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We consider the generalized Ising model for a spin-1 system, i.e, , the most general static Ham-
iltonian with pair interactions in a spin-1subspace. This Hamiltonian has previously been used
to model lattice-gas systems, ternary alloys, and normal liquid mixtures, as well as other three-
state systems, . As special cases one obtains the Blume-Emery-Griffiths model for 3He-4He mix-
tures and the Blume-Capel model for singlet-ground-state systems. Here we use exact high-

temperature expansions in field, to the linear term in P = (k~ T) for the pair-correlation func-

tions, to construct the generalized static susceptibility. The singularity in the susceptibility as the
system is lowered in temperature yields an expression for the temperature at which the system
becomes unstable with respect to fluctuations in the order parameters. This stability tempera-
ture is a function of the order parameters and the interactions. Our result is equivalent to the
mean-field approximation (with its incumbent limitations) and yields a surface in thermodynam-
ic space which separates regions of stability (or metastability) and instability. We look specifical-

ly at the stability surfaces and stability temperatures for a number of special cases as well as the
general result.

I. INTRODUCTION 1(gg) =0 . (1.2b)

The spin- —, Ising model in field has been used to

model a multitude of two-state systems which exhibit
cooperative phenomena. ' This is in addition to its
original purpose of describing the behavior of a high-
ly anisotropic ferromagnet. -The Hamiltonian for this
system can be written

H= —
2 QI(gp)SgSp hQSg—

I(gp) = I(pg) = I (I g
—

p I), (1.2a)

1
where Ss is the z component of a spin-

2 ( h= I )
vector at site g and I(gp) is a translationally invariant
pair interaction with

The effective external field conjugate to Sg is given
by h.

The study of Ising systems with spin greater than
one-half as models for real systems is a relatively. re-
cent phenomenon. This has been prompted in part
by (a) the discovery of magnetic systems which are
indeed highly anisotropic and thus Eq. (1.1) is a rea-
sonable description, 2 (b) the ut'ility of describing mul-
ticomponent systems with Hamiltonians similar to
Eq. (1.1), and (c) the richness of the phase transi-
tions exhibited by these multicomponent systems. It
therefore would appear worthwhile to generalize the
concept of the usual Ising model to higher spin sys-
tems. Thus, in analogy to Eq. (1.1), we define the
generalized Ising model (GIM)' for spin S as

IV 2S , 1
w 2S

H. -- Xgh, (~,*).——, X g I...,(g,g,)(S,*,) &(S;,)'
8) g2 +) a2

N 2S

3(glg2g3) (Sgl ) (Sg ) (Sg )
g) g2,g3 Ol), Q2, A3

N 2S

-.„(glg2 g.)(S;,) '(;,)" . . (S,*„)",
'

g~ g2 ~ ~ ~ g„~~.~2-'~„
(1.3)

where h are effective external fields (possibly non-
physical) conjugate to the operators (S~) and
Ia a2(glg2)tIa a a3(glg2g3) Ia a a„(glg2 ' ' ' ga)

are two-body, three-body, and general n-body interac-
tions, respectively. The limit on the spin summations

I

in Eq. (1.3) is given by the kinematic constraint

2S+1

g (Sz S) 0 (1.4)

where S = —S, —S+1, . . . , S —1, +S. Since Hq
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H& =—X[h&Sg +h2(Sg)')

——,
' x [I))(gp) SgSp+ I22(Sg)'(Sf)'

+ I)2(gp) Sg(S~)'

+ I»(gp) (S,*)'SP, (1.5)

which, for ease of notation, we rewrite

H= H) = —x [h)—Sg+ h2(Sz) q

——' X [Ii(gp) S'S'

+ I2(gp) (S')'(S')'

+I3(gp)Sg(Sp)') . (1.6)

The study of special cases of Eq. (1.6) began a lit-

tle over a decade ago with the introduction of the
Blume-Capel' model (BCM). The BCM is obtained
from Eq. (1.6) by retaining only the bilinear interac-
tion It(gp) and the field h2. At that time the model
was used to describe a singlet-ground-state system in
the presence of uniaxial single-ion anisotropy. The
model is also of interest (among many other reaso, ns)
because it exhibits a tricritical point.

If, in addition to I~(gp), we also retain the quadru-
polar interaction I2(gp) we obtain the Blume-Emery-
Griffiths (BEG)9 model for 'He-4He mixtures. Also,
in this form, the GIM is applicable to magnetic sys-
tems having both dipolar and quadrupolar interac-
tions. '

The full GIM Hamiltonian of Eq. (1.5) has been
used by Mukamel and Blume" in the mean-field ap-
proximation (MFA) to study tricritical points in ter-
nary mixtures. Also Sivardiere and Lajzerowicz'
have used Eq. (1.5) as the basis for a spin-one
lattice-gas model, in a MFA, to study the properties
of simple fluids and binary and ternary fluid mix-
tures. The GIM has also been used to study the
properties of ternary alloys in both the ordered' and
disordered' regimes. The global phase diagram for
this system in the MFA has recently been considered

commutes with operators made up of (S~)', the
GIM is particularly convenient for describing the
thermodynamics of many classical multicomponent
systems, or (2S+1)-state systems.

In the present paper we will be primarily interested
in the GIM for spin one with only two-body interac-
tions. We do note, however, that the use of both
three-body' and four-body potentials' in Eq. (1.3) has
occurred in the literature. For the spin-one system
we write from Eq. (1.3)

by Furman, Dattagupta, and Griffiths. "
While most of the above cited works have used the

MFA in determining the system thermodynamics,
the methods of the renormalization-group approach
have also been applied to special cases of Eq. (1.5),
i.e., the BCM' and the BEG' model. This interest
has been prompted by the fact that these systems ex-
hibit tricritical behavior, as well as other interesting
critical phenomena.

For a thermodynamic system knowledge of the re-
gions on the phase diagram where the system be-
comes unstable with respect to fluctuations in the or-
der parameters is vital to understanding the prop-
erties of the phase transition. For a binary phase-
separating solid solution, ' for example, the phase di-
agram is divided by the miscibility gap and the spino-
dal into regions of stability, metastability, and insta-
bility. Likewise in magnetic systems the phase di-

agram is divided up by the magnetization curve and
the stability curve. The behavior of these curves
determines whether a phase transition will be first or
second order. In either case it is important to locate
the stability curve in order to better understand the
phase transition and also since it plays an important
role in the transformation kinetics. '

In the present paper we present a straightforward
and physically appealing way of calculating stability
surfaces for classical multicomponent lattice systems,
i.e., systems described by the GIM. The method is
based on classical fluctuation theory and uses high-
temperature series expansions for the pair-correlation
functions in field. The pair-correlation functions are
used to construct the generalized static susceptibility,
and an appropriate series inversion is performed.
Singularities in the generalized susceptibility then
yield expressions for the stability surfaces.

As an example of the technique we calculate the
stability surfaces for the spin-one GIM within the
MFA only. Consequently our results are not dif-
ferent from many of those mentioned above, and
also suffer from problems intrinsic to the MFA.
However, the technique used here is directly amen-
able to extensions beyond the MFA, and we have re-
cently presented these results for the ternary alloy. '

After presenting the MFA results for the spin-one
GIM we will look specifically at a number of the
more common special cases.

The outline of the paper is as follows: in Sec. II we
present the results for the pair correlation functions
based on the spin-one GIM and in Sec. III discuss
the correlation-function approach (CFA) and con-
struct the static generalized susceptibility. From this
generalized susceptibility we calculate the stability
temperature as a function of the order parameters
and the interactions. In Sec. IV we discuss stability
surfaces and investigate the surfaces for a number of
special cases. We conclude in Sec. V with a discus-
sion of the results and the technique.
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II. HIGH- TEMPERATURE EXPANSIONS

The usual approach to determining the equilibrium
thermodynamics of systems governed by Hamiltoni-
ans of the form (1.3) is to calculate the free energy
by using some appropriate approximation: usually a
cluster approximation or a variational technique. The
free energy can then be used to determine the
behavior of the order parameters and consequently
the properties of the phase transition. This procedure
and the various approximations are well documented
in the literature. '"

Although the calculation of the exact free energy is

the ultimate goal of any thermodynamic problem, in

most cases it is not feasible and sometimes not
necessary. Indeed the approach taken here works
directly with the correlation functions rather than the
free energy. While we do not have access to all the
informatio'n available from the free energy, we do
have a straightforward and physically appealing pro-
cedure for working in the disordered regime using
correlation functions calculated by means of high-
temperature series expansions. In this section we will

discuss the calculation of the correlation functions,
while we will determine the stability surface in Sec.
III.

A number of papers have considered the correla-
tion functions, and hence the susceptibility, for spe-
cial cases of the GIM for spin one by using high-

temperature series expansions. " However, all of
these studies, besides only looking at special cases of
the GIM, have either considered only zero field or
have not calculated all of the correlation functions
relevant to the GIM. Also most of these studies
have been concerned only with the critical point for
second-order phase transitions.

The exception is the work of Tahir-Kheli' in

which all correlation functions relevant to the spin-
one GIM are calculated for arbitrary fields. This ex-
pansion itself is based on exact formal relationships
for the correlation functions, which are unique to the
GIM. Besides forming the basis for high-temp-
erature expansions, " '0 the correlation identities can
serve as a starting point for calculations in the or-
dered regime' and have recently been used to inves-
tigate the critical region. '

We refer the interested reader to Ref. 14 for the
details of both the derivation of the correlation func-
tion identities and the series expansion techniques for
the three-state system. We do point out that in order
to keep the fields arbitrary the expansion coefficients
are temperature dependent, but due to grand canoni-
cal averaging our final expression contains only the
interactions and the order parameters.

For the spin-one system there are two order
parameters,

and

Q
—((Sz)2) (2.1b)

where ( ) is the usual thermal average. The
results for the pair-correlation functions from Tahir-
Kheli's paper' for an expansion to the first order in
p=(ksT) ' are

(SgS~) —m2 = 5g~(g —m2) +Pit(gp) (g —m2) 2

+PI2(gp) m'(1 —Q)'

+PI3(gp) m(1 —Q) (g —m')

+ O(p2) (2.2)

and

(Sg(S~)') —mg =5~m(1 —Q)
+pm (1 —Q) [I)(gp) (Q —m')

+12(gp) g(1 —g)]

+ ,
'

P13(gp) (1 —g)—(m'+g' 2m'—Q)

+O(p') . (2.4)

As it turns out, these results to the first order in P
are equivalent to the MFA. '"

An equivalent problem to that described by Eq.
(1,6) is the ternary alloy of arbitrary concentration. '4

The ternary alloy formalism affords us a particularly
convenient way of describing the kinematic con-
straints on m and Q. Solving for the free energy
would enable us to calculate m and Q explicitly.
However, since we have not done this here we con-
sider the limits for these parameters by way of
kinematic constraints.

Now in the ternary alloy the concentrations of
components A, 8, and C are given by m&, m~, and

mc, respectively. The concentrations are positive and
obey the sum rule

mg + fp1g + mg = 1 (2.5)

We can relate the concentra ions of the ternary alloy
to the order parameters of the GIM by'

mg = —,(g+m)1

ms =1 —Q

my=-, (g-m)1

(2.6a)

(2.6b)

(2.6c)

((S*)'(S;)')—Q'= & Q(1 —Q)

+p(1 —Q)'[1)(gp) m'+ I2(gp) Q'

+ I3 (gp) mg] + 0 (p2)

(2.3)

m =—(Sg) (2.1a) ~e immediately see (Fig. 1) that we have the
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-I.O I.O temperature, T,. We can represent this divergence
by recognizing that the Fourier transform of the
correlation function is proportional to the static sus-
ceptibility, or scattering intensity, ' i.e.,

X(k) = XX(gp)e '""
8'

X(gp) = —XX(k)e'""

(3.1a)

(3.1b)
I Oir

Q

Q = I.O

FIG. 1. Kinematically allowed region defined by Eq. (2.7)
in the v =0 plane. The Potts point m =0, 0 =

3
is indicat-

ed.

where

X(gp) = (SsSg) —m' . (3.2)

Thus the divergence in the correlation function can
be written

kinematical constraints on m and Q,
X(k) -~ (3.3)

O~m ~Q
O~Q~1
0~ —m ~Q

(2.7a)

(2.7b)

(2.7c)

and

(2.8b)

which are the usual paramagnetic results for spin one
and in the ternary alloy problem corresponds to the
equicomposition limit. We have indicated this point,
Eq. (2.8), in Fig. 1. The limit of m = Q =0
corresponds to a pure B system, while Q =+1,
m = —1 and Q =+1, m =+1 correspond to pure C
and A, respectively.

We are now ready to calculate the stability tem-
perature using the correlation functions.

III. CORRELATION-FUNCTION APPROACH

The correlation functions are the natural variables
for describing a system if we approach the transition
temperature from the high, or disordered side. Thus
we see from Eqs. (2.2)—(2.4) that if T co (p 0)
and g ~ p, there are no correlations in the system,
and in some sense it is behaving as an ideal gas (no
interactions). However, as the temperature is
lowered the interactions come into play, and the sys-
tem becomes more like a real gas. Local regions of
clustering or ordering appear and many-site correla-
tions come into play. This behavior is built into the
high-temperature expansions of Sec. II in a self-
consistent way. '

Finally, as the temperature is lowered further the
correlation function will possibly diverge4 at some

Basically, this is the usual Gibbs triangle for the con-
centrations in the ternary alloy. We also note that in
the zero-field limit (ht = h2 =0),

(2.8a)

X (k) = Xp+PXt(k) + (3.6)

We note that Eq. (3.6) does not exhibit singularities
as T T, and k k, . In order to introduce singu-
larities we therefore perform a self-consistent series
inversion on Eq. (3.6) so that

(3.7)

[For details of the series inversion, as well as justifi-
cations, for binary systems see Ref. 28.] 6 is a
wave-vector independent normalization constant
determined by the conservation of the scattering in-
tensity, i.e.,

—XX(k) =Xc .
k

(3.8)

as k k, and T T,. Here k, is a lattice vector as-
sociated with the ground state, i.e., k, =(0,0, 0) for a
ferromagnetic ground state (phase separation) and k,
is finite for an antiferromagnetic ground state (or-
dered system).

For the spin-one GIM we have in general three
pair-correlation functions, or susceptibilities, given by
Eqs. (2.2)—(2.4). Consequently, instead of dealing
only with the usual susceptibility above, i.e., Eq.
(3.2), we must consider all three. Tahir-Kheli" has
recently proposed, in the context of the ternary alloy
problem, that we should consider the divergences in
the correlation matrix, i.e.,

(3.4)

In other words, we should look at the behavior of the
correlation matrix,

X. (gp) =' ((S;) (S;)s) —((S,*) ) ((S;)s), (3.5)

where a, p 1, 2, . . . , 2S, instead of the individual
susceptibilities.

The Fourier-transform of Eq. (3.5). can then be ex-
panded in a high-temperature series as in Eqs.
(2.2)-(2.4),
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We see from Eq. (3.7) that the divergence in the
magnitude of the scattering intensity, i.e., Eq. (3.4),
can thus be written

(3.9)

as T T, and k k, . The resultant equation is a
polynomial for P, ' as a function of the order param-
eters and the interactions.

This technique has recently been used to look at
the ternary alloy in the MFA and for the first-order
corrections to the MFA." Also the influence of
three-body potentials on Eq. (1.6) has been con-
sidered in the MFA -for the tenary alloy. The tech-

x„(k,) x»(k, )

X2t(k, ) X22(k,)
(3.10)

Substituting from the series-expansion results for
X,a(k, ), i.e., Eqs. (2.2)—(2.4), we can solve Eq.
(3.10), or (3.9), to yield

nique, which we have called the correlation-function
approach, has also been applied to quaternary
(S= 2) alloys. 3~

Applying this technique to the spin-one GIM we
formally have for the divergence in the static general-
ized susceptibility,

p, —p, '[Jt(k,) (Q —m ) +J2(k,) Q(1 —Q) +J3(k,) m(1 —Q)]

—(1 —Q) (m —Q ) [J~(k,)J2(k,) —
4 J3(k,) ] =0 (3.11)

where J,(k,) are the Fourier transforms of the interactions 1,(gp). Generally, in the MFA, the solution to Eq.
(3.4) is a polynomial of order 25 for a spin-5 GIM.

The solution to Eq. (3.11) can immediately be written

P, ' =
2 [J&(k,) (Q —m') +J,(k,) g (1 —g) +J,(k,) m (1 —Q) ]

+
2 ([Jt(k,) (Q —m ) +J2(k,) g(1 —Q) +J3(k,) m(1 —g)]

+4(1 —Q)(m —Q ) [J~(k,)J2(k,) —
4 J3(k,) ])' (3.12)

It is perhaps worthwhile re-emphasizing that this
solution is the most general one for the spin-one
GIM with two-body interactions within the MFA.

A few words may be in order here concerning the
approximations used in the series expansion (3.6)
and the series inversion (3.7). [A more detailed dis-
cussion is given in Refs. 14 and 28.] First, as men-
tioned in Sec. II, in order to accommodate arbitrary
external fields we have allowed the expansion coeffi-
cients to be temperature dependent. " Thus Eq. (3.6)
should not be looked at as a controlled term-by-term
expansion in P, although it is a self-consistent expan-
sion. Second, the series inversion (3.7) is undertak-
en so that, as with the expansion (3.6), the sum rule
(3.8) is obeyed. This causes the normalization fac-
tor, 5, to be temperature dependent. Even though
Eqs. (3.6) and (3.7) are related in a self-consistent
way, there is consequently an additional uncertainty
in the order of P in Eq. (3.7). The self-consistency is
maintained between Eqs. (3.6) and (3.7) as long as
the wave-vector dependence is given as in Eq. (3.7).'
Finally, the technique and the solutions, Eq. (3.12),
given here for an expansion to first order in P can be
justified a posteriori by noting that the results for
two, "three, " ' and four' component systems
agree with their corresponding regular solution
(MFA) results.

Thus the technique used here employs an uncon-
trolled, but self-consistent, series expansion in P.

l

Consequently the stability condition (3.9) should be
viewed as a necessary condition for the existence of
solutions, and not in terms of a controlled series ex-
pansion in p, i.e., expansions of X(k) correct to or-
der P yield a polynomial of order 2S in P, .

IV. STABILITY SURFACES

(r = ((Sg) )—. (4.2)

Thus we see that the condition for the divergence in

( x (k) ( is equivalent to

a2f(k)
80 tx80'P

(4.3)

which is the equation for the stability surface in the
classical Gibbs sense. Solution of Eq. (4.3) yields a
(2S + 1)-dimensional surface in the space of [ T, o;
a = 1, 2, . . . , 2S] which separates stable, or meta-

The correlation-function approach of Sec. 111 can be
related to the system thermodynamics by using the
thermodynamic sum rule"

' -1

X a(k) =NkaT (4.1)
$0 pop

as T T, and k k, . Here f(k) is the free-energy
density and the general order parameters are
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stable, regions from unstable regions. The spirit of
the CFA is to calculate X (k). As mentioned above,
the usual approach is to calculate f(k), and then X(k).

The properties of a phase transition for a system
governed by a free energy with a single-order parame-
ter, ' cr, are determined from

mixture of the densities and the fields.
In order to make contact with previous work on

three-state systems we will consider a number of
specific limits to the general result before considering
the full solution.

and

Bf
l)

8o

Bzf
(72

(4.4)

(4.5)

A. Spin-one Ising model

In this case we set J2= J3 =0 and set the field con-
jugate to (Sg) to zero, i.e., h2=0. The GIM then
assumes the form of the traditional S =

2 Ising Ham-

iltonian, (1.1). We immediately obtain from Eq.
(3.12)

The first condition determines the extremum condi-
tion and yields the magnetization curve, while the
second condition insures that the extremurn is a
minimum. Using the equality in Eq. (4.5) gives the
stability curve. When the two equalities are simul-
taneously satisfied we have a continuous phase tran-
sition. If we are interested in first-order transitions
or in tricritical points we need additional information:
particularly the free energy. However, regardless of
the type of transition knowledge of Eq. (4.5) is a
necessary, but not a sufficient, condition for a phase
transition since it separates regions of stability from
regions of instability.

For the spin-one GIM this stability surface is given
by

r(+) = Q —m',

r(—) =0,
where we have defined,

r(+) —= [P,(+)zJi] '

(4.8a)

(4.8b)

(4.9)

Q = —' —-'(4 —3m') '~'
3 3

which, when placed in Eq. (4.8), yields
I

r(m) = —'(4 —3m') ——'(4 —3m')' ' .
3 3

(4.10)

(4.11)

The solution r(+) is restricted by the fact that we
have set h2=0. This specifies a particular kinematic
relationship between m and Q. From the series ex-
pansion for the correlation functions'4 we obtain

B'f(k )
Qm

B'f(k,)
Bg Bm

B'f(k )
Bm Bg
B'f(k )

BQ2

(4.6)

We have plotted the solutions to Eq. (4.11) in Fig.

(a)

which is a surface in the three-dimensional space of
(T,m, g). By Eq. (4.1) we see that this surface is
given by Eq. (3.12).

In order to demonstrate the properties of the solu-
tions to Eq. (3.1.2) we will restrict ourselves to
nearest-neighbor "ferromagnetic" interactions, and a
"ferromagnetic" (phase separating) ground state, i.e.,

-1.0

(Qrrtin =2/3 &max = 2/3)

l.0 m

k, =(0,0, 0)

Jg(k, ) = zJJ )0,
(4.7a)

(4.7b)

where z is the number of nearest neighbors. It would
be straightforward to include further neighbor effects
in Eq. (3.12). There has been a fair amount of work
on these types of systems within the context of the
ternary alloy.

We again note that the phase diagram is in the
thermodynamic space of (T,m, g). A good deal of
previous work on critical surfaces has been in the
space of fields, (T,hi, hz), i5'9 rather than densities.
However most work in ternary alloys has used the
space of densities, or order parameters, (T,mq, ms).
In actual practice measured variables are usually a

Q IO 0.9 0.8 0.7 0.6
FIG. 2. Stability curve for the spin-one Ising model, Eq.

(4.1). (a) The projection on the (~,m) plane; (b) the pro-
jection of the (r, Q) plane.
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2. We note that Q goes from 2/3 at m =0 to 1 at
m = +1. 7(m) is a maximum when m =0, or
7 (0) =2/3. Regions below the curve are unstable
with respect to fluctuations in the order parameters.

$. Diagonal limit

A related problem to the Ising model is the diago-
nal limit. Here we want to choose parameters such
that the generalized susceptibility assumes a diagonal
structure, i.e., Xt2(k, ) = X2t(k, ) =0. Investigation
of Eq. (2.4) reveals that this will occur when Q =1,
i.e., we have complete quadrupolar ordering, or when
very special relationships exist among the interac-
tions. Assuming that the former is the case we set
Q =1. This causes X22(k,) to vanish also and the in-
teractions J2 and J3 drop out. Thus we are left with
what will turn out to be a special case of the BCM.
The stability temperatures become

(4.12a)

(4.12b)

We have plotted this solution in Fig. 3(a). We
note that the condition Q = 1 corresponds to ms = 0,
and consequently we have an Ac mixture, or the sta-
bility curve for a spin-

2 Ising model. If the disor-

dered mixture is quenched across the stability curve
the system will phase separate to a point on the sta-
bility curve determined by initial conditions.

C. Pure quadrupolar model

Setting J~ = J3 = 0 we find that

(4.13a)

(4.13b)

These solutions should correspond to a magnetic sys-
tem which has pure quadrupolar ordering. Since m
does not appear in the solution it is effectively zero.
Thus we effectively have h~ =0, or m~ = m~ and
Q =1 —ms =2m&. We have piotted the parabola
r~(+) in Fig. 3(b). The peak occurs at Q = 2,

1rg(+) = —,.

D. SCM

The BCM is arrived at by setting J2 = J3 =0 in Eq.
(1.6) and requiring that ht &0. If. Q =1 we obtain
the diagonal limit. We can have either m =0 or
m ~ 0 depending on whether the field h~ is zero or
nonzero. For m AO (m~ & mc) we have

r(+) = Q —m' (4.14a)

and

0.25—

0.20

(4.14b)

The stability surface in this case is a bisected para-
boloid of revolution having its apex at the origin

(Q =0) and its base in the plane Q = 1. We have
plotted projections of this surface in Fig. 4.. In the
limit that m =0 (mq = mc), 7 (+) degenerates to a
straight line in the (r, Q) plane, i.e. ,

r(+) = Q

r(—) =0
(4.15a)

(4.15b)

I.O

0.05

0
I

0.5 -I.OO -0.50 -0.25 0 0.25 0.50 I.OO m

FIG. 3. (a) Stability curve for the diagonal limit, Eq.
(4.12); (b) the stability curve for pure quadrupolar interac-
tions, Eq. (4.13).

FIG. 4. Stability curves for the BCM. %e are looking
along the g axis at the projections in the r-m plane. The
dashed lines indicate the kinematic constraints.
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We see from Fig. 4 that for Q & 1 the stability sur-
face is cutoff by the kinematic conditions (2.7).
What this means is that for a given Q = Qo, if the
system is quenched through a temperature differ-
ence, below t „=Qp, greater than 4r = Q(, the sys-
tem will have to move to a new value of Q ( Qo in
order to achieve stability.

ii--0.8

E. BEG model

In this case we set J3 =0 and Eq. (3.12) readily be-
comes

r(+) = —,
'

[Q —m'+0, 2)Q(l —Q)] -0.5 0 0.5 rn

+ —,
'

IIQ —rn'+ 21Q(I —Q)}'

+4(1 —Q) (m'- Q') o. I' ', (4.16)

FIG. 6. Stability curves for the BEG model for 0 =0.5
and m W 0. I (solid line), II (dashed line), and III (dot-

dash) correspond to u2~ = 2, 1, and 2, respectively.

where we have set n2~ = J2/J~. In the limit that
0.2~ 0 we regain the BCM, and in the limit that

Q 1 we regain the diagonal limit.
For the symmetric case (m =0, or rn& = mc), Eq.

(4.16) becomes

r(+) = O.2ig(1 —Q).(-)=g .

(4.17a)

(4.17b)

We have plotted Eq. (4.17) in Fig. 5. We denote the
point where we have simultaneous solutions of Eq.
(4.17) as rD, the degeneracy temperature. This point
may, or may not, be a tricritical point. For this case
we have

which, since Q & 0, requires that J2 & J~.
We have plotted the general solution, Eq. (4.16),

for the BEG model (m WO) in Fig. 6 for the particu-
lar case Q =0.5 and for various values of o'2~. Set-
ting r(+) = r(—) from Eq. (4.16) shows that there
exist no degeneracy temperatures for m ~0.

F. Potts symmetry

The Potts symmetryl (,40 requires symmetry
between interchange of particles in a three com-
ponent system, i.e., m~ = m~ = m~. We see from Eq.
(2.6) that this requires h~ = h2=0, or

J2- J)
rD = 1 —n2t' = Q =

J2
(4.18) and

m =my —me=0

—2
Q = ling + Nlc =

3

(4.19a)

(4.19b)

or the point in Fig. 1. We also require that the odd
interaction vanish (J3 =0).

We now have a special case of the BEG model, and
immediately have for the stability, and degeneracy
temperature,

(4.20)

which from Eq. (4.18) requires that

J2=3J) . (4.21)

G. Mean interaction

0.5 I0 Q

We see from Eq. (3.12) that the radical goes to
zero if we choose the interactions to be related by
their geometric mean, i.e.,

J3=2(J(J2)' 2 (4.22)
FIG. S. Stability curves for the BEG model for various

values of e2~-J2/J~ and m 0. The solid line is v(-) =0;
the dashed line v(+) a2~ Q(1 —Q),

We call this the mean interaction and note that it is
basically the same as the Shiba condition ' in the
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r(—)=0 .

(4.23a)

(4.23b)

theory of disordered binary alloys. Consequently Eq.
(3.12) becomes

r(+) = Q —m + n2tg (1 —Q) +2go2~m (1 —Q)

o,2~ & j. we get a peak given by

Q,„=(I +n2t)(2o. 2i) ',
.,=(I+ 2t)'(4 2&)

' .

For +2~ ) 1 we have a region,

hr =r,„—I = (n2) —I)'(4u2t) '

(4.2Sa)

(4.25b)

(4.26)

r(+) = Q+n2tg(l —Q)

r(—) =0
(4.24a)

(4.24b)

We have plotted Eq. (4.24) in Fig. 7(a). For

If n2t =0, or Q =1, we obtain the results for the
BCM and the diagonal limit, respectively. If m =0
(mq =mc, ht=0) we obtain

for which the quenched system can go to either in-

creasing or decreasing Q.
The solutions for the case m &0, i.e., Eq. (4.23),

are plotted in Fig. 7(b) for a particular value of
Q = Qo and for various n2~. The maximum value of
~ is given by

(4.27a)

(a)
and

rma. = Qo+ ~2i(1 —Qo) (4.27b)

Thus if the system is quenched below ~,„by

kr = A2)(1 —go) (4.28)

the system must move to negative m, or smaller g

H. Uniform interaction

Setting Jt = J2 = J3 in Eq. (3.12) the stability tem-
perature becomes

r(+) = —,
' [(g —nr') + g(1 —g) + m(I —g)]

+ ,
'

{[(Q——m')+ Q (1 —Q) + m (1 —Q) ]'

+3(1 —g) (m2- Q2) [t~2 (4.29)

0.5
I

I.O Q

%e note in Fig. 8 the asymmetry of the stability sur-
face with the peak shifting from m =0 to outside of
the kinematic region as Q decreases.

ay[ = 2.0 I. General solution

We have plotted the general solution (3.12) in Fig.
9 for a given value of n3t and Q. The remaining

T

I.O

-0.8 0

I

I

I

I

I

I

1
I

0.8 m

FIG. '7. (a) Stability curves for the mean interaction
model for various values of o.2~ and m =0; (b) the stability
curves for the mean interaction model for Q =0.8 and vari-
ous values of e2&. The dashed lines indicate kinematic con-
straints.

-I.O 0.0 [.0 m

FIG. 8. Stability curves for the uniform interaction model
for various values of g. I, II, and III correspond to g - I,
0.8, and 0.4, respectively. The dashed lines indicate
kinematic constraints.
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T
I.O—

-0.8 0 0.8 m

FIG. 9. Typical stability curves for the general solution
1

with Q -0.8, 0.3i 2
and I, II, and III corresponding to

a2i —,1, and 2, respectively. The dashed lines indicate

kinematic constraints.

identities which are unique to the GIM in order to
generate high-temperature series expansions. These
expansions are valid for arbitrary field, and we have
seen that the linear expansion yields the MFA. Ob-
viously we should be able to improve on the MFA by
going to higher orders in P."4' By using a series
inversion and the thermodynamic sum rule we can
then construct the stability surface for (2S+1)-state
systems. %e have demonstrated this explicitly within
the MFA for the most general three-state GIM with
two-body potentials. It would be straightforward to
include further neighbor effects and many-body po-
tentials. The stability surfaces so generated are
necessary in order to understand the properties of the
phase transition and the transformation kinetics.

solutions for e3i do not appear to exhibit appreciably
different behavior.

V. CONCLUSIONS

Having introduced the concept of the GIM we
have seen that we can take. advantage of correlation
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