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Correlation functions for simple hopping in a face-centered-cubic lattice
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The correlation functions for a single specific particle and for a pair of specific particles are cal-

culated for an ensemble of particles making nearest-neighbor simple jumps in a fcc lattice. The
correlation functions are used to obtain diffusion coefficients and NMR relaxation times due to
I—S (unlike spin) and I—I (like spin) dipolar interactions for various concentrations of particles.

Our results are compared to previous theories and to experimental results on PdH„.

I. INTRODUCTION

Although the problem of atomic motion in a crystal
lattice and the NMR relaxation times due to the mo-
tionally altered dipo1ar interaction between particles
have been studied for years, many commonly used
expressions in the field have only semiquantitative
validity. However, we have developed a formalism'
which in principle allows one to calculate all correla-
tion functions and thus all relevant relaxation times
for any simple. hopping system. Recently this formal-
ism has been used to obtain the correlation functions
for an arbitrary concentration of particles hopping in
a simple cubic lattice. ' In this case we found, for ex-
ample, that the commonly'used random walk approx-
imation could be in error by as much as 18% at low
concentrations and by as much as 100% at high con-
centrations.

In this paper we derive expressions for the correla-
tion functions for a single specific particle and for a
pair of specific particles in an ensemble of particles
hopping in a fcc lattice. These correlation functions
are then used to calculate spin-lattice relaxation times
Tf,

In the rest of this section we shall briefly discuss
the relevant correlation functions and some of the
commonly used approximations for these functions.
In Sec. II, T~ is given explicitly in terms of these
functions. Further, expressions are derived for these
correlation functions and compared to expressions
derived using other models. In Sec. III numerical
results for Tt obtained from the various models are
presented and compared to existing experimental data
on hydrogen hopping in PdH„.

%hen discussing problems involving atomic mo-
tion, there is a possibility of confusing various ap-
proximations to a model with the model itself.
Throughout this paper the only model which we use
is the "simple hopping 'model", which is defined in
Refs. 1 and 2. In this model one assumes that the

probability per unit time that a particle at the site o.

will hop to a nearby vacant site P is given by the hop-
r

ping rate I & and that this rate depends neither on
time nor on the occupancy of sites other than a or p.
Obviously there is a question of whether this model
is a good description of a given physical substance.
In fact, this question is addressed in Sec. III.

However, given the simple hopping model, there is
the question of what approximations are made in ord-
er to obtain the correlation functions for one or more
specific particles. For example the single relaxation
time approximation and the random walk approxima-
tion4 refer to approximations for the simple hopping
model. The term "random walk" is particularly
confusing. One reason for this is that for a lattice of
equivalent sites, the occupancy of the sites by any
particle can be correctly described as a random walk.
However, the movement of one or more distinguish-
able particles cannot be described as a random walk!
Unfortunately the random walk approximation ' is
sometimes presented as or thought to be the exact
solution to the simple hopping problem. This defin-
itely is not the case.

A particle hopping through a lattice feels an effec-
tive time-dependent dipolar field due to other hop-
ping particles and possibly also due to stationary par-
ticles. T~ is determined by the frequency spectrum of
the correlation functions describing the relative coor-
dinates between these interacting particles. The in-
formation on how a particle hops is thus given by the
particle correlation functions. The first and simplest
attempt at these functions is the Bloembergen, Pur-
cell, and Pound (BPP) or single relaxation time
(SRT) approximation, where the time dependence is
a single time decaying exponential. This actually
describes. a particle at a fixed position disappearing,
not a hopping process at all. A much improved
theory, which actually takes into account the hopping
nature and the lattice structure, was presented by
Torrey. 4 This approximation describes the particle
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motion as a random walk (RW) through the lattice.
Later, Sholl5 repeated Torrey's calculations improving
on the numerical techniques.

However, neither SRT nor RW takes into account
any correlation between hopping particles. These
correlations give rise to diffusion constants which are
lower than those in the R% approximation by as
much as 25% for a high concentration of particles in

a fcc lattice. Further, errors of nearly 200% and 50%
in T~ are found for the BPP and RW approximations
respectively, when compared with the present corre-
lated theory in certain limits. Recently Wolf has
developed the monovacancy model .(MV) which

treats correlations exactly in what is essentially a
- computer simulation. However, this model is only

applicable when the concentration of vacancies ap-

proaches zero.
Our formalism allows for the calculation of single

particle and pair correlations at any concentration.
The hopping rate does not depend on the particle's

past history and, in the present case, is symmetric, in

that the hopping rate from site 1 to 2 is equal to hop-

ping rate from 2 to 1. Hopping to occupied sites is

forbidden which blocks a particles path and increases
the likelihood of a particle hopping back to it's previ-

ous site as the concentration increases. A more seri-
ous assumption is that hopping to a particular site is

independent of occupancy of that site's neighboring
environment. This means that the potential well of
an unoccupied site does not depend on the occupancy
of it's neighbors.

There are two distinct contributions to T~ for the
nuclei of the hopping particles. One contribution,
denoted by T~(I I), is from the —motionally altered
dipolar interaction between pairs of hopping particles.
Ihe correlation function for a pair of hopping parti-

cles is necessary for calculating this contribution.
The other contribution to Tt, denoted by Tt(l S),is-
due to the motionally altered dipolar interaction
between a hopping spin and other spins at fixed lat-

tice positions. For this term the correlation function
for a single particle with respect to the fixed lattice is

required. In general, both mechanisms can be impor-
tant. However, for the protons in PdH„, the I—I in-

teractions dominate at all but the lowest concentra-
tions of hydrogen.

The necessary correlation functions are discussed
in detail in Ref. 2. The single specific particle corre-
lation function is defined as

D;(R —R~, t) = (p, (t) p,a(0))8(t),

p; —= (W) P;

D~J(R~, R;Ra, Ra, t) = (p;~(t) p~-(t)

xp,. (0)p -(0))e(r), (2)

where i and j refer to different specific particles.
Since we only need the correlations between the par-
ticles i and j, we define

DJ(R, Rp, t) = — /DE(R + R„,R~;
'y 'y

Rr + R„,R-;t), -

f

which is the average of D&& over all initial and final
center of ~ass positions.

II. RESULTS

In this section we develop the expressions neces-
sary to evaluate the two contributions to the spin-
lattice relaxation time T~ and compare our model to
previously used models. The notation used is identi-
cal to or a slight generalization of the notation used
in Ref. 2. In particular, quantities which depend on
space and time are Fourier transformed as in Eq.
(6)—(8) found in Ref. 2. In addition, the nuclei as-
sociated with the hopping particles will be referred to
as I-spins while the host; or stationary spins will be
referred to as S-spins. We let & denote the concen-
tration (the number of particles divided by the
number of sites) of the I-spins.

The two contributions to T~ can be combined as

(1/Tt) = [1/T)(l —I)] + [1/Tt(1 —S)] . (4)

As discussed in Ref. 2, the expressions for T~ are re-
latively simple if a given I-spin site possesses cubic
site symmetry with respect to both the other I-spin
sites and the S-spin sites. In this case, one obtains

where o. is a lattice site, N is the number of sites in
the lattice, and P; is a stochastic variable whose
value is one if the particle i is at site n and zero if
not. 0 is the step function, R the position of the site
n, and () denotes an ensemble average. The corre-
lation function for a pair of specific particles is de-
fined as

(I I) = (
qq

A ) [ Doo'(ru) —(2—Sh) + Doo'(2a)) (8—20h) + D„'(a)) (24+90h) +Dit'(2o)) (96—240 h)
1

+Dye'(o)) (6—15h) + Dgg'(2(o) (24+90h)],
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(I S—) = (—,'p 8) [(2 Sh) [2Dpp'(o)+) +Dpp'(a)) +24D))'(a)+) +4D))'(o) ) +3D22'(co) +2D22'(«) )]
T]

+
3

Dpp'(a) )(1+10h) +6D)1'(co)(4+15h) +3D22'(co+)(4+15h)], (6)

where

A =1(1+1)il yr4c/ap6

8 =S(S+1) il y12y2Q/apP,

h = Xli4 ——3

Here yl and y, are the gyromagnetic ratios of the
I and S spins respectively, Q is the natural abun-
dance factor for the S spins, I~ are direction cosines
of the external magnetic field with respect to the cry-
stalline axes, co is the resonant frequency of I-spins,
co+=ao+co, where ~, is the resonant frequency of
S-spins and ap is the length of a cube edge. %e
have used

r

where z is the coordination number, e is the concen-
tration of vacancies, and I"p is the nearest neighbor
hopping rate. For an fcc lattice, z =12.

In particular, we apply the above relations to the
hydrogen palladium system. It is believed that hy-

drogen goes into the palladium lattice in the intersti-
tial octahedral sites to form its own fcc lattice dis-

placed from the host palladium by 2 ap in the x direc=

tion. In various temperature-concentration regions
the hydrogen behaves as a simple hopping system.
For the fcc lattice, the hopping rate from site a to P
1s

~here
6 '(r ) =, X T (q) D»'(q, q', o)) T' (q'),

N qq
f(q) =2 X cosQ;cosQi, (13)

D '(pu) =—X T (q, rp)D (q, a&) T'(q, rp),
q.

where D', D' denote real parts of D, D and T (q),
T (q, rp) are given by

Tp T~ + Tyy 2 Tgz p

T~ = Txr ITyz

T2 T~ Tyy 2 / Tzy

where Ti(q), T»(q, rp) are Fourier transforms of
T'J( R ), Ti ( R, rp) respectively where

1

and i,j refer to x,y, z components and Q;= —,q;ap.

Also, rp in Eq. (10) is (z ap) (1,0,0).
The heart of the hopping problem is the calculation

of Di(q, q', co) and D, (q, ro). As in earlier work, '2
it is convenient both physically and computationally
to express the correlation functions in terms of self-
energies or memory functions K and K These quan-
tities are defined by equations

co D,&(q, q', co) +i XK,i(—q, q ", u) D»(q", q', ~)
N

T&( K) = a p3R;Ri/~ R ~5, K & 0,
T»(K, rp) =ap (K+rp), (K+rp)&/~R+rp~',

(10)
coD;( q, cu) +iK;(q, co) D; (q, cu) =i .

where R is a lattice vector, rp is the displacement of
the I lattice from the S lattice, N is the number of
lattice sites, and q is a wave vector in the first Bril-
louin zone.

The dipolar Fourier transforms can be evaluated
numerically using Ewald's method' and the rates can
be written conveniently as

1 A(I I) =—[gp(a)r ) + hg, (Q—)T )]
T] co

A summary of the various models used to find K
and K are discussed in Ref. 2. Briefly, the SRT ap-
proximation assumes that K and K are independent
of q and co and leads to

D»(q, q ', o)) =iN 5-, -, ,/(ru+ 2i I',),
D;(q, o)) =i/(u)+i I',) .

The R% approximation yields

1 8(I S) = [fp(cur, ) +hf, (r ——r,)],
Tf Cd

for a given ratio of ru, /ru In these equati. ons we have
defined a correlation time ~, and a correlation rate I',
as

D&(qq', cu) =, iNS--/ [cu+ 2icu, (q)],

D, (q, co) = i/[pu+ i', (q)],
~here

co,(q) = c [12I'p —I'(q)] . (17)

c=l —c,
(12) Neither of these approximations tackles the problem

of correlations between particles in any detail. The
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SRT approximation has no correlations while the ran-
dom walk includes only the reduced hopping rate
c 10, due to the average occupation of neighboring
sites. Wolf's MV model does include correlations by
following a single vacancy about in the lattice but ap-
plies only as c approaches unity.

Our mean-field approximation (MF) takes into ac-
count, in an average way, correlations of the parti-
cles. For. D;, this mean field is the same as the ran-

dom walk approximation as long as the factor (1—e)
is included, which corrects for the average vacancy of
neighbor sites. The mean field for D& is made up of
each particle i and j in the mean field of the rest of
the hopping particles plus the restriction that the two
particles can rigorously never occupy the same site.
By methods similar to those in Ref. 2, the fcc gen-
eralization of Eqs. (22), (23) in Ref. 2 for the mean-
-field approximation becomes

r

,
'

I ~J 1—8 c1 pF(c2cy(cy c,), cu)—

~ + sing;stng~sing sing/
I—8 c r,r(s„'s„',~)

(18)

dp(q, a)) = I/[a)+2ia), (q)l,

F(r, o)) =—$t(q) dp(q, co),
q

(19)

and c„,s, etc. , stand for cos g and sin g„.
In Ref. 2 we developed an approximation scheme

for computing D; and DJ which we called the multi-
ple scattering (MS) approximation. Since the scheme
can be generalized to the fcc lattice in a perfectly
straightforward (but tedious) manner, we shall not
present any details of these calculations. In order to
reduce the results for D;(q, co) to a managable form,
we have fit the self-energy E;(q, ao) numerically to

where D is the diffusion constant. From Eqs. (14)
and (20) and the definition of co, (q), we obtain

f, .= 1 —cn(e) . (24)

r

d~(q. ru) = J D;(q, co)D;(q, pu
—cu') . (25)

This gives the correct published value of 0.781 when
c approaches unity. '0

As in Ref. 2, the MS approximation for the pair-
correlation function DJ(q, q'; pu) is obtained by using
Eq. (18) with dp(q, pu) replaced by d~(q, m), where

~( ) ( ) 1 —ca(q c)
~

1 —i cuba ( q, c) /2I p

(20)

where

a(q, c) =a(c) +P(c)co(q)/121'p,

~(q) =ru, (q)/c, (21)

and u and P depend only on c and not on q or cu.

The value of a is given by

n =0.139(1+0.301c)/(1 —0.173c) .

The value of P as a function of c is given in Fig. l.
As can be seen, P is or order 10 ~ for c & 0.8 but in-

creases very rapidly for larger values of c. It turns
out that P is a reasonably good measure of how good
the numerical fit is. For values of c & 0.9 Eqs. (20)
and (21) yield a value of D;(q, ~) that is correct to
within about: 1/o. As c increases above 0.9, these
equations give values of D;(q, co) that are rapidly
becoming more unreliable. The tracer correlation
factor f, is defined by the equation

l

0.0 0.2 0 4 0.6 0.8 I.O

D = —, f,i', a, p2 (23) FIG. 1. Concentration dependence of P, defined by Eq.
(21).
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TABLE I. The dimensionless constants b (0), b (~), a (0), and a (~) defined by Eqs. (26)
and (27). The quantities ai(0) and bi(0) are zero.

Theory

b, (0) b, ( ) ao(0)

BPP (any c)

RW (any c)

MF (any c)

MS (c 0)
MS (c =0.1)

MS (c =9.2)

MS (c =0.3)
MS (c =0.4)

MS (c =0.5)

MS (.=0.6)
MS (c =0.7)

MS (c =0.8)

MS (c =0.9)

115.6
215.1
226.7

226.7

229,2

232.0

235.4

239.4

244.2

&50.2

257.9

268.5

285;0

185.0

156.5

143.7

143.7

143,7

143.7

143.7

143.7

143.7

143.7

143.7

143,7

143.7

29.4
24.5

21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5

562.7

651.8
651.8
651.8
660.3

669.8
680.8

693.5
708.5

726.7

749.7

780.9
829.7

459.0
634.9
634,9

634.9
634,9

634,9

634.9
634.9
634.9
634.9
634.9
634,9
634.9

1.99
2.17

2.17

2.17

2.17

2.17

.2.17

2.17

2.17

2.17

2.17

2.17

2.17

The first term in the ensuing equation describes each
particle i and j hopping in the lattice without regard
to each other. The second term is the lowest-order
correction to the restriction that both particles cannot
be at the same site simultaneously. This second term
is roughly a 7% correction for the fcc lattice. The
corresponding correction for the sc lattice (with half
the number of nearest neighbors) was about twice as
much.

III. COMPARISON WITH EXPERIMENT

g~(») -b~(~)l», f (x) a (~)/», (26)

for x )& 1 and

b (0)x, f' (x) a (0)x, (27)

In this section we summarize the results of our cal-
culations and compare them to existing experimental
data. The computations for Tt(1 I) and Tt(1 S)— —
for any specified concentration and frequency are
easily performed using the prescription described in
Sec. II. The results of our computations in the
asymptotic regions of cow, && 1 and co7, « 1 are
given in Table I for a wide variety of concentrations.
The results are displayed in terms of the dimension-
less constants b (0), b (~), a (0), a (~) defined
by the equations

for x « 1. The results for the b's are independent
of the gyromagnetic ratio of the host nuclei but the
values of the a's depend on 5 where

re+ = (1 + 6) au . (28)

Table I has beeri constructed for 5 = —0.041 which is
appropriate for hydrogen in Pd, In general, for small
values of 4, corrections to the a's are of order 6
compared to one. The corresponding values for thc
a's and b's for other theories are also included in
Table I.

We have compared our theory to the Ti experi-
ments of Cornell and Seymour" on PdH„powders
with x = c =0.7. In Table II we have listed the
results for Tt (Tt at the Tt minimum) with
a0=4.04 A and have also listed the value of cu, ~ at
which the Ti minimum occurs. As can be seen,
Ti(1 S) contributes o-nly about 3% of the total Tt.
Further, all theories give virtually identical results for
Ti although the values of co~, at which this
minimum occurs differ significantly.

All of the theoretically derived values of Ti are
about 10% smaller than the experimentally observed
T& 's. This is a rather large discrepancy since we be-
lieve that our calculations are good to about 1%. The
discrepancy could be resolved by a 2% increase in ao
or a 10% decrease in e. However, these changes
seem too large to be viable alternatives. Of course,
as suggested by others, the discrepancy could also be
due to a repulsion between nearest neighbors. This
repulsion would lengthen Ti because particles would
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TABLE II, Values of T& at the T~ minimum in msec for PdH07. Experimental values have

conduction electron relaxation subtracted oA'.

Theory Tj (7 MHz) T, (11 MHz) T, (47 MH

Experiment

SRT (1-1only)

RW (1-1only)

MF (I-I only)

MS (I-I only)

MS (1-1+I-S)

1.23

1.03

0.95

0.83

0.85

11.9 + 0.4
9.71

10.57

10.52

10.92

10.64

19.4+0.8
15.25

16.62

16.54

17.16

16.71

77+6
65.17

71.00

70.65

73.34

71.91

b (0) +— (0) (29)

where f, (e) is the tracer correlation factor of Eq.
(24). The MS theory for PdHo7 with ao ——4.04 A

gives

D
Tf

=21.25X10 7(cm/sec)' .

tend, on the average, to stay further apart. With a
small concentration of vacancies this effect would be
nonexistent because essentially all protons would
have to have nearest neighbors. Thus we would ex-
pect this effect to be of order c 2 which, for the
present case, would be a 10% effect.

Another meaningful comparison with experiment
can be made at high temperatures (&ur, 0), where
both diffusion and T~ measurements have been
made. In this limit the ratio of diffusion constant to
T~ is independent of I, and, is given by the equation

In Table III, the experimental and theoretical values
are listed using D =- 9.0x10 4e "ev/ks Tcm2/sec
as given by Seymour, Cotts, and Williams. " Howev-

er, as discussed in Ref. 2, the asymptotic values on
the low-frequency (high-temperature) side of the T,
minimum are not reached very quickly. Thus we

have had to correct the value of D/Tt by a factor g

to take this into account.
In this case the agreement between our MS theory

and the experimental results is quite good although
there is a 20% scatter in the experimental values of
D/T~. However, at frequencies of 11 and 7 MHz,
the agreement is to within 2'/o. On the other hand,
the three other theories give values of D/Tt that are
consistently significantly less than the measured
values. The agreement with the Tj data in Ref. 13 is

roughly similar.
It is somewhat difficult to reconcile this good

agreement with the discrepancies in T~ . If, for ex-
ample, the theoretical values of T~ v ere raised by

TABLE &II. Comparison of the experimental values of D/T& in the high-temperature regime with the theoretical values of

various hopping models. The quantity 5 is a model dependent quantity which is used to adjust the theoretical asymptotic values

to small but finite values of 0)~, .

Experiment

v T D/Ti

(MHz) ( K)

Theoretical

asymptotic (cur-, 0)

(D/ Tg) pzy

SRT RW MF MS (e =0.7)

Nonasymptotic adjustment

factor

Theory

5 ~(D/T, )„y
SRT RW MF MS (e =0.7) SRT . RW MF MS (e =0.7)

47

47

47

11

11

7

329

318
311
321

308

324

15.1 9 64 17.7 18 7

15.9 9.64 17.7 18.7

13~ 8 9.64 17.7 18.7

18.7 9.64 17.7 18.7
177 964 177 187
19 3 9 64 177 18 7

21.3
21.3
21.3
21.3
21.3
21.3

0.969 0.748 0.795

0.938 0.680 0.701

0.932 0.661 0.684

0.996 0.865 0.879

0.993 0.843 0.855

0.995 0.909 0.91&

0.760

0.678

0.665

0.866

0.846

0.919

9.34 13.3 14.8

9.04 12.8 13.1
8.98 11.7 12.8

9.60 15.3 16.4
9.57 14.9 16.0

9.59 16.1 17.1

16.2

14.4

14,2

18.4
18,0

19.6
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IOO—

IO—

5 6
IOOO/T (K)

FIG. 2. I.og eve, vs 1/T(K) for PdH07.

and 1/Tt by the same factor. At present, we have no
solution to this dilemma.

The temperature dependence of I 0 can also be
found using the experimental values of T~ and tem-
perature and comparing with the MS values of Tj
and cur, . Our MS results were multiplied by an
overall constant factor to give the exact T~ minimum
as reported by Cornell and Seymour at 7 MHz. In
Fig. 2, log cur, is plotted versus l/T. The straight
line segment at high temperaures gives an activation

"energy of 0.25 eV if an Arrhenius relation is as-
sumed. Note that the Arrhenius behavior is obtained
on both sides of the T~ minimum but cease at about
200 'K. Points very near the T~ minimum are not
included because T~ vs ~7, is very flat near the
minimum. Any differences then, between theory
and experiment, could lead to large variations in the
"derived" co7, . Results similar to these were obtained
by Torrey' using a random walk approximation at
c =0.64. Torrey finds the knee at 220 'K.

These comparisons between theory and experiment
give credibility to the simple hopping model in PdH„.
For instance, as mentioned in Sec. I, the simple hop-
ping model ignores any possibility that there may be
a repulsion or nearest neighbors to be simultaneously
occupied. This repulsion should lengthen the time T~
considerably, because particles would tend to be, on
the average, further apart making their dipolar in-
teraction weaker. Our values at the T~ minimum,
possibly allow for this to be taking place, but it must
be a very weak effect because of the short ranged
?/r' dependence.

about 10% for all values of ~7, the experimental and
theoretical values of T~ would agree. However, the
theoretical values of D/T~ for the MS theory would
be too small and the values of D/T~ for the other
theories ~ould be even worse. It is also hard to be-
lieve that any effects due to repulsion could change D
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