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It is shown that for p > 2 the transverse susceptibility of a p-dimensional Potts model with
uniaxial order is negative, indicating that the ordered state is unstable, even though a stable crit-

ical fixed point is obtained for all p < 1—30—.

INTRODUCTION

Recent renormalization-group calculations!-? as ap-
plied to the Edwards-Anderson theory’ of spin-
glasses led to a very unusual result. Starting from
the disordered phase an accessible stable critical fixed
point was obtained,! which usually indicates a
second-order phase transition. However, in the or-
dered phase,? the state described by the assumed or-
der parameter was found to be unstable. It is the
purpose of this note to point out that a similar insta-
bility is present in the Potts model although only in a
limited range of p values.

Renormalization-group calculations have been car-
ried out for the disordered phase of the Potts model
by Harris et al.* and by Priest and Lubensky® in
d =6 — e dimensions. The fundamental variables are
p-dimensional diagonal traceless tensors. A stable
fixed point was obtained (to lowest order in €) for
p< 13—0. In this paper these calculations are extended

to the ordered phase. An instability is obtained for
p >2. Asin the spin-glass case? the instability mani-
fests itself by a negative value of a susceptibility, X7,
which by definition is positive. Thus in the range
2<p< -? one finds a stable fixed point starting
from the disordered phase and an instability in the
ordered phase. For p <2 there is no instability.
This includes the physically interesting case p =1
which describes the percolation transition. In the
spin-glass case the instability is obtained for all values
of the spin components m except in the limit m — oo.
The lack of a stable fixed point for p > 13—0 is be-
lieved due to the fact that the transition in this case
is first order.

I. DISORDERED PHASE

Following Priest and Lubensky® the effective re-
duced Hamiltonian is written

se=—+ [ ¢ +K) 30,0 Q) (=k)
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where Q; are symmetric traceless tensors and in the
case of the Potts model also diagonal. The
corresponding propagator has the form
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The tensor components Q; are related to the com-
ponents A4, of the p-state Potts model,

3=—J 3 A A& )

(xx’)
by ,
Qi= 23, A.af , )
a=1
where
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When written in differential form the recursion rela-
tions are given by
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These may be integrated up in the usual way®® to
give :
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3929 ) ©1979 The American Physical Society



3930 E. PYTTE 20

where
t(l) = teZIW(l)—(S/S)(z—p)/(10—3p) , 10)
2
w() =1 +144K6l1—1?— —3]%—(e"—— D, 11)
and

t=t(I=0), w(l=0) .

The critical behavior is determined by relating prop-
erties in the critical region to those far from criticality
be means of the recursion relations. The free energy
is given by®®

F=1Kp—1 [l +r@)1e ar

3
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@

where /*is determined by setting ¢(/*) =1. Similarly
the susceptibility is given by

exp|-2r+ [Ty iy a3
~ W (%) 22-p)/0=3p) 14)
Equations (7), (12), and (14) yield the exponents
a=—1+[p/(10-3p)le ,
y=1+[2-p)/(10-3p)le , (15)
n=—3€Q2-p)/(10-3p) .

These are just the exponents obtained previously*?>
from the recursion relations and the scaling assump-

J

tion. For p =2, which corresponds to the Ising
model, TrQ3=0, and we obtain exponents appropri-
ate to the Gaussian model. If quartic terms were in-
cluded, this would give rise to an expansion about

d =4 — € and the usual Ising exponents would be

" obtained.

II. ORDERED PHASE

To describe the ordered phase we set
Al(x) = (do) +£(x) , (16)

where the brackets denote the thermal average and
£, is the fluctuating part. Following Priest and Lu-
bensky’ only uniaxial order will be considered. Thus

Q0 a=1
<A"')=[0, otherwise . an

The corresponding expression for Q; is given by Eq.

)

o1 12
Qi= > Q+g) ,
(18)

1/2
Q1'=;Tl1 p-1 (Q+&£) +gqy fori=1,

where g; is a traceless diagonal tensor of dimension
p —1 and where the subscript on £, has been
dropped.

We add a fictitious field —4;(x) 4 (x) to the Hamil-
tonian and separate it into its fluctuating part,

e e -1 [Grti) 3 quai— [ FG0 20
iZl

+(p-Dco [ LW LR L(—k—k) =3wc [£(K) 3 quk) qu(—k — k")
i=1

+“’f S 0i(k) qi(k") qi(—k — k")
i=1

and its fluctuation-independent (mean-field) part,
Hemp=—1r0%+(p -2 cwQ>+hQ . (20)
In these equations
rn=r—12(p - wcQ ,
rr=r+12wcQ ,
h=h —%rQ +3wc(p—2)0Q? ,

c=p@-D1"172 .
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(19)

-
The propagators are now given by

(L)L (=K))y =G (k) ,
2)

(k) gy (—K)) = [aﬁ— ;{T]GT(/() ,

where G (k) =2/(rpr+k?. The derivation of the
recursion relations is again straightforward,
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The leading order solutions are
() =t()-12(p =Dca)Q) +0(e?) ,
rr(D)=t() +12c() Q) + 0 (e , (4)

A =h() =56 QW) +30(1) (p ~2)cQ*()

+30(D (P =D cKe(r, (D 1 = r,(DIn[1 +r, (D]} —rr(D (1 = re(DInl1 +rr (DD

where #(/) and (/) are given by Egs. (9) and (10)
and where

]
k()= hexp[(4.—%e)1 —%j; n(1") dl'] ,
1 25)
o) =Qexp(2 =L r++ [ nty ar) .
The trajectory integral is evaluated with the help of
Egs. (6) and (7)

exp j;l"’ n(l) dl = W(*)~UPQ-p/10-3)  (76)

The fluctuation-corrected noncritical order parameter
is given implicitly by the condition that (£(k)) =0.
With [ = [* we obtain, to leading order in w,

A" +6(p —2) 0(I*) Ky
1
xj; kS dk

Performing the integral, substituting Eq. (24) for
h(I*), and taking the limit 42 (/*)/Q (/*) —0 then
gives, to leading order,

1 __ 1
rL+k2 "7'+k2

=0. @7

*) _ t(1*)
A0 6(p—2)cw(1* - 28)

From Egs. (9), (10) and (25) the order parameter in
the critical region is given by

__t geyua0-3p)
0= § - w (%) P (29)

For p =2, Qdiverges. For the Ising model the quar-
tic terms are required to give a finite value for the or-
der parameter.

The susceptibilities are given by
1% -1
XT.L =exp [—21* +J; () d() | xzL (%, (30)
where, to leading order,

X7 U*) =rr (%) . 3D

The free energy now takes the form

F= %rQ2 -(p-2Dcw’
el (Inll +r, ()]

+%Kéj;'*
+(p =Dl +(N1} . (32)

To leading order the trajectory integral is given by

K [ IR + =Dl ar . (Y

The contribution from the lower limit cancels the
mean-field terms in Eq. (32) and we obtain simply

p—1 |}

+4) W (]*)2p/(10-3p) _
~ Lo ipale W

(r-2)%
34)

In the ordered phase /*is determined by the condition

(M) =1=1t(" -12(p =D () QU*) , (35)
which by Eq. (28) is equivalent to

—t(*) =1 (36)
such that, to leading order,

e =1 . @37

For r; (I*) =1, it further follows from Egs. (24) and
(28) that

rr(1*) = —% (38)
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and the susceptibilities take the form
1
-1 -2Q2~p)/(10~-3p)
XL.T—{_p/(p_z)]xlth(l*) 4 » . (39

From Egs. (29), (30), and (39) we obtain
Qa«ltlf >
Cy ltl_a ’

XL1 [t],

with « and y given by Eqgs. (15) and 8 given by
B=1—¢/(10-3p) , (40)

in agreement with scaling. However, from Egs. (39)
it follows that X7 < 0 for p > 2. Priest and Luben-
sky® suggested that the fixed point for 2 < p < l3°—
might correspond to a metastable state. The present
calculations show that the state is, in fact, unstable
for this range of p values. )
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