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We apply a recently proposed real-space renormalization-group method to the two-

dimensional square Ising model in a transverse magnetic field at zero temperature. We do the
calculation to

firsthand

second order in the intercell coupling; in both cases we find a nontrivial
fixed point. We compare the obtained critical exponents with accepted values for the three-
dimensional Ising model from high-temperature series expansions. In first order the agreement
is poor, in second order we obtain good agreement with the expected values,

In a recent paper', we proposed a real-space
renormalization-group (RG) method for quantum
spin systems on a lattice at zero temperature. Our
method is a systematic perturbation expansion which
reduces, to lowest order, to a truncation method dis-
cussed by several authors. ' ' In that method, one
divides the lattice into cells, diagonalizes exactly the
intracell Hamiltonian and takes a truncated basis con-
sisting of the lowest-lying states in each cell. The re-
normalized Hamiltonian is then the part of the origi-
nal Hamiltonian spanned by these low-lying states.
%e show in Ref. 1 that this procedure can be viewed
as a first-order calculation in the intercell coupling,
and show how to systematically carry it out to arbi-
trary order. In Ref. 1 we applied the method to the
one-dimensional Ising model in a transverse field to
second order and to the two-dimensional triangular
Ising model in a transverse field to first order. In the
triangular lattice, complications arise if one tries to do
a second-order calculation because, due to geometric
reasons, one generates a renormalized Hamiltonian
that does not have the same threefold symmetry as
the original one. In this paper, we apply our method
to the two-dimensional square lattice, which is
simpler from a geometrical point of view. It is
known' that the critical behavior of a d-dimensional
Ising model at zero temperature as a function of a
transverse field is the same as that of (d+1)-
dimensional Ising system in zero transverse field as a
function of temperature; therefore, we obtain from
our calculation the critical exponents for the three-
dimensional Ising model. %e compare our results
with high-temperature expansion results for the criti-
cal exponents of a three-dimensional Ising model.

%e consider the Hamiltonian

where i and j run over nearest neighbors in a square
lattice. %e divide the system into square cells of
four sites each, as shown in Fig. 1, and diagonalize
exactly the intracell Hamiltonian. The cell Hilbert
space of 16 states splits into two sets of eight states
each, corresponding to states with even and odd
number of spins up (or down). The eigenstates and
eigenvalues for those two sets can be found analyti-
cally and are listed in Tables I and II. Note that the
ground state for both limiting cases 5/e 0 and
e/5 0 can be formed from the lowest even and odd
cell states, i0) and

i 1); for 5/~ 0 the ground state is
simply

(2a)

(with p labeling the cells), while for e/5 0 the de-
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FIG. 1; Construction of four-site square ceHs.
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TABLE I. Eigenstates and eigenvalues of the cell Hamiltonian for the even subspace.

State Energy
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generate ground state is

I+) -II—', (l0). +-I».) E --»
~ (2b)

where one has to take the same sign for all cells.
When rL increases from zero (the "disordered
phase"), the gap between the ground state and the
first excited state narrows, till at a critical value

y, = (a/5), they become degenerate; beyond that point
we have the "ordered phase, " with (o.,) W 0.

Following the formalism described in Ref. 1, we

calculated the renormalized Hamiltonian to first and
second order in the intercell coupling. In first order,
we simply truncate 0 by keeping only its matrix ele-
ments with products of cell states IO)~ and I l)~. In
second order, we take into account transitions that
start from a state composed of cell states IO)~ and
Il)~, go through an intermediate state where at least
one cell state is higher than those, and return to a
state of only IO) and II)'s. The general expression
for the renormalized Hamiltonian to second order in
the intercell coupling Vis

H "'= X I i) E,gs + V„. + —, X V, V~
EI —E~ Eg —E~

where the states I i), Ij) are products of ce[I states
IO)~ and Il)~ only, and the states Ia) have a higher
excited state in at least one cell. EI is the unper-
turbed energy of state I i). Finally, we rename the
cell states IO)~ and II)~ as I

—)~ and I+)~, the eigen-
states of a new ceil-spin operator p, ~.

(4)

To first order, the resulting Hamiltonian has exact-
ly the same form as the original one (except for an
additive constant)

H„=d' X1+e' X p, ~—6' X p,g/4g,

where p and p' run over the cells of the original sys-



RENORMALIZATION-GROUP CALCULATION FOR THE. . .

TABLE II. Eigenstates and eigenvalues of the cell Hamiltoriian for the odd subspace.

State Energy
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(5)

which corresponds to the critical point described pre-
viously. Linearizing the recursion relation around
the fixed point, we find for the "thermal exponent"

v =1.197

We iterate this procedure and look for a fixed point
for the recursion relation for y = n/h. Besides the
trivial fixed points y = ~ and y =G (corresponding to
the two limiting cases described previously) we find a
nontrivial fixed point at

y, =3.2801, (6)

to be compared with the result from high-
temperature series expansion for the three-
dimensional Ising model~ v =0.625.

In second order, we generate new terms in the
Hamiltonian, which we treat as second-order quanti-
ties. The Hamiltonian one gets after n iterations has
the form

dn X 1 + &n g/gg ~n X /4xlgx /gn g/gx/gx gn X/gx/4x Cgn X /gx/gg/4x ~n I /4xlgg/gx Pn X/gg/gg i
I I (i.» i,j i,j i kj i kj i j
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yc =3 556 (10)

Linearizing the recursion relations around the fixed
point and diagonalizing the resulting matrix we find
six eigenvalues; two of them are complex but small
(absolute value less than 0.3) and we attribute them
to the approximation used; from the real ones, only
one is relevant (i.e., greater than 1)

=2.892 .

From it, we find for the thermal exponent

~here the couplings are sho~n schematically in Fig.
2. The recursion relations are shown in the Appen-
dix. We find a nontrivial fixed point at

e/5 =2.7266, p, /6 =0.88559,

h. /5 =0.167 93, 8/5 = 0.468 45,

n/Lk =0.41555, P/4 =0.22900 .

The intersection of the critical surface with the Ising
axis gives

temperature series expansions. ' In the next order,
we generate a contribution to the Hamiltonian

(18)

A, I =2.956, ~2=1.648 . (19)

The fact that A2 is larger than 1 is unphysical, due
to the approximation used. Taking the largest eigen-
value as our magnetic eigenvalue we find for the
magnetic exponent

P =0.285, (20)

again a marked improvement over the first-order
result.

As discussed in Ref. 1, the renormalization at the
fixed point leaves the Hamiltonian invariant only up
to a multiplicative constant

The recursion relations for h„and L„are shown in
the Appendix. Diagonalizing the linearized recursion
relations at the first-order fixed point we find the two
eigen values

v =0.653 (12)
( )

~n+1 +n+I
~ ~ ~

in good agreement with the expected value.
We now introduce a magnetic perturbation

Vp = h X a.„' .
As a further check on the method, we calculated
c(s), which can be shown from general arguments to
be 1/s, where s is the length scale change. 7 8 We find
to first order

To lowest order, the corresponding term in the renor-
malized Hamiltonian has the same form, with

(14)

c (s) = 0.698,

to second order

(21)

P I, =2.363

and from the relation

P = v(2 —log h. ~/log2)

we get for the magnetic exponent

P =0.909,

to be compared with P =0.3125 from high-

(15)

(16)

At the first-order fixed point this gives for the mag-
netic eigenvalue

c(s) =0.597, (22)

TABLE III. Comparison of our results with high-
temperature expansion and previous RG results.

which appears to be approaching the correct value
c(s) = —,'.

In Table III, we summarize our results for the criti-
cal exponents and compare them with other perturba-
tive RG calculations. Reference 8 is a calculation
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Approximation

High-temperature series
This calculation, first order
This calculation, second order
Triangular
2 x2x2 cell'
3 x3 x3 cellb

0.625
1.197
0.653
0,924
0.827
0.844

0.3125
0.909
0.285
0.5)2

0.332
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FIG. 2. Couplings in the second-order calculation. aReference 8. Reference 10.
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with Friedman's method9 for the triangular Ising
model in a transverse field to second order. Refer-
ence 10 is a calculation on the three-dimensional Is-
ing model using the Niemeijer —Van Leeuwen cumu-
lant expansion to second order. Our results to
second order show somewhat better agreement with
the expected values than the other approximate cal-
culations.

In conclusion, we have applied a zero-temperature
quantum renormalization-group method to the square
Ising model in a transverse field to first and second
order. In both cases, we find nontrivial fixed points,
corresponding to. the transition from a ground state
with broken symmetry to a nondegenerate ground
state. We find some unphysical eigenvalues due to
the approximation used. The values of the ex-

ponents compared with accepted values from high-

temperature series expansions for the three-
dimensional Ising model are rather poor at first order
and show a marked improvement in the second-order
calculation.
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APPENDIX

We label the sites in the cell as shown in Fig. 1. The recursion relations for the even part of the Hamiltonian

to second order are

"+i= -,
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%hen we include the magnetic perturbation, we obtain the additional recursion relations

h„) = 2 (0 I
o „I

i ) u —~„(S,+S,) ]a„+4 [ &0 I
a .I » ( &

~
I a, I » + &O I a, I O& ) + 2 (0 I a!a 2

I i
& ]L„,

L.,i
= &.—,
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