaches the saturated vapor pressure; in
class-II films, the adsorption is finite in the lim-
it; in class III, no adsorption occurs at all. While
the work in Refs. j.-3 shows that the existence of
the three modes of growth can be deduced on ther-
modynamic grounds alone, the present approach
permits us to classify the behavior of a film di-
rectly from knowledge of a few parameters, name-
ly the temperature and the relative strengths of the
intermolecular and gas-substrate potentials. The
existence and location of crossovers between dif-
ferent classes follows directly. In particular, the
model predicts that a given material will change
from class-II behavior to either class I or class
III as the temperature is increased.

The model fluid examined here consists of mole-
cules interacting with each other through a pair
potential containing a hard-sphere repulsive core
as well as a very weak arid long-range attractive
tail. The fluid is bounded in one direction by a
planar impenetrable wall, which may also have a
long-range attractive interaction with the mole-
cules. Thermodynamically, it is well known that
the model leads to Van der Waals's equation of
state. 4 In applying the model. to an inhomogeneous

fluid, we follow here a formulation originally due
to Van Kampen' and subsequently used in a discus-
sion of the liquid-gas interface by Percus. ' The
present treatment generalizes some earlier work
of ours'" which dealt only with a hard repulsive
wall potential.

After reviewing the model in Sec. II, we describe
its solution in Sec. III. This is achieved analytical-
ly by adopting particular forms both for the at-
tractive tail of the pair potential and for the at-
tractive part of the mall-molecule potential. The
existence of three different modes of growth then
follows explicitly. It is further shown that the
"crossover curve, " i.e. , the relation between the
temperature at which a film changes classes and
the ratio of the wall-molecule potential minimum
to the integrated strength of intermolecular at-
tractions, has the same shape as the bulk phase
coexistence curve. This result may well have a
domain of validity beyond the context of the Van
der Waals model. While the use of alternative
forms for the interaction potentials would likely
change some details of the solution, the extreme
assumption of infinitely long-range attractions
precludes adopting forms for these potentials
which faithfully approximate realistic models of
interest (e.g. , Lennard-Zones). The present model
is therefore best viewed in the same light as Van
der Waals's model for bulk fluids, that is, pro-
viding a useful and qualitatively correct descrip-
tion of fluid condensation in the presence of sur-
faces; with suitable adjustment of the parameters
of the model, it may indeed prove to be quantita-
tively usable. '

One serious limitation at present to the Van der
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Waals model, in attempting to make quantitative
comparisons with experiment, is that it is re-
stricted to describing disordered fluid phases.
Thus it makes no allowance for the formation of
solidlike adsorbed layers with their accompanying
distinctively "stepped" adsorption isotherms. "

Application of the theory is also restricted by the
still rather limited extent of reliably known gas-
surface potential well. depths. For this reason,
we do not attempt to compare the model with two
recent studies, of ammonia' and ethylene" ad-
sorbed on graphite, which show clearly the cross-
over from class-II to class-I films with increasing
temperature. Here we confine ourselves to making
predictions concerning the adsorption of rare
gases: While the crossover regions for these gases
on bare graphite surfaces have not yet been mea-
sured, the model does accord with results for the
adsorption of argon on preadsorbed layers of
xenon, "as discussed in Sec. IV. A further test of
the model is provided by recent Monte Carlo
work, "simulating the adsorption of argon on car-
bon dioxide. For the same temperatures and po-
tentials used in Ref. 12, the Van der Waals model
predicts the formation of class-II films, in agree-
ment with the simulation results. These findings
contradict an earlier '"density-functional" the-
ory, '""which predicts class-I film formation in
this case. The results obtained here underline
the deficiencies of the density-functional and other
related theories, ""on which we comment furth-
er in Sec. V, where we also discuss possible ex-
tensions of the present treatment.

II. MOOEL

The Van der Waals model for nonuniform flu-
ids ' is based on the standard division of the inter-
molecular pair potential into two parts: a short-
range repulsive part, here taken to be the hard-
sphere interaction, and an attractive part. u),(r).
The latter is assumed to be very weak and long
ranged. These properties may be characterized
by introducing an inverse range parameter y, such
that

(u~r) = r"e(r~),
where v is the dimensionality. In the y-0 limit,
a molecule at position r sees these attractive
forces only via an effective external potential

dd.«(F)= Jd r ((F- ~)p«(F'), ~'
where p(r) is the average position-dependent num-
ber density and where fluctuations of the density
over the length scale y ' have been neglected. '
This result, that the attractive pair forces mani-

P+ o'P= Fg y

where tr„—= tr~(p) and

«-=—)(dr«, (r)= —jd"xd( (x ), (6)

where the second erluality in (6) follows using E(I.
(l). Erluation (5) leads to a generalized' Van der
Waals expression for the pressure P,

where p„ is the pressure due to hard spheres at
density p.

The "local thermodynamic" relation (4) is ob-
tained in the y-0 limit on assuming that the im-
posed potential (t)(r) varies only on the scale y '.
In the particular case (t)(x) = 0 everywhere, a non-
uniform density may still result due to separation
into coexisting phases. Equation (4) can be used
to show that in this instance the equation of state
('I) of the separate uniform phases must be sup-
plemented by the 1Vfa~ovell equal-area construc-
tion. ' The interfacial density profile between the
coexisting phases can also be described. '

When we turn to examine a fluid bounded by a.

wall, the latter representing for example a solid
substrate, it is certainly no longer true that (t)(r)

fest themselves only through an effective potential,
demonstrates the essential mean-field nature of
the Van der Waals model.

One is now left with determining the properties
of a hard-sphere fluid at total chemical potential
p, and in the presence of a total effective external
potential

y„,(r) = y(r)+ r rt „,(r),
where (t)(r) is any imposed potential that may be
present. Further analysis depends on the behavior
of (II)(r) S.uppose first that this function is only
slowly varying, i.e. , on the scale y '. If it is then
assumed that p(r) is only slowly varying, it fol-
lows from (I) and (2) that b, (t),«(r) varies on the
scale y ' arid hence that the total potentia. l g,«(r)
is only slowly varying. But in this ease it can be
shown, both asymptotically" and rigorously, "that
the properties of the nonuniform hard-sphere sys-
tem are determined in the y-0 limit by the local
balance of potentials:

~-y„,( )=~„(g )). (4)

Here ir„(p(r)) is the bulk chemical potential of
hard spheres evaluated at the local density p(r).
This result verifies the original assumption that
p(r) varies on the scale y '. Note that in a system
of uniform density p(r) = p [imposed potential (t)(r)
= 0], Eq. (4) becomes
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g(r) = p,(yz), z & 0. (9)

The potential pz(yz) may represent, for instance,
the attractive field of the substrate on the fluid
molecules.

Consistent with (8) and (9), the density profile
will vary only in the z direction, i.e. , p(r) = p(z}.
The abrupt change in p(r) at z = 0, however,
causes p(z) for z&0 to undergo short-range (com-
pared with y ') oscillations. These oscillations
can be accurately described by analytic models""
in the case of hard spheres at a hard wall, where
both (t)z(yz) and w, (r) are zero. Thus, generally
we must allow that'

p(z) = [~p,{z)+p,(yz) J e(z), (10)

where 8(z} is the unit step function. Here pz(yz)
contains those components of the density profile
which vary for z&0 on the scale y ', and ap-
proaches the asymptotic uniform value p as z -.
The remaining contributions to the density profile
are 1nciuded ill kp {z) w111cil ls asslllIled to decay
to zero as z-~ more rapidly than y '. When (10)
is used in Eq. (2) to evaluate the effective potential
h(t),«(r), the contribution due to b,p,(z) will be a
function proportional to y and so can be neglected
in the y-0 limit. Therefore, taking account of (1),
b(II),l,(r) = b,@„,{yz) is given by

r O.„(yr)= f r(gyr )O(y ~r —r'~)p ('yr')e(yz').

There remains the determination of the density
profile. p(z) of bard spheres in the total potential
(t) „I(r), subject to the boundary condition p(z) = 0
for z &0. It must also be verified that the solution
for p(z) is consistent with Eq. (10) in the y-0 lim-
it. This analysis can be carried out explicitly for
a one-dimensional system: The nature of the re-
sults leads us to suggest, without proof, that they
are true more generally. In that case, in the y-0
limit, the slowly varying part pz(yz) is again found
to be the solution to local thermodynamics:

and p(r) are everywhere slowly varying. Consider-
ing in particular a planar impenetrable wall lo-
cated (in three dimensions) in the z-y plane at z
= 0, with fluid occupying the region z&0, it is clear
that p(r) and y(r) must satisfy

y(r) —o(y '!
z&0.

p(r)=O

We shall here suppose that p(r) for z&0 varies
only on the scale y '. Further, taking this varia-
tion to be only in the z direction, we therefore set

p —It,«(yz) = p„{p,(yz)j,

y„,(yz) = y,(yz)+ &p„,(yz),

z&0. (12)

III. SOLUTION FOR p& (yz)

The Van der %aals model for the structure of a
fluid near a wall is given by the solution to Eqs.
(11) and (12). Here we solve these equations using
a particular choice for the imposed external po-
tential (t) z(yz) and for the attractive part @(yr) of
the pair potential. For the external potential, we
take

yz(yz) = —z„e "',
where the parameter & measures the well depth .

for wall-molecule interactions. The form of pair
potential that we choose actually depends on di-
mensionality. In one dimension, this is

(15a)

while in three dimensions we take

ae""
@(rr)= ——

4m yy ' (16b)

where c( is defined by Eq. (6). Then, regardless
of dimensionality, the effective potential in (11)
reduces to the one-dimensional integral

The short-range part b p,(z), on the other hand, is
given by'"

b.p,(z)= p,(z) -p, , z&0

p, =- pz(0),

where p,(z) is the density profile of hard spheres
at a hard wall, corresponding to an asymptotic
bulk density p, . Equations (11) and (12) show that
p~(yz) can be treated independently of p,(z). In
contrast, the latter depends crucially, via p„on
the behavior of pz(yz). In the following, however,
we shall only be concerned with obtaining pz(yz).

It is worth pointing out, as we have mentioned
in previous work, ' the profound difference between
the behavior of the microscopic. structure of the
bulk uniform fluid, as measured by the pair cor-
relation function, and the behavior of the surface
structure indicated by the density profile, in the
Van der Waals. or y-0 limit. In this limit, the
microscopic structure of the bulk fluid is simply
that of the reference fluid interacting by hard-
sphere forces alone. ' In contrast, as seen above,
the effect of the y-parametrized attractive inter-
molecular forces on the surface structure is cer-
tainly nonnegligible in the y -0 limit.
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where g =ye.
The convenience of this choice of the potentials

becomes evident on applying d'/dx' to Eq. (12).'
It is found that

d2
2 (p)) —p) = pg —p —Qpg(x) ~ (17)

where p~ denotes the local hard-sphere chemical
potential p,„{pz(x)). Integrating the last equation
with respect to the variable p„*, on noting the
thermodynamic relation

p,(x) =
Qp+

(18)
~&I

where g =p„{p~(x))is the local hard-sphere pres-
sure, and using Eqs. (5) and (7) for the asymptotic
(x-~) uniform fluid, we obtain

where

(19)
FIG. 1. Behavior of the function )i) (p g) in the presence

of coexisting gas and liquid phases.

P(x) =(V„*-P)'-2~(p„* -p) .

Applying also the "local" versions of (5) and (7),
)1)(x) can be expressed in the alternative form

(20a)

g(x) =(V* —V)'+ 2~ p( x)(V* —W)

—2~(p* —p), (20b)

with p* and p* denoting respectively the local val-
ues of the total chemical potential and pressure.
Finally, by regarding p~(x) and the local pres-
sure, and therefore )1)(x), as functions of the local
chemical potential p„, Eq. (19}yields an implicit
solution for the density profile

P~+(x) dp
+

)g«» +[)1)(p)))]' ' (21)

The choice of sign in the integrand depends on
whether p„* or (since the hard-sphere chemical po-
tential is a monotonically increasing function of
density) p~(x) is an increasing or decreasing func-
tion of x. This in turn depends on the boundary
conditions determining the value p„*(0}-=p„{p~(0)j,
which we shall examine shortly.

The behavior of the function g(p„*}has been dis-
cussed previously"' in the context of the interfacial
density profile between coexisting gas and liquid
phases, where no constraining wall is present. In
that situation, one desires a solution for p„*(x)
—= p„{p~(x)) which tends to the finite value p~
= p„(p~) as x-+ ~ (or x- —~), and to the finite val-
ue p„,=- p„(p,) as x-—~ (or x -+~), where p,
and p, are respectively the densities of the coexist-

ing gas and liquid phases. In view of (21), this re-
quires that g(p„*) have the form shown in Fig. 1,
with equal minima )1)=0 at p„and p„,. It is
readily seen from (20a) or (20b) that the vanishing
of )1)(pf) and its slope at p„and g„, corresponds
to the equality of the total chemical potentials and
pressures of the coexisting phases, i.e. ,

p(p, ) = N(pg)= p,
(22)

p(p, ) = p(p, ) = p.
Kith a wall present at &=0 to induce nonuni-

formity, it is no longer necessary that the asymp-
totic bulk density p at x-~ be taken equal to one
of the coexisting values p or p,. I et us consider
in particular the behavior of g(p„*) when p is
slightly less than p for the temperature in ques-
tion, corresponding to adsorption from a sub-
critical vapor. Typically in this case, P(p„) has
the form shown in Fig. 2, constructed using the
hard-sphere functions p„* and p„* discussed in the
following section. There is of course still a min-
imum/= Oat p„=-p„{p), giving in (21) the required
asymptotic solution p~(x) -p as x -~. A second
minimum )I;t&0.is also present at p~t—= p„{pt}; As
the bulk density p is decreased away from p, one
finds that this second minimum gradually disap-
pears, while as p is increased toward p„g(it/)
must approach the form shown in Fig. 1. Hence,
in the limit as p-p„we have Pt-0 and p~t- p, ,

It is now apparent that three different types of
behavior can be obtained in the limit p p, de-
pending on whether in this limit p„(0) & p,„, lt„
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finite as p p, implying class-II behavior. In con-
trast, when p»t& i»f(0), the path of integration in
(21) passes through the minimum gt. If this condi-
tion persists in the limit p- p, where p„-p»
and gt-o, the singularity at p»t is encountered be-
fore that at l»». Therefore x-~ as p~(x) -p„cor-
responding to condensation of an infinitely thick
film of liquid density on the wall. This leads to in-
finite coverage 8~ in the limit p- p, the signature
of class-I behavior.

The boundary conditions fixing the value of p»*(0)
are easily obtained. By differentiating once. with
respect to x at x= 0, we find from (14) and (16)

(24)

Hence, taking the derivative of Eq. (12}at x= 0
yieMs

= p»*(0) —p, —2&
dg «„0

C

(25)

FIG. 2. Behavior of g {p„*){solid line) when the asymp-
totic density p is slightly less than the value p~ for a sat-
urated vapor. Dashed curves show the function I{p I, ),
Kq. (26), for three values of &~, increasing from leC
to right, corresponding to incipient formation of class-
III, -II, and -I films.

where pz(0) = —s„ follows from (14). This rela-
tion, together with (19) at x=0, provides simul-
taneous equations for determining p»*(0). Equiva-
lently, p»*(0) is given by the intersection of the
graph of P(p»~) with that of the function

&p„*(0)&)»»~, or l»»~& p»*(0). In the first case, the
density profile determined by (21) must increase
monotonically (+ sign in integrand) from p~(0) at
the origin to the bulk value p as x-~. Since p~(x)
& p for all x, the contribution of p~(x) to the cov-
erage

dx pg x —p
0

is in this case a negative quantity and remains fi-
nite in the limit p- p .~ The resulting adsorption
isotherms conform to class-III behavior. ' In
practice, negative coverage cannot be measured
by conventional techniques, "so only the absence
of positively adsorbed amounts is observed. In
principle the coverage also has a contribution
from the short-range part of the density profile,
cf. (10) and (13), which for hard-sphere models is
intrinsically positive. "'" In the strict y -0 limit,
however, the short-range contribution to the cov-
erage is negligible compared with 8~.

When p„*(0) is fixed by the boundary conditions so
that p»& i»»*(0}& l»»t, the density profile obtained
from (21) decreases monotonically for all x. As in
the class-III case discussed above, the integrand
of (21) becomes singular only as i»f —p». In other
words, x- only as the upper limit of integration
in (21), p„*(x), approaches the bulk value i»». In
this case, the coverage 8~ is positive and remains

(25)

as illustrated in Fig. 2 for three different values
of E . It is clear from the last equation that the
solution for pf(0) so obtained increases as e in-
creases, as one expects intuitively, so that the be-
havior of the solution passes in order through
classes III, II, and I with increasing & . Note
that, as seen in Fig. 2, there can be two intersec-
tions of f(pf) with g(p»). However, (dp»/dx)„, is
required to be positive when pf(0) & p», and nega-
tive when p»*(0) & g». Thus, in view of (25), only
the larger solution for p, f(0) is allowed when the
intersections occur at values smaller than p,„,
while the smaller solution must be taken when the
intersections occur at values greater than p, „.

The particular class in which a given substrate-
fluid system falls is thus determined by the value
of p„*(0) relative to the values p, » and p»t at the min-
ima of g, in the limit p-p . In this limit, where
p.„-p,» and p.„-p,~, class-I films are obta, ined if
pf(0)& p», class-II films if p» & p»(0) &p» „and
class-III films if pf(0) &p», . If, for a given sys-
tem, the value p,»*(0) corresponds exactly to one of
the minima p,„or p.„,in the limit p- p, then
there will be incipient crossover between two dif-
ferent classes. But in these circumstances,
g(p»*(0))=0, and therefore from (25)

pf(0) —p, —2e =0,
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from which the conditions for crossover are easily
found. Let us rewrite this equation, using (5), as

p*(0) —p+ [up~(0) —2z ] =0 (28)

where p*(0) —= p, (p~(0)j. Both at the crossover be-
tween classes III and II and, in view of the equality
of chemical potentials in (22), at the crossover be-
tween classes II and I, p*(0)= p, so that the last
equation gives

!' p, (o)

=
& p (class III—class II) (29)

~, p, (class II-class I).
From this result, the temperature at which a giv-
en system changes classes can be obtained. From
Eq. (6), the parameter n is equal to the integrated
strength of intermolecular attractions and is thus
propor ioo ortional to the familiar Van der Waals a pa-
rameter. Alternatively, as shown in the following
section, n can be taken proportional to the well
depth e in a reaHstic model (e g , L. e.nnard-Jones)
for pair interactions between the molecules. The
variation of p, and p, with temperature is of course
the coexistence curve: This will be roughly of
universal character if plotted in terms of the re-
duced temperature T* = kT/e, whe—re k is Boltz-
mann's constant. Thus we have derived a cross-
over curve, having the same shape as the coex-
istence curve and of approximately universal na-
ture, for the crossover temperature as a function
of the ratio e /c. This is shown schematically in

Fig. 3 and justifies our statement at the beginning
th t a given system characterized by ~ /e,~ /& will

1 sat some point change from class II to either c ass
I or class III with increase in temperature.

We remark in passing that analogous results are
found in the case of adsorption from a degage fluid,
that is, where the asymptotic density p is greater
th For values of p close to p„ the behavioran p, .

2of P(p„*) is similar to that shown earlier in Fig.
having two minima g= 0 at p„and p 0 a~&0 at ~ where
now p~&g . In the limit p- p„ the minimum g ap-h h'

proaches zero and ph approaches the value ph so
that we can again speak of three classes of behav-
ior. There are, however, some major differences
from the case of adsorption from a vapor, if we
retain our earlier classification, namely class I
if p~ (0))p„„class II if p„&p,„*(0)& p„„and
class III if p„*(0)& p„. Now both classes III and
II give negative coverage in the l.imit p- p„with
e~ for class III becoming infinitely negative in
this limit, while 8~ for class I is positive and re-
mains finite in the limit. We are not aware of any
experimental studies with which to check this pic-
ture.

"I
I

I

1

I

I
I

I

I

FIG. 3. Schematic "crossover curve" given by the
present model (solid line). Dashed line shows conjec-
tured modification, Eq. (35), of the boundary between
classes II and I below the reduced triple-point tempera-
ture T, =kT, /e .

IV. EXAMPLES

which results in the values

p, o = 0.249,

u/kT, o'= ll.102. (32)

In this section we use Eq. (29) to estimate cross-
over tempera, tures for rare gases adsorbed on a
number of substrates. To do so requires evalua-
tion of u as well as knowledge of the coexistence
curve. Both are achi. eved here by adopting the ac-
curate Carnahan-Starling" expression for the hard-
sphere pressure,

Pg(P) = PkT(I+ rl+ n' —71')/(I n)', — (30)

where r1
—= mpa'/6 with o the hard-sphere diameter.

Using the relation sp„/Bp= pbp„/Bp, the configura-
tional part of the chemical potential is found to be

p„(p) =kT[ln(rl)+ q(8 9q+3@')/(I q)'] . (3l)

For specified ~, use of these relations in the gen-
eralized4 Van der Waals expressions (5) and (7) en-
ables us, on applying the equality of pressures and
chemical potentials Eq. (22), to numerically deter
mine the coexistence curve for the model Quid.
The critical density p, and temperature T, can also
be obtained by solving

, =Oat p, and T, ,
BP 8P
Bp ep2
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To fit the model coexistence curve to experiment,
we proceed here, arbitrarily but simply, by using
the second relation in (32) to determine values for
n/v' from given values for the critical tempera-
ture. Also, substituting for o. from (32) into (29)
and dividing through by e, the latter equation can
be written

e /e= 5.551T,*p„o', (33)

where T,*=kT, /z, and p„= p, or p for crossover
between classes I and II or between classes II and
III, respectively. Note that if the coexistence
curve were indeed universal, T,* would be the
same for all adsorbates. Thus variation in T,* in-
dicates the degree of nonuniversality.

The procedure now is to use (33) to estimate p„o'
from knowledge of e, c, and T, for a given fluid/
substrate pair. From the coexistence curve for
the fluid constructed as described above, the cor-
responding crossover temperature can be read off.
Clearly, if the predicted value of p„o' is greater
than p,o', the transition will be between classes II
and I; otherwise, it will be between classes II and
QI.

This method will. be applied to the gases argon,
krypton, and xenon adsorbed on graphite. The pa-
rameter E is taken equal to the minimum in the
gas-graphite potential. , for which reliable esti-
mates are available, ""while E is identified with
the minimum in the standard Lennard-Jones (6-12)
model for the pair potential of the gas. Adsorption
isotherms of Ar on graphite which has been coated
with several layers of Xe have also been re-
ported, " showing a class-II-class-I transition.
We approximate this system by the adsorption of
Ar on pure solid Xe. Again, the relevant gas-sub-
strate potential parameters are available. " Fin-
ally, we consider a model for Ar adsorbed on solid
carbon dioxide, which has recently been studied
by Monte Carlo methods. " We make use of the
same potential parameters E, e„as this study and

note that the appropriate critical temperature
should not be taken as the experimental value for
Ar but rather the value for a model Lennard-Jones
fluid, 7,*=1.32."'

The parameters used and the resulting estimates
for the crossover temperatures T„are given in
Table I."~" Immediately it is noted that the pre-
dicted T„ for all but the last adsorbate. are below
the corresponding triple-point temperatures T,
and that the crossover densities p,o' [equal to the
density in contact with the surface, cf. (29)] for
the first three adsorbates 'are well into the normal
solid regime. The existence of solid phases ex-
hibiting a triple point is of course not included in
our model. To encompass such features requires
an adequate theory of crystallization, at present
unavailable. Thus the interpretation of these re-
sults is somewhat uncertain. Nonetheless, the
predicted crossover temperatures for rare gases
on graphite are consistent with the fact that these
systems exhibit class-I behavior at the tempera-
tures used in existing measurements; T= 7'?' for
Ar (Ref. 30) and Kr (Ref. 31), T= 109' for Xe (Ref.
31), all of which are still below the corresponding
triple points. The predicted crossover tempera-
ture for Ar on Xe, T„=75', agrees closely with
the experimental results, "which indicate a tran-
sition between 7'3' and 81 . For the latter system,
some adsorption isotherms which span the theo-
retical crossover region are shown in Fig. . 4,
These have been calculated using (19) and (23),
from which 8~ can be expressed as

(34)

requiring a single numerical quadrature. The re-
sulting isotherms in Fig. 4 exhibit qualitatively
the same form as found experimentally. "

The ambiguity due to exclusion of solid phases
from the present model does not apply to the final

TABLE I. Predicted crossover temperatures T„ for rare gases on several substrates.

E/k ('K) E~/k ('K) T~ ('K) C Tt ~'K) N/ ~so' Tx &'K)

Xe-graphite
Kr-graphite
Ar-graphite
Ar-graphite
Ar-CO2

221 a

171
120
120
120

1919"
1460
1107 '

730'
334

290'
209
151
151
158'

1.31
1.22
1.26
1.26
1.32'

161
116
84
84

8.68 1.19
8.54 1.26
9.23 1.32
6.08 0.87
2.78 0.38

58
3'2

18
75

153

~Reference 29.
Reference 22, p. 174.

'Reference 25, p. 45.
dReference 13.
e Reference 28.
~ Reference 26.
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e„

The examples discussed in the last section are
certainly in accord with this description, although
the picture is clouded by the model's inability to
account for solid-fluid transitions. We can specu-
late, nonetheless, on the possible modifications
of the crossover equation (29) when such transi-
tions are included. Below the triple point, the
only stable bulk phases are gas and solid, so we
might expect that the condition for crossover be-
tween classes II and I in (29) should be replaced by

(35)

0.2 0.6 0.8 l.o

FIG. 4. Calculated adsorption isotherms using the
Ar-Xe parameters of Table I. From top to bottom, T*
= 0.65 (class I), 0.60, and 0.57. The axis is labeled by
the ratio of the pressure to the saturated vapor pressure
po for each temperature.

V. DISCUSSION

In this paper we have developed a model for non-
uniform fluids in the presence of solid substrates,
based on Van der Waals's original concept of di-
viding the interaction potential between a pair of
molecules into a short-range repulsive part and
a Long-range attractive part. Here this concept
was generalized to treat the interaction between
the fluid molecules and the substrate. The Van
der Waals model predicts clearly the existence of
three classes of film-growth behavior, with a
crossover curve between different classes that is
simply related to the phase coexistence curve.

system in Table I. Indeed, due to the weak sur-
face-molecule attractions in this case, manifest
in the relatively small value of a /&, the predicted
class-II-class-I transition does not occur until the
temperature is very close to the critical point.
This 'is consistent with the results of Monte Carlo
simulations of this system, "which show no evi-
dence of unlimited film growth at reduced tempera-
tures T*=0.9 and T*=1.1, implying the formation
of class-II films at these temperatures.

where T, is the triple-point temperature and p,
is the density of sol. id in equilibrium with vapor at
temperature T„. This would then lead to the mod-
ification of the crossover curve shown by the
dashed line in Fig. 3. In particular, there would
be a range of values e„/e over which the cross-
over temperature remains constant at the value
T„which could explain why a number of sub-
stances"' appear to change classes at precisely
this temperature. For the present, however, this
remains a conjecture.

Besides its present limitation to describing dis-
ordered fluid phases, the model is strictly applic-
able only in the unrealistic limit that the attractive
forces are infinitely slowly varying. However, the
results may be expected to have at least the same
qualitative validity as Van der Waals's equation of
state for bulk fluids. In addition, there are avail-
able' several methods for systematically extending
the model to higher order in the inverse range pa-
rameter y. Probably the most significant feature
that will emerge in such an extension is the cou-
pling of the short-range and long-range parts of
the density profile: As noted at the end of Sec. II,
in the present model the Long-range part is inde-
pendent of short-range correlations. We antici-
pate that this coupling will be necessary to account
for such effects as phase transitions in the mono-
layer regime. " We defer this extension to later
work.

An alternative to formal y-expansion techniques
for imProving on the basic Van der Waals model
would make use of integral-equation methods sim-
ilar to those we have discussed elsewhere. ' These
methods are analogous to theories (e.g. , Percus-
Yevick, hypernetted chain) which have been suc-
cessful in describing the bulk structure of liquids.
An often held tenet when this approach is applied
to bulk liquids, in seeking successively better ap-
proximations for the microscopic structure, is
that the rapidly varying repulsive forces dominate
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P&(x) = u(—pl, (x)j, (36)

using the notation of this paper. Comparing this
equation with (13), one sees that (36) results es-
sentially on making a local approximation to the
effective potential h(b, «(x). In applying (36), one
faces the problem of evaluating the total chemical
potential p, (p~(x)J at local densities p~(x) which
may occur in the bulk two-phase regions. (Still
greater difficulties are encountered in the com-

the structure. In view of our remarks at the end of
Sec. D, this is no longer generally true when ap-
plied to the description of surface structure. The
profound effect of attractive forces was reflected
in our earlier work' by the large disparity between
the results of different integral-equation approxi-
mations, none of which, it was noted, agree with
the local thermodynamic relation (12) in the ) -0
limit. However, it is possible to incorporate local
thermodynamics in the integral-equation approach,
and hence recover Van der Waals's model in the
) -0 limit, by use of an "effective density" tech-
nique. " Here the full density profile is deter
mined by an equation similar to (12), but where
the local hard-sphere chemical potential is eval-
uated at a local effective density which is some
weighted average of p(s) including the effects of
short-range correlations. The details of this ap-
proach will be published later.

Finally, we cominent on the "density-functional"
theory of Ebner and Saam." It was pointed out
in Ref. 12 that Monte Carlo simulations of the
Ar-CO, system at reduced temperatures T*=0.9
and 1.1 show no evidence of unlimited film growth
(i.e. , class-I behavior), contradicting the density-
functional theory, which predicts such growth.
Now the latter theory, as well as several others
proposed recently, "'"attempt in various ways to
incorporate local thermodynamics. It is instruc-
tive to consider the y-0 limit of these theories,
where it is found that the long-range density pro-
file is determined by

piete versions of these theories, which require
evaluating bulk pair correlation functions at local
densities which may lie in unphysical regions of
the corresponding bulk phase diagram. ) If iso-
therms of p{p~(x)) are given by the usual Maxwell
construction, i.e. , with a horizontal line in the
two-phase region, then the implications of (36) are
clear: The density profile p~(x) undergoes a jump
discontinuity from p, to p at the position z satis-
fying

V -(b&(x') = p(p, ), (37)

where p(p ) = p(p, ) is the common chemical poten-
tial of coexisting gas and liquid phases. As the
density of the asymptotic uniform vapor approaches
p, so that p- p(p ), the position xt must approach
infinity, signifying unl. imited growth of a liquid
film on the surface. This process occurs for any
long-range attractive potential (b~(x), no matter
how weak, with the consequence that (36) alnrays
predicts class-I film formation. While higher-
order terms in the density-functional theories will
serve to smooth out the discontinuity in the den-
sity profiie at xt, they will not mitigate the basic
fault of these theories, namely that the effects of
'attractive pair interactions are included from the
outset in local thermodynamic functions such as
p(p~(x)J. In short, these theories do not follow
Van der Waals' in clearly distinguishing the roles
of short-range repulsive potentials and long-range
attractive interactions.
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