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We present the results of an experimental and theoretical study of the thermal and thermoelectric

properties of pure potassium for zero magnetic field and for fields up to 4.5 T, at temperatures of 1.5—4.2
K. The approximate quadratic dependence on field of the transverse thermal magnetoresistivity is found to
be the result of a high lattice conductivity. It is shown that phonon-electron scatt'ering cannot be completely .

responsible, for limiting the lattice conductivity and it is suggested that phonon-dislocation scattering plays
an essential role at low temperatures. High-field semiclassical theory completely accounts for the observed

field variations of the thermal magnetoresistivities (both transverse and Righi-Leduc) once the presence of
the large lattice thermal conductivity is accepted. The study of the high-field Nernst-Ettingshausen
coefficient has augmented the information gained from the lattice thermal conductivity. The analysis of this

coefficient shows unambiguously that (i) the phonon-drag contribution plays a central role, (ii) the phonon

drag is significantly quenched pointing to at least one additional important scattering process for phonons
other than phonon-electron, (iii) the strength of the additional scattering required to limit the lattice
conductivity to the experimental values provides the observed quenching, (iv) phonon-electron umklapp

processes begin to become significant at about 2 K. Experimental results and their analysis are also

presented on the thermopower of potassium, a property which provides similar information to the Nernst-

Ettingshausen coefficient but not unambiguously.

I. INTRODUCTION

The present work was undertaken as part of a
systematic investigation of the magnetotransport
properties of potassium. There are many published
papers on the electrical magnetoresistivities (that
is, the transverse and longitudinal magnetoresist-
ivities and the Hall resistivity), but relatively few
on the thermal and thermoelectric properties; for
this reason we have concentrated on these latter.
In this Introduction we shall attempt to summarize
the present experimental and theoretical situation
with regard to the thermal and thermoelectric co-
efficients; we begin with the former.

A few years ago, it was shown that an estimate
of the lattice thermal conductivity of uncompensa-
ted pure metals could be obtained from their mag-
netothermal resistivities. ' ' The principle is very
simple and we shall outline it since it has a bearing
on our present measurements and discussion. As
usual, let us define the transport tensors according
to

I =vE+e" VT,

(lb)

where J and U represent the electrical and thermal
current densities, E is the electric field, 7'T the
temperature gradient, and o, 7", m" and ~" are

I

the various transport tensors. Let us restrict the
outline to a cubic metal with a simple Fermi sur-
face that does not intersect the zone boundaries
(typified by potassium'). We assume that the total
thermal conductivity ~" is a linear sum of that due
to the electrons ~' and that due to the lattice ~'.

If the crystal is cubic, ~' is simply a scalar
whatever the direction of the magnetic field B (i.e.,
the tensor is diagonal and all nonzero components
have the same value A.'). We further assume that
~' takes the simple form

0

0

0

which would certainly be true if B were along a
crystal axis of high symmetry (threefold or more)
or if the sample was a polycrystal with small cry-
stallites; however, for such a simple metal as
potassium, we expect that ~' would not be sensi-
tive to the direction of B relative to the crystal
axes. (Throughout this paper, we shall assume
that all the tensors have such a form. )

At high B (i.e. , v~»1, which typically means
B~ 0.1 T for reasonably good samples of K), it
has been shown4 that the components of ~' should
take the limiting form
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~„'„=n(T)/B',

&„', =L, Tne/B,

(2a)

(2b)

where o.(T) is a function of T but not B, L, is the
Sommerfeld value of the Lorenz number, T the
temperature, n the number of electrons per unit
volume, and e the electronic charge. The mea-
sured quantities are, in fact, the components of
the thermal resistivity tensor yz which to high
accuracy are obtained from y = ~" '. Thus the
thermal magnetoresistivity is given by

n(T)/B'+ ~'
[n(T)/B'+ &'] '+ (L,Tne/B)'

i.e., not too high a field that X'- L, T ~en~/B, but

high enough so that ~7»1 is satisfied. In this
range it is a good approximation to write

y,„=n(T)/(L, Tne)'+ &' (B/L, Tne)' .
The first term depends only on P and corre-

sponds to the (field-independent) resistivity when
&» =0, and the second term, which is quadratic in
B, yields ~». The principle was applied to K and
A» was deduced. ' However the ~» so obtained had
a much higher magnitude than theoretically pre-
dicted, and also had an unusual temperature de-
pendence. Other independent data" on y„„were in

good agreement but the explanation of the B' com-
ponent in terms of ~» was received with skepticism
in view of the unexpected behavior of the derived

More recently, Tausch and Newrock' extended
the measurement of the thermal magnetoresist-
ivities of K to very high fields. Their results
showed that y„„ increases as B' at least up to
fields of 9-10 T, whereas Eq. (3) suggests that
deviations from B' should become appreciable
when &' -I,, Tn~e~/B; the early data' on &' indi-
cate that this equality is satisfied in the region of
10 T. Tausch and Newrock' concluded that a large
fraction of the B term in y„„must originate in
some way other than through ~» as outlined here,
but gave no specific suggestions. Nevertheless
they attempted to obtain X» from their results and

deduced values smaller by a factor of about 15
than those obtained earlier. However it has been
shown' that if one evaluates X„'„=y /(y' + y,'„)
from their data, then the value obtained is about
50%%uo smaller than I,Tn~ e~ /B by 9 T. This dis-
agreement with the high-field semiclassical pre-
diction of the Lifshitz-Azbel'-Kaganov (LAK)

It seems to be true in general that there is a range
of B for which

(L, Tn~ e~ /B)'» (o/B'+ &')',

e' = v'ks TN(p. )/3B=yT/B, (4)

where ke is Boltzmann's constant, N(p) the
electronic density of states at the chemical poten-
tial p. , and yT the low-temperature electronic
specific heat. It has been shown" that N(p, ) is ex-
actly the same as that occurring in the electronic
specific heat and is hence available, in the litera-
ture, to high accuracy. This means that any mea-
sured difference between the measured value e."
and yT/B must be due to phonon drag, say e~ .

The coefficient ~ has been investigated for
other metals, but potassium should be a most in-

theory4 is by far the worse ever reported for an
off-diagonal term. Data on other uncompensated
metals (Al and In) show no such discrepancies, '
though it is true that the available fields were
much lower in those experiments.

In view of the unexpected results of Tausch and
Newrock, ' and the generally unsatisfactory situa-
tion as regards the inQuence of ~» on the thermo-
magnetic coefficients, we decided to remeasure
the thermal resistivities of potassium to high
fields; this paper presents our new results. Al-
though our maximum field (-4.5 T) is lower than
that of Tausch and Newrock (- 9 T), we see that
their results already. indicate a reduction of

~
A.„', ~

of 15-20%%uo below the theoretical value by this
field.

We shall show, contrary to the results of Tausch
and Newrock, that the anomalous thermomagnetic
behavior of potassium, in particular, the approxi-
mate B' dependence of y„„, can be completely
understood in terms of the effects of ~», and fur-
ther that &„'„has (within the 2%%uo experimental er-
ror) the predicted value up to 4.5 T, our highest
field. The values of ~» that we obtain are in good
agreement with the earlier experimental esti-
mates, ' but are still much higher than theory had
led us to expect. " We believe that this large val-
ue of ~» arises from a relatively small fraction
of the phonons, those almost purely transverse
phonons with (sufficiently small) wave vectors
near the symmetry planes which are scattered
only very weakly by the nearly-free electrons in
potassium.

In addition to the above results, we believed
that it would be equally important to investigate
the thermoelectric properties of potassium. In
the last few years, the study of the adiabatic
Nernst-Ettingshausen coefficient P' has proved
very rewarding; this coefficient yields the off-
diagonal thermoelectric component q,"„. The most
interesting feature about j,"„ is that, in the high-
field limit, the diffusion component, say p,„, be-
comes independent of electronic scattering and has
the limiting value"
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teresting case in that the normal and umklapp elec-
tron —phonon scattering processes can be clearly
distinguished for such a simple Fermi surface;
in this case the two types of scattering give rise
to contributions to e' of opposite signs. Thus a
study of e' can be used to positively identify the
onset of the umklapp processes. A similar result
could, in principle, be achieved from a study of
the zero-field thermopower, but in this case there
are possibly added complications due to higher-
order scattering effects"' "contributing to the
diffusion term; thus there remains some doubt
concerning the precise separation of the phonon
drag from the diffusion term. It should be clearly
understood that c" contains no such contributions
in the high-field limit (i.e., the limit that we are
considering here).

The clear separation of ~' allows one to provide
a definitive test of the current theory of phonon
drag. We shall show that theory and experiment
are in very good agreement for potassium. We
then show that the zero-field thermopower can be
understood as arising from a calculable phonon-
drag contribution and an additive contribution lin-
ear in T (this latter, however, is difficult to cal-
culate and cannot be obtained from an independent
experiment).

We have presented some preliminary findings
on the thermal magnetoresistivities for one of the
samples, ' and given a much abbreviated outline of
the comparison between the calculated and exper-
imental results in the case of the ~' and e" ."

The paper proceeds in Sec. II with an outline of
our experimental techniques. This is followed by
the presentation of the results (Sec. III) and the
preliminary analysis required to obtain the quanti-
ties of interest. Section IV deals with our theore-
tical approach and Sec. V is devoted to a compari-
son of the experimental and theoretical results.
Finally in Sec. VI we summarize our findings.

II. EXPERIMENTAL TECHNIQUES

Results were obtained on three polycrystalline
samples of potassium (labeled samples I—3).
All preparation and mounting was carried out
under cleaned argon in a glove box. The samples
were cast into molds made from polyethylene and

polypropylene using potassium obtained from the
MSA Corporation. "After casting, samples land 2

were slow cooled by leavingthe molds at room tem-
perature, but sample P was fast cooled by dipping
one end of the mold in I.iquid nitrogen. The cry-
stallites were never visible, even after storing
under oil, so we are unable to give an estimate of
their size. The samples were bent to the shape
shown in Fig. 1 and mounted in a frame similar
to that used previously, "but adapted for use in a

&cm

FIG. 1. Form of the sampLes when mounted in the
cryostat. Scale is approximate.

superconducting solenoid rather than an electro-
magnet. Small copper blocks holding the carbon
thermometers and potential leads were clamped to '

the limbs by means of plates and screws. The
blocks were supported by the nylon rods, which
were an integral part of the sample holder. " The
vacuum can containing the sample had an inner
diameter of 51 mm, allowing us to use relatively
long samples, the distance between the bends being
38 mm. The samples were 5 mm wide, 1.5 mm
thick, and the distance between the outermost pair
of limbs was 19 mm. The width of the limbs was
about 1.3 mm.

By using limbs we are attempting to accurately
control the geometry of the probes (the probes
being the limbs plus the thermometers and poten-
tial wires) and avoid irreproducible effects caused
by the probes interfering with the current distribu-
tion. There will be an error in assuming that the
length-to-area ratio (required to evaluate the
transverse electrical and thermal resistivities
p„„and y„„) is that appropriate to the body of the
sample, i.e., ignoring the limbs. We have made
an experimental- estimate of this error by taking
a brass sample (actually the original template for
the mold) and measuring its resistance with and
without the center limbs. We find that the resist-
ance rises (0.75 a 0.2)% when the limbs are re-
moved. We realize that the correction in high
magnetic fields (where

~ a„,~

» a„,) may not be
exactly the same, but we assume it is similar.
The presence of the limbs is irrelevarit to the data
reduction on the Hall and Righi -Leduc resistivi-
ties; i.e., only an accurate measure of the sample
thickness is required.

We have investigated the possibility that "end ef-
fects" significantly influence our results, "and
conclude that they do not (Appendix).

The sample mounting was carried out inside the
glove box as was the sealing and evacuating of the
sample vacuum can. The assembly was then trans-
ferred to the cryostat and allowed to stand at
room temperature for about 24 h under high vac-
uum to anneal out any strains in the potassium
caused by mounting. It was then cooled to liquid-
nitrogen temperatures over a period of many hours
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and subsequently to liquid-helium temperatures.
In the case of samples 1 and 2, the cryostat was
never allowed to warm significantly above 77 K
thoughout the whole series of runs. The last sam-
ple had to be warmed to room temperature twice
to correct superfluid-'He leaks; this led to slight
changes in some of the experimental quantities
and these will be discussed further in Sec. III.

The thermometers were ~L -W'220-0 Allen Brad-
ley carbon resistors. They were calibrated
against temperature using 4He vapor pressure
during every run" and the experimental data were
corrected for their magnetic field dependence. We
expect temperatures to be accurate to 0.1% and
temperature differences to 0.6%. The power levels
in each resistor were about 10 nW at 4 K, dropping
to 2 nW at 1.5 K. The vapor pressure of the 4He

bath was stabilized using an electronic regulator, "
the temperature being maintained to an accuracy
of better than 1 mK.

The major experimental difficulty was in the
measurement of the small Nernst-Ettingshausen
potential differences (- 1-15 nV). We made use
of the superconducting chopper amplifier develop-
ed by Edwards. " Initially the choppers were en-
closed in a capillary tube using vacuum grease, as
in the originals, but after prolonged use these
developed excessive noise and drift. For the last
sample we used a chopper embedded in Styeast"
2850 FT; this did not show any degradation in
time and was far more robust. Although the chop-
pers had a zero-field resolution of about 10 "V
(with a 1-sec rise time), the unavoidable loops
formed by the sample and potential leads, com-
bined with residual vibrations and field fluctua-
tions, led to induced emf's of the order of a few
nV at high magnetic fields. We reduced this
problem by stabilizing the gain of the amplifier"
at an accurately known value (™0.1/0) by the use
of heavy negative feedback and averaging its out-
put for times of 60-100 sec. The residual noise
was rather variable from run to run and ranged
from 10 "V to perhaps an order of magnitude
worse than this.

The magnetic field was produced by a solenoid
which has no observable hysteresis (& 0.1/p) above
0.5 T. The coil factor (i.e. , the ratio of field to
current) is known to an accuracy of & 0.5%.

All the sample dimensions are corrected for
thermal expansion. '4 It is worth pointing out that,
although the sample and sample holder are match-
ed for their thermal length contractions between
room temperature and 4 K, it is unlikely that they
are accurately matched at all intermediate tem-
peratures. Thus it seems inevitable that some
straining of the sample takes place during each
cooldown and warmup.

III. RESULTS AND ANALYSIS-

As we have already mentioned, the main aim of
this work was to investigate the thermomagnetic
and thermoelectric coefficients of K. For reasons
that will become clear as we proceed, we have
also obtained a somewhat limited amount of data
on the transverse electrical resistivity p„„and the
Hall resistivity p . These data are taken under
adiabatic conditions but it will be an excellent ap-
proximation' to write p = o '; this approximation is
equivalent to that of y = ~" '.

The results are most useful when available as
complete sets for particular samples; we were
able to obtain such sets for samples 2 and 3. The
data on sample 1 are incomplete in that we were
unable to obtain accurate results on p„„. (though
this is not essential to our analysis) and we have
no data whatever on the thermopower. We have
limited our investigation to three samples because
of the extensive time required to complete these
measurements. It should be mentioned that sam-
ples 1 and 2 were made from the same batch of
potassium, while sample 3 originated from a
different batch.

It is useful at this point to say a few words about
the sources of error in the coefficients we obtain,
although we shall discuss each case as it arises in
the subsequent presentation. As usual, the main
source of error in many of the derived quantities
is the measurement of the sample dimensions. We
estimate, mainly from our previous experience
with potassium, that there will probably be errors
in the thickness of about 2%. The length should be
accurate to 0.5/o, but the width is known only to
about 1%, mainly because of slight irregularities
from a perfect rectangular shape. Generally
speaking, these form factors will not affect the
field or temperature variation of the primary
measured quantities and the data can be internally
consistent to much better than that quoted. Such
is the case for y„„and y, which have total er-
rors (including those in T and b,T referred to
earlier) of perhaps 4/o and 2~%, respectively, but
for a single sample the scatter of the data will
only reflect the thermometer calibrations and will
be typically - 0.5% for each.

Qn the other hand, the derived quantities, for
example those obtained by inverting y, depend on
the dimensions in a way that is a function of field
and temperature; this can lead to systematic er-
rors in A,„„and &„, of 0.4%, as the field is varied
from its minimum to maximum value. It is clear
that the details are more conveniently discussed
at the same time as the data are presented.

The residual resistivity ratios p», /p, for sam-
ples 1-3 are 6200, 4400, and 6400; all + 200.
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FIG. 2. Thermal magnetoresistivity y» of sample 1,
shown as a function of B, for three different tempera-
tures. Samples 2 and 3 give very similar results. No-
tice that the lines through the data are not straight.

The transverse electrical resistivity p„„does
not significantly affect the following analysis or
conclusions, but it is useful to present the data
for the sake of completeness. Measurements on
samples 2 and 3 showed p„„ to be linear in mag-
netic field (the usual observati'on) and the depend-
ence can be characterized by Kohler slopes" of
S=(0.94 + 0.07)x10 ' (sample 2) and (1.15 + 0.06)
x 10 ' (sample 3). We have only one value of
p„„(B,T) for sample 1 (taken at 3.25 T and 4.2 K)
other than p„„(0,4.2 K), and on the assumption that

p„„(B)is again linear we find S= (2.5 + 0.5) x 10 '
for this sample.

Figures 2 and 3 give a representative set of our
data on the transverse thermal magnetoresistivity
y„„, and the Righi-Leduc resistivity y (presented
in the form y I.,T/B). The data are very similar
for all three samples. We see that y» has the
same general features as observed in previous
work, ' ' ' and can be accurately represented
(-0.2%%up) by expressions of the form

y» =ao+a, B+a,B'.
However, we have not made use of this equation

3.62K

E
C) 42-

38O

B (Tt

FIG. 3. Righi-Leduc resistivity y» of sample 2 {mul-
tiplied by LOT/B) as a function of B at three different
temperatures. Samples 1 and 3 give similar results.
Dashed line labeled —{ne) is the theoretical value of
—y»(LOT/B) if the lattice conductivity is zero.

in the analysis and we shall not reproduce the co-
efficients here.

It will be noted from Fig. 3 that
~ y )L, T/B drops

rather rapidly as B is increased, contrary to pre-
vious results. ' In the absence of any lattice ther-
mal conductivity, theory predicts4 that in the high-
field limit y,„L,T/B will have the simple value

(ne), i.e., the horizontal dashed line in Fig. 3.
If ~' is included, the theory then predicts' a steady
decrease of (y ( I.,T/B away from (n[e( ) ', and
at the same time produces an increase in y„„which
to first order is - B' (Sec. I); qualitatively our re-
sults show exactly these features, but it remains
to be seen whether a quantitative fit can be made.

The simplest and most convincing way to check
if X' is indeed responsible for all the effects is to
use the measured components of y to obtain those
of ~. It is important to notice that alNough the
behavior of both y„„and y are modified by X',
the predicted value of A,„, is completely unaffected
and is simply g&ien by A„', =L Tne/B. Figure 4
presents our results on A.„,=y /(y' +y„'„) plotted
in the form of L, T/X„„B for comparison with

(ne) '. The systematic errors (mainly from
thickness determinations) associated with L, T/
&„,B could be as high as 3/o, but the internal con-
sistency should be much better at perhaps + 1%
(arising mainly from thermometer calculations;
however, about 0.4% is due to dimensional errors

at become a function of B owing to y'„„and
having different weighting at different fields).
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Most of the experimental data lie within 2% of the
expected value (ne) '. Furthermore, because the
relative accuracy of the data is better than the ab-
solute accuracy, we are able to verify that X„,~T
within 1%%uq and X,„~B ' to 0.5%.

Sample 3 shows some variations from run to
run which are not completely understood. There
appear to be changes in the absolute magnitude

L, T/&„,B of about 2%%ug between the various sets of
data, which is on the limit of experimental
error. These discrepancies occurred after the
sample had been warmed to room temperature to
repair a vacuum seal. (This was not necessary
for samples 1 and 2.) At such times we usually
squeeze down the clamps to maintain good elec-
trical and thermal contact —and it is possible that
the sample may be slightly stretched during this
process. Since all thickness measurements are
made after sample demounting, it may be that the

FIG. 4. Inverse of the Highi-Leduc conductivity A~ of
all three samples (derived from data the same or similar
to those of Figs. 2 and 3) multiplied by LOT/B and pre-
sented as a function of B. From top to bottom the re-
sults are for samples 1,2, and 3, respectively. The
symbols represent: for sample 1, 0 3.60 K, 6 2.67 K,
0 1.82 K; for sample 2, 0 3.60 K, 6 2.80 K, 0 1.85 K;
for sample 3, 0 3.74 K, 6 2.89 K, G 1.94 K. Dashed
lines give the values of the Hall conductivities measured
on the same samples. Expected high-field value of both
(O~B) and LOT/X~B is (ne) =-44.5 X10 m C

&„„=n(T)/B'+ X~ . (6)

Figure 5 shows some of our data on X„„asa func-
tion of B '; the graphs produce good straight lines
from which n(T) and h~ can be immmliate1y obtain-

thickness used in reducing the earlier data is in
fact incorrect (the sample being slightly thicker
at that time). In any event, the variations are not
so large as to be a serious cause for concern.

The experimental data tend to be vertically dis-
placed from (ne) ', and we presume that such
trends are at least partly due to unavoidable er-
rors incurred in measuring the sample thickness-
es. To check this, we have determined the Hall
resistivities p of our samples and we have used
them to calculate the Hall conductivities o„,. In
practice p„'„«p' and with negligible error we
have 0„,= p '. The predicted" value of cr„„ is
ne/B, independent of T, and we have plotted
1/o„„B in Fig. 4 for comparison with L, T/A„, B. .

Errors in sample thickness will have the same
effect on the two quantities (but we should recall
that, contrary to the case of o„„ it isnot true
to assume y' »y„'„and dimensional uncertainties
in y„„will reveal themselves as systematic chan-
ges in A.„„-0.4% typically, as a function of B).
Nevertheless, the agreement between the galvano-
and thermomagnetic data is generally excellent
with differences of usually ~ 1%. We believe that
these residual discrepancies simply reflect the ac-
curacy of the calibrations of the carbon thermom-
eters; it would be difficult to reduce their magni-
tude by a significant factor.

7he previous results of Tausch and Newrock'
exhibited a 15-20%%uo drop in A.„,B/I.,T by 4.5 T.
As we have noted, we find ~„„Bto be constant to
about 0.5/o up to 4.5 T. Clearly the two sets of
data are contradictory.

There are two immediate conclusions that may
be drawn from this analysis:

(i) The results show that cr„, =&„„/L,T to an ac-
curacy of about 1%. Speculation' that y' L,T 0 p
in the high-field limit is unfounded (y is the val-
ue that y~ would have if Ag =0 and is just A„ly to
high accuracy). The results further show that both
1/o„,B and L, T/A„, B have the p. redicted values of
(ne) ' to within the experimental accuracies of
about 2%%uq and 3% respectively.

(ii) That such an unusual behavior of y and y„„
proves to yield such remarkably well-behaved ~„,
gives us confidence in our experimental techniques
and error limits.

%e now turn our attention to the diagonal com-
ponent ~„„- Notice that exactly the same data that
reeve used to evaluate A,„axe also used to obtain
X„„=y„, /(y„'„+ y' ). When X' is added to X'„„[Eq.
2(a)], then X„„should have the form
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FIG. 5. Thermal conductivity A~ (evaluated from data
similar to those of Figs. 2 and 3) of sample 3 plotted as
a function of B for three different temperatures. Re-
sults on samples 1 and 2 are very similar.

ed. Figure 6 gives all our data on ~~. However,
only a fraction of these data was actually obtained
in exactly the above manner. In practice it is very
time consuming to take all the data necessary to
perfoim the inversions of y as a function of B and

T. Thus for each sample we take complete
"master" sets from about 1.5 to 4.5 T for three
different temperatures between 1.5 and 4.5 K. A

great quantity of data is then taken at finely spaced
temperatures (but only for one high-field value,
typically 3.25 7), where X„„ is not much larger
than X'. Using the master sets we produce an
interpolation graph for n(T) and are thus able to
correct all the data for the relatively small effects
of A.„'„and obtain &'. Figure 7 gives o.(T) in the
form of n(T)/T against T' for our samples.

Before discussing A.' and o.(T), it is prudent to
examine other possible terms which might con-
tribute to Eq. (6) and the possible errors in the
derived quantities. The inversions tend to corn-
pound small errors and we expect ~„„, to be ab-
solutely accurate only to about 5/p. However for a.

single sample at constant I the relative errors as
a function of B should be only 0.5/p with random
errors - 0.5%, and at constant B the relative er-
rors as a function of T should be -1.5/o. Unfor-
tunately, there are more subtle sources of error.
Thus we were somewhat surprised that the data

16—

I I I

3 I

20 30

T' [K']

I

40
I

50

FIG. 6. Temperature dependence of the lattice thermal.
conductivity X~ of each sample. The symbols represent:
0 sample 1; 6 sample 2; sample 3 initial data; sam-
ple 3 during second series of experiments (after having
been warmed to room temperature); & sample 3 during
the third series of experiments, having been warmed to
room temperature twice.

FIG 7 Slopes e(T) of the lines of Fig 5 (and other
similar results), divided by T, and plotted as a function
of T3 for the three samples. The symbols represent 0
sample 1; 8, sample 2; sample 3 (on third cooldown).
Errors do not take into account the possible presence of
a term P(T)/B in A,~ (see text).
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on A.„„could be so accurately fitted to Eq. (6),
the fits usually being accurate to & 1%. Previous
work" on Pb had led us to expect the possible
presence of a term in B, and other work' on the
uncompensated metals Al and In had demonstrated
the necessity of a term in B '. It is straightfor-
ward to show that the B 4 term should be very
small. If we ignore scattering anisotropy we can
approximate

28—
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where ~,' is the zero-field electronic thermal con-
ductivity, ru the cyclotron frequency and ~,h the
thermal relaxation time (cue,h- &;B/LOTn(e~). Ex-
panding Eq. (7) enables us to estimate the ratio
of the coefficients of the B ' and B ' terms and we
find that the B ' term should be completely negli-
gible for all our samples in the field and tempera-
ture range that we have considered.

The term" in B ', say P(T)/B, originates from
a term linear in B in y'„„(again this is y„„ if X~= 0),
which will presumably be present by analogy with
the electrical magnetoresistance. ''" If the lin-
ear term is assumed to arise from the presence
of inhomogeneities, - voids, etc. , as seems likely,
then it has been shown within the approximations
of a particular model, "that although y„'„would
exhibit such a linear term, the presence of ~'
modifies this dramatically. In particular the "lin-
ear term" that would be observed in y„„ is no
longer linear in B but tends to saturate.

We have attempted to fit our data with an equa-
tion of the form

(8)

With an extra free parameter P(T), the data fits
can always be improved but the improvement is in
fact marginal in all cases. The coefficient P(T)
usually lies between + 5 WTm ' K ', but the fact
that it is observed to randomly take either sign is
clearly inconsistent with the assumed origin. The
most likely explanation is that the magnitude of
P(T) reflects mainly the random and systematic
errors in A.„„.We must conclude that if P(T)/B is
present, then

~ p(T)~ ~ 5 WT m ' K '.
Newrock and Maxfield' fitted their data on y„„ to

an expression equivalent to Eq. (5) and found a,
10 ' mKW ' T ' at 2 K increasing to about 3

x 10 mKW 'T ' at 4.2 K. Thus at 4 K we expect
P(T)- a, (L,neT)'- 15 WTm 'K '. A term of this
magnitude is definitely not present in our data and
may be taken as an indication that the linear term
does disappear with increasing 8 for finite ~' in
agreement with theory. " However, we believe that
such a conclusion should be more thoroughly tested
by measuring the linear terms on the same samples
at high and low fields.

I

0.1
I I

0.2

82 [T 2]

I

0.3
I

Q.4

FIG. 8. Calculated curves of A. assuming it to be of
the form X =A~+P(T)/A+0. (T)/B2. We have used the
data on X~ and n(T) appropriate to one of the samples at
about 3 K $8=12 Wm K, n(T)=18 WT m K" ]. Val-
ues of P(T) are given on the curves in units of WTm
For P(T) 25 WTm, the lines become so curved over
the experimental field range (shown as solid lines) as to
be easily noticeable on the data. By comparing with the
actual data (e.g. , Fig. 5) we conclude P(T) ~ 5 W T m ~ for
all our samples at all temperatures.

Nevertheless the possible presence of a linear
term can introduce errors into n(T) and &'. To
illustrate this, we have plotted in Fig. 8 ~„„ac-
cording to Eq. (8) with X' = l2 W m 'K ', o.(T)
=18 WT'm 'K ', and various values of p(T) from
0 to 15 WTm'K '. For p(T)s 5 WTm', K ' and
for our range ofB, the curve-s can be accurately
approximated by ignoring the & ' term and
retaining only &' + n( )T/B' but the values of A.'
and a(T) so obtained will be too high. In fact &'

increases by about -1W m 'K ' and n(T) by
-5.5 WT' m 'K ' for the upper limit on p(T) of-
5 WT m 'K ', though the straight-line fit would
never depart by more than 0.5% from the true
curve.

We conclude from this that the possible presence
of a term p(T)/B with p(T) s 5 W T m 'K ' cannot be
discounted, and this implies that the ~ in Fig. 6
might be systematically too high by ~ 1 Wm 'K '
and n(T) in Fig. 7 might be too high by 6 5 WT'
m &K . With this in mind, we. return tp the dis-
cussion of n(T) and &'.

In view of the free-electron-like character of
potassium it seems reasonable to estimate e(T)
within the approximations of the free-electron
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FIG. 9. Zero-field thermal conductivity A. p shown in
the form of T/Xp. vs Ts for the three samples (open cir-
cles and lines). From bottom to top the results are for
samples 1,2, and 3, respectively. The solid circles on
the ordinate axis give pp/Lr p where pp is the measured
residual resistivity in zero field. Triangles give the
data on e(T)/(Lp Tne)2 and are the same data as appear
in Fig. 7 (after multiplying by (LpTne)" .

model. In the high-field limit, Eq. (7) (which we
recall ignores the anisotropy of the electronic
scattering) reduces to &„;=&,'/(&uv, „)'. The same
model gives

A.„„=A.' e/v, „=L Tn(e( /B,
from which we immediately find

A,,'o. (T) = (I.,Tne) ' . (9)

To enable a check to be made on the validity of
Eq. (9), we have measured" the zero-field ther-
mal conductivity ~„which is equal to ~, to within
0.5/o for our samples, and in Fig. 9 we have plot-
ted both n(T)/T(L, ne)' and T/&, as a function of
T'. The graphs are plotted in this form because
we expect that within the Matthiessen's rule ap-
proximation (A,;) '=a/T+bT', where the term a/T
results from impurity scattering (and should be
equal to p, /L, T, where p, is the residual resistiv-
ity) and the term bT' arises from phonon scatter-
ing; thus T/&; = a+ bT'. We notice in passing that
the intercepts of T/A, in Fig. 9 are indeed equal to
p, /L„ to within the experimental accuracies. Equa-

& o'+ ~'(~;/X. )'(B/I. ,me)2
1+ (Z', /Z, )'(Z'B/L, Tne)' '

(&:/~,)'B/L, Tne
1+ (XJX,)'(X'B L/, nT)e'

(10a)

(10b)

These are just special cases of more general
equations. ' Taking the values of X~ from the in-
tercepts of Fig. 5, we have evaluated Eqs. (10a)
and (10b) and Figs. 10(a) and 10(b) show the calcu-
lated and experimental data for sample 2. The
equations reproduce the data surprisingly accur-
a,tely and, in particular, we see that the slight de-
viations from a perfect B' dependence of y„„are
both predicted and measured.

tion (9) shows n(T)/T should have the same form
as T/&~', more general arguments" also indicate
that n(T)/T will be the sum of a constant plus a
term in 7', though in general the ratio of the co-
efficients is not necessarily the same as those
describing T/&', .

From Fig. 9 it is seen that both T/&, an«(T)/T
do show the expected temperature dependences,
within experimental error, but it is clear that Eq.
(9) can be regarded only as a first approximation.
It is possible that some of the discrepancy is sim-
ply due to the effects of a residual P(2')/B term as
we have discussed earlier but at the higher tem-
peratures such effects should be small. We have
no explanation of any remaining differences.

A few comments about ~' are in order, though
we shall reserve most of our discussion for Secs.
IV and V. The absolute accuracy of the ~' data is
about 7/q (ignoring the possible effects of a B '

term), but a single sample will be internally con-
sistent to about 4/q over the whole temperature
range. Below about 3K, the present results on A~

are in good agreement with those deduced from the
earlier low-field data' on y„„(using the method
discussed in Sec. I). In retrospect we realize that
some of the approximations which were made in
the early analysis were not always sufficiently
good. In particular we believe that the falloff of

that those results showed above 3 K is not real
but originates from the approximation that y
= B/L, Tne. This approximation can be rather
poor for B& 1 T at these higher temperatures but
improves dramatically at the lower tempera-
tures. '"" The present results do not rely on
these approximations, though as a matter of fact
they are accurate for the field range we have
used here.

Using only the free-electron model and our de-
rived values of X~, we can reproduce the experi-
mental curves on y and y,„with good accuracy.
Thus w ith x„'„=x,'/(I + (u'7,'„), x„',= X,'(u w, „/(1+ &u'~,'g,
and &7,„=VB/LOTnIe ), then one can show that
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FIG. 10. Fits to y~ (a) and y~„(b) of sample 2 using
Eqs. (10a) and (10b). The only free parameter is X~,

which is taken from Fig. 5. The quality of the fits on .

samples 1 and 3 is similar.

However, we should not read too closely into the
accuracy of the fit in an effort to pr ove that K is
accurately free electronlike. Thus at fields above
-1T, Eq. (10a) is dominated by the term in the
numerator X~(B/L, Tne)' (recalling that X',/X, 0.99)
and the correction terms in both denominators
have a similar form, i.e. , (A~B/L, Tne)'. The im-
portant point is that these major terms do not de-
Pend on r, „[and hence on a(T)J and derive essen-
tially from the accuracy with which X„„=L,Tne/B.
Since we know that this relation is obeyed extreme-
ly well, and since we obtain X~ from the same da-
ta that we are fitting, it is not surprising that the
equations reproduce the data so well. In fact the
way we chose x~ forces the curves of Figs. 10(a)
and 10(b) tofit the data almostperfectly at the high-
est field; at the same'time, the curves must fit
the zero-field value of y„„since the leads. ng term
of Eq. (10a), i.e. , X, , is an experimental meas-
urement. Nevertheless, the accuracy of the fits
remains impressive when we bear in mind that it
uses only two parameters, X, and X, and the
former is a fixed quantity taken directly from ex-
per iment.

To briefly summarize this section, we believe
that we have proved beyond any reasonable doubt
that the observed field variations in y,„and y„„are
cornptetely accounted for by the presence of a con-
stant term in the diagonal components of A.. The
simplest reasonable identification of this term is
that it represents the lattice thermal conductivity

This conclusion is just the opposite to that
drawn by Tausch and Newrock'. Although their da-
ta are superficially similar to ours, we agree with
them that they cannot be consistently analyzed in
the manner that we have presented. However in
view of the very large discrepancy between their
values of X„, and the predicted value of L,Tne/B,
one must have serious doubts that their data rep-
resent the actual behavior of potassium.

B. Thermoelectric properties

In this section we first present our data on g,'„';

this will be followed by those on the zero-field
thermopower S, and finally we show some data on
the field variation of the thermopower.

We obtain c„„by studying the Nernst-Ettings-
hausen coefficientP'=E„/U„It is .readily shown
that with the conditions U„= 0= U, and X=0,

= & '„'(p„y„„—y„„~)+ &„„(p y„„+y„„p„„). (11)

In the high-field limit, the term -&„~„„y dom-
inates the others and we can show from our data
that al. l the remaining terms contribute less than
1%%ug for the range of field and temperature in which
we are working. As with the Hall and Righi- Leduc
resistivities, an accurate measure of the sample
thickness is needed in order to determine~. How-
ever, if we are willing to assume that p„„has a
known value (in our case we take this to be B/ne),
and if we measure P' and y„„on the same sample,
then it is readily shown that the value of c„,we de-
duce from c„,=P'ne/y~ is independent of the
sample thickness. Figure 11 gives some of our
data on &,Q/T as a function of B and verifies,
within experimental error, . the expected relation-
ship &„„(xB '. Figure 12 presents our results on
q„Q/T as a function of T for the three samples.
There should not be any appreciable systematic
errors in these data (say& 1%%uo) since we already
know that y„„produces accurate values of X„„, and
the only other sources of uncertainty are the gain
of the superconducting chopper amplifier and the
heater powers, both of which are known to about
0.1%%uo.

We shall postpone our detailed discussion of the
results until Secs. IV and V, but a few general
comments are in order at this point. As we men-
tioned in the Introduction, the high-field limiting
result" for the diffusion part e is yT/B and we
can accurately predict its value from available



3980 NI. R. STINSON, R. FLETCHER, AND C. R. LEAVENS 20

150

100—

E

0 2

B (T)

FIG. 11. Data on the field dependence of e~„ for sam-
ples 1 and 2 plotted in the form e B/T vs B. The sym-
bols represent: sample 1, 0 3.63 K; 6, 2.80 K; 1.85
K; sample 2, ~ 4.3 K, k 3.8 K. Nonconstancy of the
2.80 K data was probably due to temperature variations
during the experiments.

specific-heat results. The horizontal line of Fig.
12 is just the experimental value" of y. The cru-
cial point is that any deviations of e„+/T from y
can be attributed only to phonon drag, i.e. , e„'„B/T.
There are no doubts in this identification, . as for
instance often occur in the analysis of the zero-
field thermopower. We believe that this is the
most direct and unambiguous demonstration of the
presence of phonon drag in any transport property
of potassium;

We can go further. Opsal's theoretical results"
on &~„ take a particularly simple form for the case
of a simple Fermi surface, such as that of potas-
sium. It is found that normal electron-phonon
scattering always gives rise to a positive contr i-
bution to q,~„, while umklapp electron-phonon scat-
tering produces a negative contribution. (Such a
simpl. e classification cannot be made for all the
other metals so far studied; See Ref. 12 for some
of these metals. ) Thus we are able to identify the
initial rise in q~P/T in Fig. 12 as being due to the
normal processes, and the rapid turnover begin-
ning near 2 K as reflecting the onset of umklapp
processes. This identification is also unambiguous
and shows quite clearly the temperature at which
umklapp processes first become significant for K.

Figure 13 presents our data on the zero-field
thermopower of samples 2 and 3; we were unable
to obtain any results for sample 1. We show la-
ter (Sec. IV and V) that the negative peak has exact-
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FIG. 12. All the data on e „B/T for the three samples
as a function of T. The symbols represent: 0 sample
1; 6 sample 2; C3 sample 3 (first series); sample 3
(third series) after warming to room termperature twice.
The horizontal line shows the coefficient of the electronic
specific heat y; e~„B/T would have the constant value y
if phonon drag were absent.
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FIG. 13. Thermopowers of samples 2 and 3. The sym-
bols represent: 0 sample 2 at B= 0; ~ sample 2 at B
=3.25 T; Tsample 3 at B=0. Data on sample 3 were
taken during the third series of experiments after warm-
ing the sample twice to room temperature.
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FIG. 14. Thermopomer of sample 2 as a function of B.

The symbols represent: 0 3.63 K, '72.84 K, 0 1.84 K.
Dashed lines to the points at B=0 are tentative inter-
polations to indicate the trend of the data.
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ly the same origin as the positive peak in &„. The
initial (negative) rise of S is due to the electron-
phonon normal pr oce sse s contri buting to S', to-
gether with a diffusion term nearly linear in T,
and the rapid turnover again reflects the onset of
the electron-phonon umklapp- scattering contribu-
tion to S'.

The features displayed by our data on S are in
good qualitative agreement with the earlier re-
sults of MacDonald et a/. " Both sets.of results
exhibit negative peaks at about the same tempera-
ture-3 K, but the earlier data have a peak of
smaller magnitude. We believe that the discrep-
ancies are not due to experimental error, but
arise from the fact that the early data were taken
on samples constrain:ned in tubes; as the samples
cooled, the differential contraction between the
sample and tube would severly strain the sample
and lead to large dislocation densities. Phonon-
dislocation scattering then reduces the size of the
negative peak.

The adiabatic thermopower S'[ =E„/(s T/ax) with
7=0 and U„=0 = U, j is the quantity actually meas-
ured as a function of field. Figures 13 and 14 show
our results on S' for sample 2. Because, as we
shall show, S' is not a particularly useful quanti-

, ty for K, we did not attempt to take data on sam-
ple 3. Other metals have generally shown" strong
variations of S' with B, and, in contrast, the pres-
ent data are remarkable for the lack of any pro-
nounced var iation.

Equations (la) and (1b) immediately yield

S'= ~.".(p ~,.p,./~..)+~,".(p„.+r p /~..).
As B-O, S'-S=-&„„p„„.If A. were small, it
would not have been possible to determine which,
if any, of the last three terms would be most im-
portant at high fields since they would all tend to
constants (-p„„e can be safely dismissed as this
term would be-8 ', or perhaps between B ' and
B ' if p exhibits a linear magnetoresistance erm).
However, as we have seen, the presence of a fi-
nite X' will always result in a term in y„„of the
order B'. In potassium we have shown that X is
anomalously large and its presence modifies y„„
enormously so that the B' term is very large and
dominates the behavior of y . Thus the terms
y~ p~&„„/y„„and y„„p„„&„„/y„„rapidly decrease,
leaving only p„„& „.

We can. be more quantitative. 'Having taken ex-
tensive data onP', S', p,„, p„„, y„„, and y„„for
sample 2, it is a simple matter to solve Eqs. (11)
and (12) to determine the relative weighting of the
various terms. This procedure yields the interes-
ting result that the terms e„„p„„(y,„/y„„) and &„,p
(y,„/y„„) have very nearly the same magnitude but
are of opposite sign for the range of temperatures
and fields that we have investigated. By 3.25 T,
the field at which the data of Fig. 13 were taken,
these terms each comprise about 10% of the total
but their sum is ~ 2%. This near cancellation is
not coincidental and originates in the free-elec-
tron-like character of potassium. If one exam-
ines the free-electron expressions for q„„p, and

'&„„p, including full phonon drag from normal
electron-phonon scattering, one finds that in the
high-field limit they should be equal and opposite
provided we can ignore the presence of the con-
tribution involving the energy derivatives of the
relaxation time sv/8 g in the diffusion part of e,„.

The end result of this is that S' is practically
equal to &„„p at high fields, to an accuracy of
~2%. Thus S' does not give us much new informa-
tion. However, the experimental correlation be-
tween the zero-field thermopower S=(e p )s, and
the high-field thermopower S'= (q "p,„)s „ is force-
fully brought to our attention. The reason for the
similarity is not difficult to find and is very re-
vealing. It is readily shown that (&„„p„,)e, and

(e,„p,„)s „would be identical for the free-electron
model, " including full phonon drag due to normal
electron-phonon scattering, except for the term
involving sv/sp in (a„„)s,. We are led to suggest
that this energy derivative does not play a major
role in S.

IV. THEORY

In this section we briefly outline the derivation
of the expression used to calculate the low-tem-



$982 M. R. STINSON, R. FLETCHER, AND C. R. LEAVENS 20

perature phonon conductivity of potassium. We
also discuss the derivation of the very different
expression used by Ekin" in his calculation.

To calculate the zero-field thermal conductivity
of a cubic metal we first determine the electron
and phonon distribution functions, f and n respec-
tively, in the presence of a uniform temperature
gradient in a high-symmetry direction, say ~T
= ~Tx. In the usual way, "we write

(13)

and

+qj 4j qj gg+ qj

Here q; is the energy (measured relative to the
chemical potential) of the electron with wavevec-
tor k; &&j is the frequency of the phonon with wave-
vector q and polarization index j. f'-„~ and n~&. are
the Fermi and Bose distribution functions respec-
tively. The steady-state phonon Boltzmann

38~39
equation ' is

iQ ~I
0 0

w
qj

&T
g(d-,.n&&(1+ n&&)u-,.„

4'), —4'~~ + 'ta'q j Pg g .~,
k, k~

+ 4~n~o(1+ n g)Q (T~;,.") (15)

u+=—8(d+/Sq is the phonon group velocity. In the
term describing the effect of phonon-electron (P-e)
scattering, the transition. rate for the process
k+qj-k' is given by"

approximation, "hence the 7 -,.".
It is important to note that the phonon Boltzmann

equation (15) contains a term which depends on the
electron deviati'on from equilibrium function 4, i.e. ,

Z(C'a —'4 )+e, yy;e . (18)
R, R'

Similarly, the electron Boltzmann equation"
(which we have not bothered to write down) con-
tains a term depending on the phonon deviation
function 4. The electron and phonon Boltzmann
equations are coupled via these "drag" terms and

, in principle both equations should be solved simul-
taneously for C and 4. However, the phonon drag
contribution to the electronic thermal conductivity
is always assumed to be unimportant on the
grounds" that "the flux of phonons, although it may
help along the hot (e & 0) electrons, will hinder
their return when cold (&( 0), and thus has little
effect on the total electronic heat current. " The
drag contribution. to the phonon conductivity is
similarly dismissed as being very small. Now a
key point in the analysis used to extract the pho-
non conductivity X' from the measured magneto-
thermal resistivity is the assumption that A. is in-
dependent of B. Since the electron deviation func-
tion 4 depends on B, this assumption is only justi-
fied to the extent that the drag term can be ignored.
For this reason we take a much more detailed look
than is usual at the (zero-field) drag effects in po-
tassium. Those willing to accept the usual "hand-
waving" arguments may wish to jump ahead to Eq.
(23).

It is convenient to write the electron deviation
function in the form

2

k, Qj;&' +C, &r qj k %' qj

x 5(&i' ~| f(+if) Yc' 1 |( Qj
'

(16)

The sum is over the set of reciprocal-lattice vec-
t»s fQq). Since the Fermi surface (Sr) of potas-
sium is so very nearly spherical, the e-p coupling
should be adequately described by the one-OP%
(orthogonalized plane wave) result"

(17)

In Eq. (17), K-=k' —k, e&i is the polarization vec-
tor of the phonon gj; V is the screened electron-ion
pseudopotential form factor for scattering at the

S~, M is the ionic mass and N the number of ions
per unit volume. In the term describing the scat-
tering of phonons by entities other than electrons
(r we) we have adopted the usual relaxation-time I;=( $~(r;). (20)

where v~ —=p 'so~/sk is the electron group velocity.
In spite of the highly anisotropic nature of the elec-
tron-phonon scattering i n potass imam, the angular
variation (over a constant-energy surface) of x&
has very little effect on the thermal conductivity
of even the purest samples. ""(The calculations
reported in Refs. 41 and 42 ignored phonon drag.
However, for the case of the electrical resistivi. —

ty phonon drag actually reduces the anisotropy
correction" and one would expect the same for the
electronic thermal resistivity. ) On the other hand,
the energy dependence of x-„has a large effect"'~' '
at the low temperatures (1.5 K 6 T ~ 4.5 K) of in-
terest here. Hence it should be a good approxima-
tion to ignore the small anisotropy correction al-
together and write
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The electronic thermal conductivity then involves
an. integration of

k (E)v(E)X(E)E(-Bf /BE) (x: (1+3E/2 Ji+ ' ')X(E)E

X (-Bf'/BE)

over all E. Since E(-Bf '/BE) is an odd function of
E it is clear that the odd part of X(E) completely
dominates the low-temperature electronic thermal
conductivity —the contribution of the even part is
many orders of magnitude smaller. Now Leavens"
has derived a simple one-dimensional integral
equation for X,EE(E) assuming that the phonon-drag
contribution is negligible (i.e. , setting 4';~=0 in

I

the electron Boltzmann equation). If this deriva-
tion is carried out with )id&,. given by Eq. (15) it is
not difficult to show that one obtains precisely the
same integral equation for X,E„(E). Thus phonon
drag affects the electronic thermal resistivity
only through modification of the unimportant even
part of X(E).

We now consider the drag term appearing in the
phonon Boltzmann equation. Substituting Eq. (20)
into Eq. (18), converting the sums over k and k'
into integrals, and replacing dk by dE[idSE/Iiv[J
where dSJ; =-k'dQ~=k' sin8@j8@(t)~ is an element of
area on the spherical surface of constant energy
E& (and similarly for dk'), Eq. (20) then becomes

), , f d~ f dn;, f'd( d)[1 df'(e+ d~~)J-
SF

.0
& [cos 8[,X(E) —cos 8NX(E + A(d)JJ, )] '

I K eg,. I'I)'(If')5(K q Q, ).

(21)

We have followed the standard procedure" of evaluating all slowly varying functions of energy q at the
SF, the corrections to Eq. (21) are negligible, smaller than Eq. (21) by a factor of order k~T/Ii. If we now
apply Eqs. (9.10.10) and (9.10.11) of Ref. 38 to the integral over E we obtain

E' +e(2kF —
I q+ Q, I )[(q+ Q, ) e&,.]'v'(q+ Q, ) fx~,(I)~~)I"(q+ Q, ) +x„,„(ll'~+)I' '(q+ Q, )], (22)

F i

where

and

I"'(q+ Q, )

A' dg XeyeIL
E'

solving the one-dimensional integral equation for
X„„(E)and calculating its contribution to Jid. ]
The above discussion is directly applicable only
to K (and perhaps to Na and Rb as well) because
we have assumed a spherical SF and deviation
function of the form Eq. (20). The latter condition
can be relaxed to a large extent. The crucial step
in the foregoing analysis is the result I' (q+ Q, )
=0. This result is unchanged if we allow for anis-
otropy in the x-„of Eq. (19) by multiplying Eq. (20)

, by the function

dQ; dQ„-, cos Og, + cos 8; 6 k —q—
SF SF

The integral I' )(q+Q, ) occurs prominently in the
theory of the phonon-drag component of the elec-
trical resistivity" and is just 2w(q+ Q, )„/kF Iq+Q, I.

(q+ Q~) is easily shown to be zero. Since the
surviving term in Eq. (22) only involves the unim-
portant even part of X(E) we conclude that the drag
contribution to the phonon conductivity of K is
very small. [We have actually checked this by

+8„cos'"8-„with [8,= 1.
n=O

(This expression, with II= 2 and P, and P, appro-
priately chosen, accounts very well for the angu-
lar dependence of x[, in potassium. ) The corre-
sponding expression for Ii'J(q+Q, ) is readily ob-
tained from that given above by replacing cos6Ik.
+ cos6-„by

g)8„(cos'""8;,+ cos'""8E).
n=0
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The resulting double surface integral for I"'
(q+ Q, ) is readily shown to be zero [see the Ap
pendix of Ref. 43, where I' '(q+Q, ) is evaluated in
closed form].

Setting the drag part of Eq. (15) equal to zero
and solving for 4&,. we obtain (after various mani-
pulations similar to those outlined above)

(23)

where

with

(24b)

The phonon conductivity, V—= —U'„(VT, then fol-
lows rea, dily from the expression for the phonon
contribution to the thermal current density

1
(2," . FBZ

It is

(25)

It is important to note that (T=~') ' is zero for
those phonons for which (q+ Q,-) e-„,. =0 for all i
allowed by the unit step function 9, i.e. , for trans-
verse phonons with (sufficiently small) wave vec-
tors in the symmetry planes. Hence even if we
are in the regime where electrons are, on average,
the dominant scatterers of phonons, we cannot
completely ignore all other scatterers without get-
ting an infinite phonon conductivity (unless, of
course, we go beyond the one-OP% description of
K).

Ekin's variational calcula. tion" of the phonon
conductivity of K explicitly considered just phonon-
electron scattering but used as trial function the
phonon deviation function appropriate to normal
phonon-phonon (p-p) scattering, "i.e. , 4 ~q x.
With this distribution function the collision inte-
gral for normal p-p scattering is zero. " Hence,
in effect, Ekin treated the case of mixedp-e and
normal p-p scattering but only in the limit in
which the latter completely determines the phonon
distribution function (in this limit normalP-p scat-
tering provides no direct contribution to the ther-
mal resistance). Now Kaveh has argued (for the
case of the electrical resistivity) that it is just

the opposite situation that occurs in K below about
5 K, i.e. , p.-e scattering dominates and p-p scat-
tering (both normal and umklapp) can be ignored.
In this cise, Ekin's expression for A.

' is not ap-
propriate at the temperatures of interest here
(1.5 Ks Ts 4.5 K). Hence it is not surprising that
the measured phonon conductivity of K is an order
of magnitude la,rger tha, n that calculated by Ekin.

For temperatures at the lower end of the range
of interest we believe that phonon-dislocation (p-d)
scattering" (or some other scattering mechanism
with roughly the same frequency dependence) is
the most important mechanism for limiting the
mean free path of those troub1esome phonons that
are scattered only very weakly, or not at all, by
the electrons. Of course, the scattering of pho-
nons by other phonons, impurities, grain bounda-
ries, etc. , also plays a role. However, in order
to make the calculation of A.

' tractable and to
avoid introducing a large number of unknown pa-
rameters characterizing the defect state of a given
sample, we concentrate on the most important (in
our opinion) scattering mechanisms, i.e., p-e and
p-d. In the same spirit we have used Klemens'
very simple expression, "

(v~ ~) ' = 0.605NDb'y~~„

for the p-d scattering rate. ND is the number of
dislocations per cm, b.is the dislocation Burgers
vector, and y~ the Gruneisen constant. Klemens'
formula gives only a very rough estimate of the
scattering from the strain field of the dislocation
and completely ignores any scattering by the dis-
location core. Further, we use the relaxation time
approximation for the p-d scattering and ignore
a,ll mechanisms for equiIibrating the phonon dis-
tribution function other than p-e and p-d scatter-
ing. The adoption of these assumptions means
that the dislocation densities obtained in Sec. V
by fitting to experiment should riot be taken too
seriously; they could easily be in error by orders
of magnitude. What is important is the actual p-d
scattering rate, not the parameter ND occurring
in Klemens' formu1a. As a further caution, we
emphasize the fact that two samples of K with a.p-
proximately the same residual resisitivity ratio
(RRR) can have significantly different dislocation
densities because dislocations a.re not the only de-
fects contributing to the residual resistivity.

As input to the calcula. tion of A.' using Eqs.
(23)-(25) we have used the most recent refine-
ment" of the first-principles lattice dynamics
(~, e, u) and electron-ion interaction (V) developed
originaQy by Dagens et gE."

For the range of p-d scattering rates considered
(10' cm ' & ND & 10" cm ') and for T ~ 4 K the cal-
culated phonon conductivity is proportional to 1
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to within a few percent. Figure 15 shows the cal-
culated X~/T' as a function of N~. To give some
indication of the relative importance of p-e and
p-d scattering we also show X'/T' calculated with
(r~=.') ' set equal to zero. For values of ND rep-
resentative of the potassium samples actually
studied, i.e., No-10" cm ', X~/T' increases by a
factor of -4 when we switch off the p-e scattering.

The phonon contribution to the zero-field ther-
moelectric power, i.e. , S', is obtained most ea.sily
by first calculating the Peltier coefficient 0„„
= -o„„U',/J'„' and then applying the Onsager relation
S'=IP„„/T. Here J'„and U„are the isothermal elec-
tx'ic and thermal current densities in the presence
of the electric field E=Ex. It is clear from Eq.
(15) with V T set equal to zero that 4-„,. and hence

P would be zero %ere it not for the drag term.
For this reason P is referred to as the phonon-
drag thermopower. The appropriate expressions
for the electron and phonon deviation functions,
4 and 4 respectively, taking into account the
detailed energy dependence but ignoring the less
important angular dependence, have been derived
by Leavens. " The derivation parallels that given
above if we replace Eq. (20) by 4 t; —= eEvt;„~(eg)
and note that for the case of the electrical conduc-
tivity it is the even part of 7 that is all important.

Opsal' has recently used the LAK theory to
derive an expression for e,"„in the high-field limit.
Using precisely the same microscopic description
of potassium as described above we have evaluated
Opsal's expression for q'„„. in our notation

u&- n'- (1+n-', ) Q C,'. "(q)(q+Q,.) u-„-,

qS qg

100

Figure 16 shows c'„„B/T as a function of T calcu-
lated in the full phonon drag limit (AD=0) and also
for AD=10', 10", and 10" cm '. ClearlyP-d
scattering has a much less dramatic effect on
e~„ than on A~. (For example, at 1 K our calcula-

100
ND = Ocm

N
I-
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I
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40
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20
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ND (cm ~)

FIG. 15. Calculated variation of X~/T2 as a function of
the dislocation density Nz. Dashed line is appropriate
to only dislocation scattering of the phonons. Solid line
corresponds to scattering of phonons by both dislocations
and electrons.

T(K)
FIG. 16. Calculated phonon-drag contribution to the

Nernst-Ettingshausen coefficient, i.e., c~„(multiplied by
B/T) as a function of temperature for various values of
dislocation density Nz. The uppermost curve (N&= 0) is
for "full" phonon drag.
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tions show that inincreasing ND from 10' to 10"
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under consideration then the experimental results
should coincide with this line. That they do not
indicates directly and unambiguously the presence
of significant phonon drag. To our knowledge, no
other experiment gives such a clear-cut demon-
stration of the presence of substantial phonon drag
in K. The theoretical curve labeled ND = 0 shows
the full phonon-drag (or zero-quenching) case and
was calculated assuming that the phonons are
scattered only by electrons. This calculation is
quite insensitive below T= 3.5 K (i.e. , well below
the region of almost complete cancellation of the
normal and umklapp p-e scattering contributions
to e',„) to the choice of lattice dynamics and pseu-
dopotential form factor. [This is in marked con-
trast to the ideal electrical resistivity, which is
extremely sensitive to the choice of input, partic-
ularly the pseudopotential form factor V(K) at K
=2k~. ] Comparison of the experimental results
with the calculated zero-quenching curve in the
region 7.'S 3.5 K thus demonstrates very clearly
that, whatever the mechanism, phonon drag is
quenched to a significant extent in samples 2 and
3.

The above discussion of e',„makes no reference
to our work on A~. To make contact we also show,
for each of the samples 2 and 3, e,"„B/T calculated
with exactly the same p-d scattering rate that was
obtained by fitting to V. The good agreement be-
tween'theory and experiment provides strong sup-
port of our interpretation of the temperature de-
pendence of V. e,"„is much less sensitive than A.

'
to any mechanism for scattering those phonons
which, are very weakly scattered by electrons.
Hence it comes as no surprise that the onset of
significant p-p scattering is delayed to a higher
temperature (=3.5 K for e,"„as compared to =2.5
K for A,'). It is of interest to note that the group
of phonons most effective in contributing to A.

' is
the least effective in producing c,„. This arises
simply because, other things being equal, it is
those phonons that ark least scattered by the elec-
trons that are most effective in carrying the heat
current in the presence of a tempera'ture gradient;
on the other hand, in the presence of an electric
field they are dragged along the least by the cur-
rent of electrons and thus make little contribution
to the phonon-drag component of c,„,i.e. , e~„. The
two properties A~ and e',„ thus tend to sa,mple dif-
ferent phonons with different weights. Thus the
fact that using the same p-d scattering rate in both
calculations leads to simultaneous good agreement
with experiment is a very satisfactory result.

Finally we turn to the zero-field thermopower.
We have calculated S' using exactly the same input
as previously, i.e., for no p-d scattering and for
the p-d scattering rate fit to the low-temperature

phonon conductivity. The detailed energy depen-
dence of the electronic "relaxation time" T a
complication that does not arise in the high-field
limit of e~„, was included in the calculation by nu-
merically solving the coupled electron and phonon
Boltzmann equations"; this is important, in the re-
gion where there is a very large cancellation be-
tween the normal and umklapp p-e contributions
to S, but has only a. tiny effect on the position and
height of the calculated negative peak in S'. Con-
sequently, the inclusion of the angular dependence
of 7, which is known to be less important than the
energy dependence in calculating the thermal and
electrical resistivities of K, is most unlikely to
modify our conclusions.

The only remaining problem is to allow for the
diffusion contribution S4. At the very low. temper-
atures of interest here (T/B~S 0.05) the various
Nielsen-Taylor" and Hasegawa" contributions to
S' are essentially linear in T. Hence even if we
include these complications as well as the many-
body renormalization effects, discussed by Opsal
et a/. ,

"Lyo, ' and Vilenkin and Taylor. "we ex-
pect S' to be approximately linear in T. (Acci-
dental cancellation of all linear contributions could
lead to a more complex T dependence but the am-
plitude would be very small relative to the ob-
served negative peak in S.) Thus the theoretical
curves of Fig. 19 were constructed by assuming
S = 6T+ S', with P' the calculated values and 5 cho-
sen by fitting this expression to the experimental
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FIG. 19. Measured and calculated zero-field thermo-
powers S of samples 2 and 3 using S =BT+S~, where 6 is
adjusted for best fit. Dashed lines are the best fits using
full phonon drag (i.e., ND ——0); for sample 2 (a) this yields
6=+0.15 &&10" VK and for sample 3 (b) 6=+0.09 X10"~

VK 2. Full lines are the best fits using the same values
of Nz as were appropriate to Fig. 17 and 18 (i.e., ND

D

pie 3) and give 6= —0.16 &&10 ~ V K for sample 2 and 6
= —0.].2 x].0 V K for salnple 3.'-.
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results. For the broken curves $' was calculated
assuming no p-d scattering; for each of the solid
curves the p-d scattering rate obtained by fitting

- to A~ was included in the calculation. It is clear
from the figure that for both samples 2 and 3 there
is little to choose between the solid and dashed
curve, each giving a good representation of the ex-
perimental data. One might be inclined to prefer
the curves for the quenched-phonon-drag case be-
cause the fitted values of 6, -0.161'&10 ' VK '
(sample 2) and —0.116x10-' VK ' (sample 3), are
not very different from the well-known result 5
=-n'k'a j3~e~ p, =-0.116x10' VK ' that one obtains
for free electrons scattered by hard spheres.
However, the fitted values of 5 for the full-phonon-
drag case (nop-d scattering), +0.015x10-' VK-'
(sample 2) and+0. 090x10 ' VK ' VK ' (sample
3), cannot be ruled out because of the complications
referred to above. It is necessary to do an accu-
rate first-principles calculation of S, including all
the relevant features of the electronic scattering
as well as the mass and velocity renormalizations,
in order to pin down the correct value of 5 for a
given sample. This could very well require quite
detailed knowledge of the defect state of the sam-
ple. Moreover, one would probably find that the
low-temperature electron-diffusion thermopower
8' is only approximately linear in T.

The above emphasizes the importance of mea-
surements of e,"„in the high-field limit where one
knows from theory that c"„„Bis rigorously equal to
the electronic specific heat which is accurately
known experimentally. Hence there is no ambiguity
in extracting the phonon-drag contribution from
the measured c,"„.

VI. SUMMARY

The main conclusion to be drawn from this work
is that the thermomagnetic and thermoelectric
properties of potassium can be understood re-
markably well with so few assumptions. The un-
usual behavior of the transverse and Righi-Leduc
thermal resistivities is due solely to the presence
of a large lattice thermal conductivity with an un-
usual temperature dependence. In retrospect this
high lattice conductivity should have been expected
(and indeed was by some authors") as a result of
the free-electron-like character of potassium. De-
tailed calculations support the experimental re-
sults. We infer that, because certain transverse
phonons are so very weakly scattered by the elec-
trons, other scattering mechanisms must be re-
sponsible for finally limiting their mean free paths
and preventing the extremely high phonon conduc-
tivity that would otherwise occur. It is suggested
that, over the experimental range (1.5 Ks TS 4 K),

phonon-dislocation scattering (or some other scat-
tering mechanism with a similar dependence on
phonon frequency) is most effective in this regard
and calculations have been presented to support
this view. Above about 2.5 K the measured phonon
conductivity falls increasingly below the 1 beha-
vior that is observed at lower temperatures and

' also predicted (but to a much higher temperature)
for the case of mixed phonon-electron and phonon-
disloeation scattering; this, departure presumably
signifies the onset of significant phonon-phonon
scattering, or possibly phonon-impurity (isotope)
scattering.

Observations and calculations have also been
made on the high-field Nernst-Ettingshausen coef-
ficient. The analysis provides not only a direct
and unambiguous quantitative demonstration of a
significant phonon-drag effect in potassium, but
also a good estimate of the amount by which it
has been quenched from the full phonon-drag lim-
it. (The corresponding, analysis for the case of
the zero-field thermopower is not nearly so clear
cut and reliable because the electron-diffusion
component is not accurately known either theoret-
ically or experimentally. ) Finally we have shown
that the same strength of phonon-dislocation scat-
tering that was required to give good agreement
with the low-temperature phonon conductivity also
provides the correct amount of quenching of the
phonon drag in the Nernst-Ettingshausen coefficient.

Note added in proof. A recent paper [P. J.
Tausch, R. S. Newrock, and W. Mitchel, Phys.
Rev. B20, 501, (1979)]deals with the high-field
transverse thermal magnetoresistance of K. - The
data presented in this paper, and relevant to the
present study, are the same as those discussed
in the papers in Ref. 7; all our comments concern-
ing those papers are equally applicable to this
most recent paper.

APPENDIX: END EFFECTS IN HIGH MAGNETIC FIELDS

Lippmann and Kuhrt" and more recently Samp-
sell and Garland" have shown that the nature of
the current contacts can lead to anomalous beha-
vior in the measurement of the magnetoresistance
of rectangular plates. However, these end effects
are not present" under the usual experimental
conditions for which voltage probes are recessed in
from the ends of the sample.

We consider a homogeneous rectangular plate
of length I, width sg, and thickness I; having re-
sistivity elements p„„and p„„when a magnetic
field Bz is present. Current enters or leaves the
sample through the equipotential surfaces along

y =0 and y = l. Voltage probes are located a dis-
tance c from each end of the sample (on the x=w
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edge) and are assumed not to disturb the current
flow lines. Then for a total current I through the
sample, the component of electric field parallel
to y, E„along the edge x=w, is given by Jensen
and Smith" as (taking p„=p„,)

( ) ( / )I'g(y/w) —1 e~' 1+k'(y/w) e~'

(g(y/w)+1 1 —kg(y/w)

(Al)

Here 8 is the Hall angle (tane =p,„/p„„), the func-
tion & is defined by

(A2)

Then, in light of (A4) and (A5), the true p„„will
not be obtained if l /w is finite; rather an effec-
tive resistivity p,& would be calculated as

sot

f(l —2c) ~,
Ey(3') A' ~ (A6)

(y/w) + 1 &1 —kr(y /w)
dp ~

This effective resistivity is dependent upon the ra-
tio f/w, the amount c by wh'ich the voltage probes
are inset, and the Hall angle 0. Using (A1) we ob-
tain

E, =p,„I/w t, l/w -~ . (A4)

In practice, a voltage V is measured between the
probes, which will be given by

g-C
V=

~
E,(y) dy .

C

(A5)

and the parameter k is given (for l/w z 2) by

k =4 exp(-vl/w) .
For a very long sample (l/w -~), with c»w,

the current between the voltage probes flows near-
ly parallel to the y direction. In this limit the
field E„ is constant and Eq. (A1) reduces to the
equation usually applied in calculations of p„„,

(A V)

This expression has been evaluated numerically
under a variety of conditions; in particular we con-
sider a free-electron model so that tano= u7. ,
where ~ is the cyclotron frequency and 7 i's the
relaxation time. The linear magnetoresistance
obtained by Lippmann and Kuhrt" is obtained only
in the limit c-0. When c is nonzero (as is the .

case in four-probe measurements) p,q saturates
in high magnetic fields; and for f/w&5 and c/w&1,
p,q and p„, will be the same to better than 0.1 jo.
For the potassium samples actually used in this
study, these quantities were the same to within
0.02%. Similar arguments apply to y„„.
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