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The present study was undertaken on the basis of two motivations. On one hand, the He-graphite system
is ideally suited for the study of bound-state resonances and of band-structure effects in atom-surface
scattering; on -the other, an accurate determination of the interaction of a He atom with the basal plane of
graphite is of great value for the study of physical adsorption and the properties of two-dimensional
adsorbed layers. Elastic diffraction measurements of quasimonochromatic He atoms from a low-temperature
graphite (0001) surface are reported here. From the angular position of bound-state resonance minima in
the specular intensity, the laterally averaged potential Vo is found to give rise to five discrete levels with
energies of 11.98, 6.33, 2.85, 0.99, and 0.17 meV. Band-structure effects taking place at the crossing of
resonances were studied for a variety of experimental conditions. From the observed splitting, it is
confirmed that only the first Fourier component V,o is making a relevant contribution to the periodic part
of the potential and the matrix elements (It ~V, self„) are evaluated. The energy levels and the matrix
elements are used to derive information on the gas-surface potential. Vo is found to be well represented by a
Lennard-Jones 5-10 potential, with a well of 15.70 meV. V,o is also represented by a model potential, and
the overall implication of the results is discussed in the light of other experimental and theoretical findings.
A brief description of the line shapes of the resonances and an evaluation of the linewidths are also given;
these are compared with recent theoretical studies.

I. INTRODUCTION

The importance and value of a careful study of
the interaction potential between a neutral atom
and the basal plane of graphite have been well
emphasized in the literature. ' The thermal-atom
diffraction technique is especially suited to such
a study, particularly if. a low-energy beam is used
to enhance the contribution of resonance scatter-
ing'; using this technique, valuable information
may be gathered on the attractive part of the po-
tential, particularly through the use of band-
structure effects. '

Two preliminary papers on this subject were
published by Boato et al." In the first one,
carried out with a beam of helium atoms at room
temperature, the feasibility of the experiment was
proven. The sharp diff r action patter n gave in-
formation on the corrugation of the surface; using
the hard-mall model with a well, a maximum-to-
minimum corrugation of 0. 21 A was found, about
one-third of that present in I iF(001). Only the first
Fourier component of the surface corrugation was
found to be appreciable. From the bound-state
resonances four levels e of the laterally averaged
potential were determined; this allowed a first
comparison with adsorption data." In the second
paper, a more careful study of the bound-state
resonances was carried out, using a He beam pro-
duced by a liquid-N, -temperature source. More

accurate values for the levels were given and band-
structure effects were evidenced by studying
selected cases of split resonances. The significant
contribution of the first Fourier component alone
to the periodic part of the potential was confirmed
by the observed splittings. The present study is a
complete analysis of the resonance structures
observed with a low-temperature beam. The ab-
solute values of the resonances were reevaluated
and compared with those obtained by Derry et al. '
A thorough study of resonance crossings was
carried out: line shapes of isolated and interact-
ing resonances were accurately determined and,
above all, band-structure matrix elements were
derived from energy splittings for all combina-
tions of vibrational levels.

We review the main points of the diffraction pro-
cess: atoms with incident wave vector k, (K, k, )

, are scattered by a perfect surface in diffraction
channels corresponding to the reciprocal-lattice
vectors 6 of the surface. A bound-state reso-
nance (BSR) occurs whenever the incident beam of
particles of mass m satisfies the condition

k', =(K+G)'+2m@ /S',

where G corresponds to a closed diffraction chan-
nel and the q 's are the discrete levels of the zero
Fourier component of the gas-surface potential
p(R, z) =5~o Vo exp(iG ' R). In this free-atom ap-
proximation the loci of the resonances are circles
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and y„being eigenfunctions of the laterally
averaged potential Vo(z). The energy splittings
are simply I2V»" I. The relations given here
namely fix the kinematic conditions under which
BSR's occur. The resonances give rise to a dis-
turbance in the experimentally observable inten-
s ities of the diffracted beams, which may have
the form of a minimum, a maximum, or a more
complex appearance. For the case at hand —the
diffraction of helium from the hexagonal (0001)
plane of graphite —a self-cons istent body of ob-
servations was collected and sufficient theoretical
understanding reached to allow an unambiguous as-
signment of resonance energies from the experi-
mental spectra. The experimental matrix ele-
ments are presented in Table II and their relation
to model gas-surface potentials is discussed. A
more detailed description of the experimental
shape of the resonance lines is also given. It is
our hope that the data presented here will be of
assistance in reaching a better understanding of
atom-surface scattering and will stimulate the
formulation of more accurate gas-surface poten-
tials.

II. EXPERIMENTAL PROCEDURE

The experimental setup, basically the same as
that used in previous scattering experiments,
has been described elsewhere. ' It will suffice to
outline here only some of the details that are im-
portant in BSR experiments.

The present data refer to the scattering of a He
beam produced with a supersonic nozzle source at
low temperature (T, =103 K); the beam is nearly
monoenergetic (b,k, /k, -2%)i with wave vector k;
=6.49 A ' (corresponding to an energy E, =22 meV).
In order to determine the inherent width of a BSR,
the beam is also well collimated (b, 8-0.15') and
narrow (-0.4 mm at the crystal).

Natural graphite specimens were used through-
out. Each crystal was cleaved in air, fastened
with Aquadag to the sample holder, and then heated

in the reciprocal plane. The further components
of the potential (of which U„ is usually the largest,
and the only one detectable in graphite) are rather
negligible in comparison with Voo everywhere in
the K plane except close to the crossings of two
resonances. Here the simple perturbation formula
applies:

[E, -k'(K. +G,)'/2m —e ][E, -k.'(K+G, )/2m —e„]

(=IV= - I'

where the relevant matrix elements are given by

in an ultrahigh vacuum for several hours at 700 K.
Occasionally the specimens showed some misorien-
tation among adjacent twinned crystals. The
present data were obtained with four different
specimens, normally chips with a lateral size of
5 —6 mm and a thickness of 0.2 mm. During the
measurements, the specimens were maintained at
a temperature 7', -80 K.

The crystal holder could be rotated independently
around three perpendicular axes so that the out-
of-plane angle, the polar angle, and the azimuthal
angle could be changed. The first movement was
used only to orient the crystal perpendicularly to
the plane of the detector. The other movements
were used to change the angle of incidence of the
beam.

BSR structures in the specular beam were deter-
mined by measuring its intensity as a function of
the incident angle I9 for a set of azimuthal angles

The angle P was varied over a range of 30',
thus covering all the directions of the hexagonal
(0001) plane of graphite; its origin was chosen
along the (10) direction. The changes in P were
obtained by rotating an external driver. Since
3, 450 turns of the driver are necessary to change

P by 360', each turn corresponds to b, $-0.1',
which can be roughly considered to be the azimu-
thal resolution. At each P the scanning was per-
formed by changing the incident polar angle by as
little as one-sixth of a degree (and in some ex-
ceptional cases by only one-twelfth). Almost all
the interesting regions for strong resonances were
explored. BSR crossings were observed under
different conditions, thus allowing for a detailed
study of this interesting phenomenon.

In spite of the very good angular resolution there
was some ambiguity in fixing the zeros of the
angles of incidence (8, P). In order to determine
with accuracy the two principal azimuths, P =0'
and p =30', one of the following procedures was
adopted. (a) At small 8's, where few weak BSR's
are present, the in-plane intensity of a first-order
peak, e.g. , (10) and (11), respectively, was maxi-
mized; this method brought about an error of -1'.
(b) At intermediate 8's, from 30' to 60', the

specular intensity was plotted vs Q and the
principal azimuth was determined by the symme-
try of the minima, which characterize bound-
state resonances: with this method uncertainty was
reduced to -0.3'. (c) Even better precision was
obtained near grazing incidence. Here again two
strong BSR's associated with 6 vectors that are
symmetrically placed with respect to the incoming
beam cross each other in each principal azimuth;
the resulting minimum was twice as deep as the
two isolated minima. The angular location of
the deepest minimum gave for both directions the
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TABLE I. Elastic diffraction probabilities (x 10 ) for He-graphite(0001). 8;=5 .

Incident
wave vector (20)

Miller indices
(10) (00) (io) (ii) (20)

ks= 6.49 A

a,.=11.O5 A-' 0.29
0.33
0.77

2.60
2.33

18.1
3.23

3.27
2.31

0.44
0.82 0.42

azimuth with a precision better than 0.1.'.
It was much more difficult to determine with

adequate precision the zero in the polar angle 8.
The method previously used, that of aligning the
beam parallel to the plane of the crystal holder,
was not effective in the case of graphite, since the
specimen surface was not necessarily parallel to
this plane and since the beam was usually moved
laterally to reach a more perfect area of the
crystal. In order to fix the zero of |9, the alter-
native method of measuring (near normal incidence)
the angle between the incoming and the specular
(00) beam and dividing it by 2 was adopted. This
procedure is not completely free from misalign-
ment errors, for it is assumed that the illumina-
ted region of the crystal is exactly at the center
of the detector goniometer. However, the eventual
errors introduced thereby affect only the absolute
values of e (see Sec. III) and not the determina-
tion of the energy splittings, which is the major
aim of the present work.

III. EXPERIMENTAL RESULTS

A. Corrugation of surface

With the source at T, =103 K the diffracted inten-
sity was measured at incidence near normal. The

0.4—

shape of the diffraction peaks is accounted for by
almost pure elastic scattering; their position, by
the hexagonal lattice of graphite with g =2.456 A.
Diffraction probabilities were derived from the
diffraction pattern by the usual procedure. ' Typi-
cal values at 8 = 5' in the two principal azimuths

Q
=0' and P =30' are shown in Table I along with

similar values obtained with the source at room
temperature. By using the corrugated hard-wall
model with a well and the eikonal approximation, "
these probabilities are well accounted for by a
corrugation parameter P» = 0.023 z 0.002 A. Only
the first Fourier component f„of the shape func-
tion f(R) =Pofoexp(iG ~ R) is needed. No depen-
dence of the corrugation on the incident energy is
appar ent.

B. Observation of resonances

Figures 1 and 2 show s cans of the spe cular in-
tensity along the two principal azimuths, p =0
and P =30', respectively. The center portion of
Fig. 1 was published in a previous paper': here
deep minima were observed, which we related to
the (10) and to the (01)-(11)unsplit BSR's. The
assignment of the resonance labels proceeded as
follows. - Suppose that the minima represent
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resonance positions. The associate wave vectors
5 should be the centers of the circles that con-
stitute the loci of the resonances [see Eq. (1)]. A

map of the position of the resonance minima is
shown in Fig. 3 for the full azimuthal range 0'& Q
& 30'; it is apparent that the points fall on arcs
(except at the resonance crossings) whose centers
are at the wave vectors with the indicated labels.
The energy levels & thus found for the three
different G vectors are entirely consistent when
the labels m are chosen as indicated in Fig. 3,
with q, representing the deepest level. The newly
found energy levels enabled us, in turn, to esti-
mate the positions of the resonances for any G.
The results are shown in Figs. 1 and 2. For com-
pleteness, aside from the five resonant levels the
calculated threshold level for the continuum is
also indicated.

The main hypothes is for mulated concerned the
identification of the resonances with the minima
in the experimental pattern. - Observe that the
chosen G vectors belong to the first zone of the
reciprocal lattice; for these vectors the choice
made should be correct, since consistent values

. were obtained for the energy levels. However,
such identification is not true for G vectors fur-
ther away from the origin. In Fig. I the resonances
that occur at small scattering angles and that are
labeled (11)-(2T) are seen as weak maxima (the s,
resonance of this set seems to interfere with the
same level of the (02)-(22) set, giving, rise to a
peculiar double-peaked shape). From these ob-
servations and from those accumulated by Derry
et al. ' there is now conclusive evidence that the
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FIG. 3. Map of position of resonance minima in the
reduced K plane. The incident wave vector was A = 6.49
A for all data shown except for those in inset (b),
where k = 6.82 A . Crossings with or without splitting
are recognized.

strongly coupled G vectors of the first zone give
rise to resonance minima in the specular beam,
while the other G vectors tend to produce weak
maxima. Remarkably, the same basic results
were obtained theoretically by several authors and
reported in a string of papers"'"' that appeared
concurrently with the experiments. The case of
(12)-(12) resonances is discussed in greater detail
in Sec. IV.
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C. Determination of BSR levels

From the position of the BSR minima associated
with different'G vectors it was possible' to assign
the following values (in units of meV) to the levels:
eo = —11.77+ 0.10) e, = -6.13 + 0.10) e, = -2.68 + 0.08)
and &, = -0.83+ 0.06 meV. A fifth minimum, corre-
sponding to +0.02+ 0.06 meV, was identified as a
threshold (T} resonance. However, to determine
these absolute energy levels required greater
precision in calibrating the zero in 0 than our pro-
cedures allowed. With the aid of optical align-
ment techniques Derry et aL' were able to achieve
in their spectrometer a very accurate determina-
tion of 0: in an experiment similar to ours, they
identify the fifth minimum with a level q4 =0.17
+ 0.06 meV. Using this value to adjust the zero in
8 for every set of measurements, we have derived
new values for the energy levels. The correction
in 0 amounted to 0.25+ 0.10 degrees and the
averaged new values are (in meV) e, =-11.98

0 07) 6~ 6 33 + 0 06) &2 2 85 + 0 06) f3 0 99
+0.05, &4 =-0.17+0.06."

Both an improvement in the standard deviations
and an excel.lent overall agreement with the re-
sults obtained by Derry et al. ' are thus obtained.
The nature of the topmost level, as a resonance
state rather than as a threshold, seems to be
confirmed by its behavior at the crossing with
other resonances. In at least one case the ad-
mixing of this resonance with the e, stat is ob-
served. (See Fig. 6. )

[e.g. , level e, for the G vectors (01}and (10)J.
This is due to the fact that one of the two minima
vanishes at the crossing. This phenomenon,
which was predicted by Chow" and studied in de-
tail in a previous paper, can be briefly described
in the following way. At the crossing of two sym-
metric states the unperturbed wave functions of
the individual states are essentially the same.
Thus by choosing a proper combination of the
wave functions, only one resonance condition is
obtained at the crossing. The shift of the minimum
from the resonance circle gives the sign of the
potential. As can be observed in Fig. 2, for the

P =30' azimuth the (10) and (01) admixed BSR's are
unsplit but consistently shifted toward polar
angles larger than those calculated in the free-
atom approximation, thus showing that V»(z) & 0.
As will be shown below, the disappearance of one
of the minima occurs not only at the crossing of
symmetric states.

It seems worthwhile to examine in greater de-
tail three interesting regions of crossing; to do
this, the original experimental data, rather than
the position of the minima, are shown in Figs. 4-6.

Figure 4 shows a region near the azimuth angle

p =30'. Admixing of (10) and (01) resonances is

D. Observation of resonance splittings

An overall view of the splittings at the inter-
section of resonances is presented in the reduced
K plane in Fig. 3. Several crossings appear,
mostly involving two resonances. For these, the
resonances are split if the difference between the
two G vectors is in turn a v'ector of the first
zone; they are unsplit if Gy G2 is a vector of
higher order. It is evident from Eq. (2) that such
observation can be translated into the assertion
that, among the higher Fourier components of the
surface potential, only 1/„ is non-negligible; this
is in excellent agreement with the findings of the
analysis of the diffracted intensities. Some of the
crossings have a more complex structure. For
example, a triple crossing appears near K„/k
-0.78, K,/k-0. 10 and a quadrupole crossing near
K/k-0. 56, K,/k-0. 32. In the latter case, a
four-channel degeneracy is at work but, since two
channels are associated with second-order G vec-
tors, a negligible effect results, as can be seen
[Fig. 2; resonance 0(12) and 2(01}].

As can be seen in Fig. 3, some of the data points
are missing at the crossing of symmetric levels

n =6Q

n =4Q

n =2Q

n=Q

l i I t I I l I I I I I I

35 40 8

FIG. 4. Polar scans of specular intensity near
azimuthal angle ft) =30', n is the number of turns of
the azimuth driver (see Sec. II) as measured from
the symmetry direction corresponding to p = 30'
(n = 100 corresponds to Aft} = —10.43 ).
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FIG. 7. Plot showing how the evaluation of the matrix

element V~o was carried out. Points represent position
of experimental minima. Full lines correspond to the
free-atom approximation I,Eq. (1)j, while dashed lines
represent curves described by Kq. (2) with Vip=0. 185
meV.
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I
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45 8
FIG. 8. Plot similar to that shown in Fig. 7. Dashed

lines correspond to V~()-—0.160 meV.

The matrix elements thus derived are reported
in Table II together with their mean-square errors.
One of them, V„' (briefly V"), was obtained by
carrying out three independent measurements:
the crossing of 0(12) with 1(0$) yielded 0.205
meV; that of 0(10) with 1.(01) yielded 0.190 meV;
and the last crossing, measured at 0=8.OV A ',
yielded 0.195 meV. One can see that the spread
in values is within the quoted mean-square error. 100—

IV. LINE SHAPES OF RESONANCES

Since the number of BSH's is rather small and
the number of crossings is limited, the He-graph-
ite scattering at low incident energies is favorable
to an analysis of line shapes and linewidths.

Figure 10 shows on an enlarget scale a typical
isolated BSR minimum, 0(01) appearing in the
specular beam at P =30' and 8-56.5'. As noted
previously in connection with Fig. 2, this is an
admixed resonance with only one minimum surviv-
ing. The line shape is asymmetric, showing a
small shoulder followed by a steep decrease on
the left and a more gradual increase on the right;
the asymmetry is more pronounced here than in
resonance minima observed in the scattering of
He from LiF.' The observed width of the reso-
nance is affected by instrumental effects, which
are evaluated in the Appendix. With the known

50—

38
I

39 40

FIG. 9. Plot similar to that shown in Fig. 7. Dashed
lines correspond to V~~p——0.110 meV.
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TABLE II. Experimental matrix elements h ~ Vto ~ X„& (meV}.

0.28 + 0.01
0.195 + 0.015
0.125 ~ 0.02
0.09 + 0.015
0.03 + 0.02

0.185 + 0.02
0.16 + 0.015
0.10 ~ 0.01

0.12 ~ 0.015
0.11 + 0.015 0.08 + 0.025

instrumenta] «8s& the intrinsic linewidth (FWHM)
can be roughly obtained by

(4)

This simple formula gives only an approximation
of the true FWHM, since it assumes that the line
shape of the resonances has a Gaussian form,
whereas in reality it is (at best) a Lorentzian. For
the resonance shown in Fig. 10 the experimental
width is b, 8,„~,= 0.35' and «82s&'" =0.19', so that
~F„»—-0.29, corresponding to an energy width I",
=0.14 meV.

Using the same procedure, the linewidths of all
resonance minima appearing in Figs. 1 and 2 were
evaluated. The results are given in Table III,
where the subscript to I indicates the vibrational
level. The widths appear to depend essentially on
the level index, and very little on the G vector

0.30—
0 (10)
o (o&)

~ ~
~ ~

~ ~ ~

~ ~

0

0
0

0-

M
Z

0.20—I-
Z

O:

U

characterizing the resonance. The anomalous I'
given for the 1(10) resonance is caused by esti-
mation difficulties due to the proximity of other
resonances (see Fig. 12).

All resonance minima in the specular beam ex-
hibit the peculiar asymmetric line shape described
in the comments to Fig. 10. Figures 11 and 12
show on an enlarged scale some of the features of
Fig. 1 (P =0). The isolated minima possess sys-
tematically a small shoulder at the lower side of
8 and a gentler slope at large 8. The 0(10) reso-
nance is, however, an exception to this trend.
For this resonance the line shape appears to be
more symmetrical around the minimum, with the
shoulder now to the right. The only feature which
distinguishes this resonance from the others be-
longing to the same (10) family is that at its inci-
dent angle the (01) and (11) channels are closed;
as a consequence, the 0(10) resonance is coupled
only to the specular diffraction peak. This fact,
as was pointed out by Wolfe and Weare, "may
affect the line shape of a resonance.

Another resonance family is also present in the
region shown in Fig, 12, namely, that associated
to (12}and (T2) unsplit closed channels. These
resonances appear as weak structures (see e, and
e, in the region around 40') and their shape is not
clear. In contrast, the c, resonance of this
family, presented in Fig. 1, closely resembles a
minimum. Such complex behavior may be due to
the interaction of pairs of resonances [the (12)
and the (11) families; the (12) and the (01) families]
that cross each other at azimuthal angles close to
P =O'. In an attempt to clarify these features, we
measured (Fig. 13) the diffraction probability of
the (10}peak. Although the general trend is simi-

/=30'
- TABLE III. Linewidths (FWHM) of resonance minima

(meV).
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I
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FIG. 10. Line shape of 0(10)-0(01) admixed reson-
ance at p = 30'.
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(0.42)
0.34
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0.32 0.21
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0.15
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TABLE IV. Energy levels and matrix elements of V10
calculated with shifted Morse (SM) and Tommasini po-
tentials (meV).

Energy
level Tommasam Expt.

A. is 1.413 A ' and the exponent pg is 5.3. It is
notable that the exponent n found in Ref. 15 for the
system H-graphite is 5.1; this means that the
two exponents may be considered to be equal with-
in experimental errors. In Table IV a comparison
is made between the experimental levels and the
theoretical eigenvalues of Eq. (5) when the param-

eters given above are used. In the same table
are given the eigenvalues of the shifted Morse po-
tential, "

V(z) =n(2-2x-~), (6)

with x =exp(-nz) and best-fit parameters D =14.59
meV, n =1.347 A ', and 6 =0.058.

The Morse potential, which allows simpler ana-
lytical solutions, seems to be a slightly worse
representation of the true surface-averaged poten-
tial V, (z) than the potential given by Eq. (5).

In order to derive information on the first Fourier
component of the overall gas-surface potential,
a parameterization of the form

E'0

Ei
E'2

f3
64

Matrix
element

~00
y11
p'22

+33
@01
@02

V03
F04
p'12

@13
+23

11.95
6.41
2.77
1.02

0.279
0.197
0.116
0.036
0.156
0.090
0.043

0.132
0.067
0.063

11.96
6.36
2.85
0.95
0.16

0.290
0.188
0.109
0.052
0.156
0.093
0.057
0.032
0.123
0.077
0.072

0.274
0.203
0.127
0.063
0.195
0.133
0.086
0.050
0.153
0.103
0.088

Tommasini

11.98
'6.33
2.85
0.99
0.17

Expt.

0.280
0.185
0.120
0.080
0.195
0.125
0.090
0.030
0.160
0.100
0.110

V„=-pD(I+l zin) ""

was adopted. The matrix elements of Eq. (7) were
calculated by means of Eq. (3), where 1C and y„
were numerically evaluated from the potential in
Eq. (5). It was found that the choice n =3 gives
a much better fit to the experimental data than the
more conventional n =2." The results are shown
in Table IV. The second column of Table IV con-
tains the matrix elements calculated by using n
=2 and P =0.022, and the third with n =3 and P
=0.019. An n value of 3 seems to give to V»(z)
the steepness which is required in order to ex-
plain the large experimental values of V", V",
V', and V

The matrix elements calculated with the Morse
potential and with the related Fourier component
VIp pD x are shown for compar ison in the fir st
column of Table IV. The best-fit value for P is
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0.020. One can see that such repulsive potential
does not fit the experimental data very well. This
is hardly surprising, since its rise is significantly
slower than that of the potential in Eq. (7).

While the experimental values of c and V ". im-
pose strong constraints on the shapes of V, (z) and

V»(z) in the region of the well, they give little
information on these shapes in the region Vp+
The only information about this region comes from
the intensity distribution among diffraction peaks.
It is now understood that this intensity distribution
depends not separately on V, (z) and V„(z) but es-
sentially on the corrugation amplitude, which is
strictly related to the variation of the classical
turning point within the surface unit cell. As re-
ported in Sec. III, no variation of the corrugation
was detected experimentally over the incident
energy range 20-65 meV. Therefore the repulsive .

potential curves corresponding to different points
of the unit cell appear to run up quite parallel to
each other. This condition is fulfilled neither by
the Morse potential nor by the potential described
in Eqs. (5) and (7). We can add that any V»(z) that
is merely a modulation of the repulsive term of
the model potential is also unacceptable. In other
words, a potential expressed by V,(z) = Vs(z)
+ V„(z) and by V„(z) =PVz(z), frequently used in
past studies, does not give, in general, a constant
corrugation within the relevant energy range. This
occurs only if the potential takes an infinite slope
over that range.

A model potential that proved to be more useful
is explaining the intensity distribution among dif-
fraction peaks is the hard corrugated surface with
a well. " Garcia" recently used a variation of this
model to carry out extensive calculations of dif-
fraction intensities and resonances for the He-
graphite system. In order to approach the true
potential in the region of the well, Garcia used an
attractive well with a flat botton and with a 1/z'
dependence at large distances. He was able to
reproduce with remarkable accuracy the experi-
mental intensities and the bound-state anomalies;
his values for e and V"" are only in qualitative
agreement with the experimental results. The
asymptotic behavior of V, (z) for z- ~ is expected
to follow a 1/z' law. Although the potential in

Eq. (5) has the "wrong" form, it still accurately
represents the vibrational levels near dissociation
for both He and H. Thus is appears that the 1/z'
dependence becomes effective at quite a distance
from the well minimum.

In conclusion, none of the simple analytical ex-
pressions hitherto proposed for the He-graphite
potential seems consistent with the full ensemble
of the experimental data. More direct calculations
of the potential are now appearing in the litera-

ture. Among these is the semiempirical evaluation
made by Steele. " Steele's potential, constructed
from a sum of pairwise atom-atom potentials, was
used by Chow" to perform close-coupling calcula-
tions on band-structure effects upon scattering.
Chow's results are in qualitative agreement with
our experimental findings. On the basis of our
first results, 4 Steele's potential was improved by
Carlos and Cole." We are now informed by these
authors. that a sum of pairwise interactions which
takes into account the anisotropy of the attractive
term gives a very good fit to the available experi-
mental data. " The proposed potential very much
resembles that described by Eqs, (5) and (7), at
least in the region of the well.

Finally, we would like to make a few comments
about the BSR line shapes. The occurrence of
minima or maxima is correctly predicted by
the rules given by Wolfe and Weare" and by Celli,
Gar cia, and Hutch ins on"; in both studies only
elastic scattering was considered. The latter
authors pointed out that important information is
contained in the line shape of a given resonance
and predicted that for He-graphite the isolated
minima would not display a Lorentzian shape;
rather, they would be asymmetric owing to the
hexagonal surface symmetry. This was confirmed
by the experiment. Moreover, the same authors
gave the following expression for the linewidth
(FWHM):

(8)

where d5/de is the density of bound states and

(1 —~S
~

) gives the total scattering probability out
of the resonant state. The last factor increases
when going from e, to e„whereas (d5/de) ' goes
rapidly to zero as the continuum threshold is
approached. The experimental trend of linewidths
shown in Table III is well described by Eq. (8).
Yet the agreement is not quantitative: in particular,
the measured width of resonances is larger than
expected near the dissociation limit.

More accurate measurements of line shapes and
linewidths may provide the critical test for verify-
ing whether the elastic theory" is sufficient to
describe all observed features of resonance struc-
tures.
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APPENDIX: EXPERIMENTAL RESOLUTION FUNCTION

For the purpose of this experiment our measure-
ments were confined to in-plane scattering. The
angular divergence of the beam in this plane is
denoted by 68, and the divergence off the plane is
h$, where $ is the azimuthal angle with the scat-
tering plane; the spread of wave vectors is Ak;.
Let us assume that these quantities are independent
and that the intensity profile of the incident beam
is given by

~k, =X(~8, -~8,)+a~(,
with

(A3)

(gk2)1/2 =P P2k,

Now let us calculate the linewidth (A82s)'" of a
resonance due to the resolution. of the beam.

In the described coordinate system, the reso-
nance condition in Eq. (l) may be written

(k, sin8, +G cos$)'+G'sin'$ =k', —2m', jh'. (A2)

When the center of the beam is at an angle 8 =8,.
+8~ with the crystal, a portion of the beam still
satisfies the resonance condition. The required
mis-set of k,. is, in the first approximation,

I(68, , a P„ /), k,.) =I, exp( [a'(b, -8, )'+ f)'(b, k;)'

"(~&)']],
where the experimental widths are and

k, cos8, (k; sin8, +G cos$)
k, cos 8,. —G cos$ sin8, (A4)

and

(g82)1/2 p i5

(g]2)1/2 p 3pe

B=- k,.G sin8, sin)
G cos$ sin8, —k, cos'8, ' (A6)

The portion of the beam that satisfies the resonance
condition is

I (e)e q„, ,f f exp(-[d(d(=, )'+5'[d(ep, ep ) pee([e (e() ))dee de(.

The argument of exp in the integrand represents the hellipsoid of resolution. Equation (A6) can be written
in a more convenient form:

E...(XP ) =I exp[-e'(ee )']f f exp[-[ee'(XP; -eeq )' ~ '( P(eqe)(ee( —qe-q„)+e'(X( —qee ) )jdeqdd'(, ;

(A7)

where all the coefficients in the integrand are in-
dependent of h, 8~. Hence the integral is the same
for all angles of incidence around a given reso-
nance. The factor preceding the integral defines
the width of the resonance due to resolution func-
tion. The explicit dependence of s' —= (/) 8R2)

' on the
coefficients g, b, e, A, and B previously defined

I

1s

+&, 2 ((2'B'+A'C2)(a'+ O2di') + 48'EP(q)2

[P(k2~2 + c2) d (f)2~2 c )]

Note that a partial focalization of the beam occurs
when k, cos 8, =G cos$ sin8, [see Eqs. (A4) and

(A6)].
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