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Instability in the Potts model
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It is shown that for p & 2 the transverse susceptibility of a p-dimensional Potts model with

uniaxial order is negative, indicating that the ordered state is unstable, even though a stable crit-
10

ical fixed point is obtained for all p &
3

.

INTRODUCTION

Recent renormalization-group calculations' as ap-
plied to the Edwards-Anderson theory' of spin-
glasses led to a very unusual result. Starting from
the disordered phase an accessible stable critical fixed
point was obtained, ' which usually indicates a
second-order phase transition. However, in the or-
dered phase, ' the state described by the assumed or-
der parameter was found to be unstable. It is the
purpose of this note to point out that a similar insta-
bility is present in the Potts model although only in a
limited range of p values.

Renormalization-group calculations have been car-
ried out for the disordered phase of the Potts model
by Harris et al.4 and by Priest and Lubensky5 in
d =6 —e dimensions. The fundamental variables are
p-dimensional diagonal traceless tensors. A stable
fixed point was obtained (to lowest order in k) for

p & —, . In this paper these calculations are extended10

to the ordered phase. An instability is obtained for
p h 2. As in the spin-glass case the instability mani-
fests itself by a negative value of a susceptibility, XT,
which by definition is positive. Thus in the range
2 & p & 3 one finds a stable fixed point starting

from the disordered phase and an instability in the
ordered phase. For p & 2 there is no instability.
This includes the physically interesting case p =1
which describes the percolation transition. In the
spin-glass case the instability is obtained for a11 values
of the spin components m except in the limit m

The lack of a stable fixed point for p & 3
is be-

lieved due to the fact that the transition in this case
is first order.

where Qj are symmetric traceless tensors and in the
case of the Potts model also diagonal. The
corresponding propagator has the form

(gk(k)gjj( —k))=, 8„-——2 1

r+k2 p

The tensor components QN are related to the com-
ponents A of the p-state Potts model,

&=-J QA(x) A(x'),
(xx')

by

g;;= $ A.ak

where

(2)

(4)

aa p
p 0!+1

0, ifi &n
X 1, if I=0.

—1/(p —n), if! )n.

(I) =(—e ——q(I)) a)(l)+288K6 1 ——dc' 1 3 3 cu'(I)
dl p [1+r(l)]' '

where a=6 —d and

(7)

When written in differential form the recursion rela-
tions are given by

—"(I) =[2 —rl(I)]r(l)
dl

-144K,.(» 1-—2 1

p [1+r(I)]'
(6)

I. DISORDERED PHASE
These may be integrated up in the usual way to
give

Following Priest and Lubensky5 the effective re-
duced Hamiltonian is written

~=—„' „(r+ k') $Q„(k)Q;, ( k)—
f

+~ g Qij(k) Qjk(k ) gkl( k k ) (1) o)'(I) = ru'e "/ W(I) (9)

1 —2t(l) in[1+ t(l)]—,(8)
t'(I)

1+t(l)
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where

(l) = te2lgr(1) 5 3 2 p 10 3p

3

CdW(l) = 1 +144E6 —3 (e' —1)
p

and

(10)

tion. For p =2, which corresponds to the Ising
model, Trg3=0, and we obtain exponents appropri-
ate to the Gaussian model. If quartic terms were in-
cluded, this would give rise to an expansion about
d =4 —e and the usual Ising exponents would be
obtained.

t = t(l =0), 03(l =0)

F= E6(p ——1) „ ln[1+r(l')]e dt dl'

t3
(p —1)[~(l') 2p""-3p' —1],

12 Cd

(12)

where l" is determined by setting t(l') =1. Similarly
the susceptibility is given by

f(y
x '=exp —21" + Jl 2t(l') dl' x '(l') (13)

gr(le) 2 2 p 10 3p

Equations (7), (12), and (14) yield the exponents

a =—1+[p/(10 —3p)]e,
y = 1 + [(2 —p) /(10 —3p)] e

2l =—,' e(2 —p)/(10 —3p)

(15)

These are just the exponents obtained previously4'
from the recursion relations and the scaling assump-

The critical behavior is determined by relating prop-
erties in the critical region to those far from criticality
be means of the recursion relations. The free energy
is given by2 6

II. ORDERED PHASE

To describe the ordered phase we set

~.(x) = (W.) + Z(x),
where the brackets dI[:note the thermal average and

is the fluctuating part. Following Priest and Lu-
bensky only uniaxial order will be considered. Thus

Q, a=1
0, otherwise .(g 3='

The corresponding expression for Q;; is given by Eq.
(4)

1/2

g;;= (Q+z),

(18)
' 1/2—1 p —1

p —1 p
(Q+2)+q;; fori Al,

where q(; is a traceless diagonal tensor of dimension
p —1 and where the subscript on Z1 has been
dropped.

We add a fictitious field —At(x) h (x) to the Hamil-
tonian and separate it into its fluctuating part,

3C= —
4 Jr (rL+k )Z(k) 2(—k) —

~ J (rr+k ) X q;;q;;
—

J h(k) Z(—k)
i41

+(p —2)ceo Jl Z(k)Z(k')Z( —k —k') —3coc J 2 (k) X q;;(k')q„(—k —k')

i'll

+~ JI X q,i(k)q;;(k')q„( k —k')—
i'll

(19)

and its fluctuation-independent (mean-field) part,

KMF =——„rg'+ (p —2) ccog3+ hg1

In these equations

(20)

I

The propagators are now given by

(Z(k)Z( —k)) = Gt, (k)

(22)

rt, = r —12(p —2) cucg

rr ——r +12c0cg

h = h — rQ +3&me(p —2) Q—
c = [p (p —1)] 'i'

(21)
(q;;(k)q„-(—k)) = 5"— Gz(k)1

where GL r(k) =2/(rt. r+k'). The derivation of the
recursion relations is again straightforward,
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(I) = [2 —g(l)] rt (I) —144K6(p —2) c co (I)
z

+
dl 1+rL I I+rr I

drT 288K6c ~co (I) p —3 i 1
(23).

dh e ~(l)= 4 ——— h(l)+6K6(p —2)ceo(I) 1 1

dl 2 2 1+ r/ (I) 1+rr'(I)

The leading order solutions are

rL(l) = t(l) —12(p —2) co)(I)Q(l) +O(a)t)

rr(I) = t(l) +12co&(I)Q (I) + O(co')

h(l) = h(l) —
z t(l) Q(l) +3'(l)(p —2)cQ~(l)

+3'(I) (p —2) cK6(rt (I) (I —rt. (I)In[1+ rL(l)] } —rr(I) [I —rr(I) in[1 + rz (I)]})

(24)

where t(l) and cu(I) are given by Eqs. (9) and (10)
and where

The susceptibilities are given by
I

I
xr't, =exp —2l'+J g(l ) d(l) xrL(I'), (30)

t

h(l) = hexp (4 —
z e)I —

z
q(l') dl'

Q(l) Qexp (2-
z e)l +-, q(l') dl'

The trajectory integral is evaluated with the help of
Eqs. (6) and (7)

where, to leading order,

xr(L(l') = rrL(l')

The free energy now takes the form

F =
4

rQ~ —(p —2) cco Q3

I ]4
+ K6„e ' dl'(In[1+ r (I')]

(31)

exp +(I) dl far(I4) (1/3)(2-P)/(10 -3P} (26)00

The fluctuation-corrected noncritical order parameter
is given implicitly by the condition that {2(k) ) =0.
With I =l'we obtain, to leading order in ro,

+ (p —2) in[1+ rr(l')] } . (32)

To leading order the trajectory integral is given by

tegy—K6 [rL3(I') +(p —2)rr(I')]e ' dl' . (33)

h(I.) +6(p 2)~(I )K, -
I 1

x k5 dk =0
0 rL +k rT+k~

Performing the integral, substituting Eq. (24) for
h(l'), and taking the limit h(I')/Q(l") 0 then
gives, to leading order,

(I') = t (I")
6(p —2) co)(I")

(27)

(28)

The contribution from the lower limit cancels the
mean-field terms in Eq. (32) and we obtain simply

[(p~+4) I'Ir(I~)»«m 3p& (p 2)&]-
(p —2)' 12'o)'

(34)

In the ordered phase l'is determined by the condition

rt (I') =1 = t(l') —12(p —2)ceo(l') Q(l'), (35)

which by Eq. (28) is equivalent to

From Eqs. (9), (10) and (25) the order parameter in
the critical region is given by

t(l') =I-
such that, to leading order,

(36)

Q
I gr (p) 2/(10 3P)

6(p —2) ceo
(29) e2I+

} t }-( (37)

For p =2, Q diverges. For the Ising model the quar-
tic terms are required to give a finite value for the or-
der parameter. rr(I") =

p —2
(38)

For r/(I') =1, it further follows from Eqs. (24) and
(28) that
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and the susceptibilities take the form

1
x '= &( i r i gr(p) —2(2-p)l( 0-3p)—p/(p —2) (39)

with n and y given by Eqs. (15) and P given by

(40)

From Eqs. (29), (30), and (39) we obtaiti
in agreement with scaling. However, from Eqs. (39)
it follows that X~ & 0 for p & 2. Priest and Luben-
sky' suggested that the fixed point for 2 & p & —,

might correspond to a metastable state. The present
calculations show that the state is, in fact, unstable
for this range of p values.
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