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We extend the classification of continuous order-disorder transitions in adsorbed systems to
encompass additional situations of physical interest. Among these are transitions on substrate ar-

rays which are not simple Bravais lattices. The honeycomb and kagome lattices are treated in

detail. Their transitions belong to the universality class of the Ising, three- or four-state Potts

model, and the Heisenberg model with cubic anisotropy. A simple case of the transitions of dia-

tomic molecules is also considered. Those of Br2 on graphite are predicted to be first order.

Lastly, transitions between ordered states are analyzed and an example of experimental interest
1s discussed.

I. INTRODUCTION

Structural order-disorder transitions in adsorbed
monolayers are of considerable theoretical and exper-
imental interest. ' " In a recent publication" (re-
ferred to as I) a ciassification of the continuous
order-disorder transitions of simple adsorbed systems
which was based upon the Landau theory was
presented. In this paper we extend the preceding
work to encompass additional experimentally relevant
situations whose analysis is somewhat more complex.
In particular whereas the analysis in I was restricted
to cases in which there is one adsorption site per unit
cell we consider here the honeycomb and kagome lat-
tices with, respectively, two and three adsorption sites
per unit cell of the triangular Bravais lattice. Physical
realizations of both lattices are considered in Sec, II.
In addition, where I treated the adsorption of struc-
tureless atoms, we also consider the adsorption of
molecules. The simple case of a diatomic homonu-
clear molecule like Br2 is addressed. Lastly, where
previously only transitions from the disordered phase
were considered, we analyze here transitions between
two ordered phases. An experimentally relevant ex-
ample is considered. In all cases, we continue to lim-
it ourselves to commensurate structures characterized
by a k vector that does not vary with temperature and
coverage.

Our analysis, presented in Sec. III is based, as be-
fore, on symmetry considerations of Landau and
Lifshitz, " For a discussion of the underlying theory
and applicability to two dimensions, the interested
reader is referred to previous work. " ' Our results
are summarized in Sec. IV. For the honeycomb and
kagome lattices we find that the allowed continuous
transitions belong to the universality classes of the
two-dimensional Ising, three- or four-state Potts
models, and Heisenberg model with cubic anisotropy.

II. REALIZATION OF HONEYCOMB
AND KAGOME LATTICES

A honeycomb array of adsorption sites is easily
prepared for both chemisorbed and physisorbed sys-
tems. For the former it is usually sufficient to cleave
an fcc or bcc crystal along the (111) face in which the
substrate atoms are in a close-packed triangular array.
If, as in many cases, the preferred adsorption sites
are at the points of threefold symmetry, then the ar-
ray of such sites forms a honeycomb lattice. Chem-
isorbed systems have the advantage of displaying an
extremely rich variety of order-disorder transitions
which are easily monitored by low-energy electron-
diffraction techniques. Unfortunately they are not, at
present, suitable for the determination of critical ex-
ponents. This is due to the high transition tempera-
tures and small surface to volume ratios which do not
permit direct measurement's of the specific heat and
the exponent 0., and the limited coherence of the
electron beam which prevents an accurate determina-
tion of the onset of order and the exponent P. Im-
proved techniques or alternate ones, such as the use
of a strain gauge'" which is sensitive to o., may make
feasible the measurement of critical exponents in

chemisorbed systems.
In physisorbed systems, a honeycomb lattice of ad-

sorption sites is again provided by a substrate ~hose
atoms are in a close-packed triangular array. This ar-
ray can occur naturally, as in the laminar halides, "or
be brought about by preplating another substrate, like

graphite, with a noble gas of high heat of adsorp-
tion. ' The preplated system then provides the
desired array for a more weakly bound substance,
such as He. While physisorbed systems do not
display the diversity of order-disorder transitions
manifested by chemisorbed systems, they possess the
advantage that both n and P can be measured.
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Values of each for one transition have so far been re-
ported.

One important difference between the honeycomb
array presented by the preplated systems and those
presented by the laminar halides or (111) crystal
faces is that in the former all adsorption sites are
equivalent. The space group is p6mm. In the latter
the degeneracy in the energy of adsorption is lifted by
layers of substrate atoms below the surface. The
result is that the honeycomb array with nearest-
neighbor distance a decomposes into two triangular
sublattices of lattice spacing &3a. The sites on one
sublattice are not equivalent to those on the other so
that the symmetry is reduced to p3m1.

%hereas a honeycomb lattice results from adsorp-
tion at the threefold symmetric sites presented by the
close-packed array of substrate atoms, a kagome lat-
tice of sites results if adsorption occurs at the "bridge
sites" midway between pairs of substrate atoms. This
is not a very common site for the adsorption of single
atoms. However, a physical realization of the ka-

gome lattice is provided by the physisorption of a dia-
tomic molecule, like Br2, on graphite. " Because the
distance between the two Br atoms is quite close to
that between the nearest-neighbor adsorption sites of
graphite, the lowest state of an adsorbed molecule is
that shown in Fig. 1 in which the molecule is lying
down. '8 The statistical mechanics of such a system
can be discussed employing a triangular lattice-gas
model with the constraint that if any site is occupied

at least one nearest-neighbor site is also occupied.
Alternatively one can note that the position of a Br2
molecule adsorbed as shown in Fig. I can be speci-
fied entirely by the position of its center of mass
which will always fall at a "bridge" site. Thus the
problem can also be treated as a kagome lattice gas
with fairly complicated interactions between
molecules. Since the Landau-type analysis depends
only on the symmetry of the Hamiltonian and not on
the form of the interactions, one can use the results
of such an analysis of the kagome lattice to discuss
continuous transitions for the Br2 on graphite system.

III. SYMMETRY ANALYSIS

In this section we present a brief review of the
method that was discussed in detail in I and then
turn to applications to the honeycomb and kagome
lattices and to transitions between ordered structures.

We consider a lattice of identical adsorption sites
with position vectors r. Each site is either occupied
[n (r) =1] or empty [n(r) =0]. Any configuration
{n(r) } will appear with the statistical weight given by
exp[ —(H{n }—pN)/kT] where N= $, n(r) a-nd

H {n}contains two, three, ..., etc. , particle interactions.
In the high-temperature phase the density p(r)
which is equal to the ensemble average (n (r)) takes
the value po independent of r. Thus the function
p(r) has the symmetry Gc of the lattice of adsorp-
tion sites (p6mm for the kagome lattice, p6mm or
p3ml for the honeycomb). In the ordered phase the
density is no longer uniform and can be written

p(r) = pa+Sp(r)

~here

2.5} A =

2.46 A

FIG. 1. Br2 molecule adsorbed on the basal plane of gra-
phite. The distance between two Br atoms (2.31 A) is close
to that between two pearest adsorption sites (2.46 A).

The index I sums over irreducible representations of
Go, and i over functions within a representation. The'
prime denotes exclusion of the unit representation.

%e utilize the phenomenological Landau-Lifshitz'
theory of continuous phase transitions in order to
construct the Landau-Ginzburg-Wilson (LGW) Ham-
iltonian that corresponds to the transition to an or-
dered state. If the LGW Hamiltonian is that of a
known model, we identify the universality class of
the transition with that of the known model. Of the
infinite variety of possible ordered superlattice struc-
tures we limit our attention to a finite class. First we
consider only those cases in which gp(r) belongs to a
single irreducible representation of Go, the leading
representation. We denote this representation by T.
The ordered state is characterized by a nonvanishing
expectation value of the order parameter

yr; =—$C&r;(r ) n (r)



3830 E. DOMANY AND M. SCHICK 20

where i labels the components of Q which are equal
in' number to the dimensionality of T. However, the
occurrence of a nonzero contribution to Sp(r) from
T can indirectly induce contributions from other
representations due to invariants in the free energy
which couple the two representations. Examples of
this coupling mechanism are given in I. When such
terms are involved in the specifications of 5p(r) of
physically interesting ordered states, we shall note
them.

We further limit our attention to transitions to sim-

ple commensurate structures characterized by a fixed
k. The value of the characteristic k vector can be
fixed by two mechanisms. First, if the Lifshitz con-
dition is satisfied, (i.e., the antisymmetric part of T
does not contain the vector representation) the LGW
Hamiltonian will contain no terms that are linear in k
and quadratic in the order parameter. Thus there will

be a minimum at the characteristic k. When the
Lifshitz coridition is not satisfied, k can still be fixed
at a commensurate value by some term in the LGW
Hamiltonian which is of higher than second order in

the components of the order parameter (umklapp
term). In such a case, mean-field theory predicts a
first-order transition to the ordered structure. In two
dimensions, however, we know that transitions
driven by such higher-order terms can be continuous
(e.g. , the three- and four-state Potts models). There-
fore predictions based on the Lifshitz rule concerning
the order of the transition must be checked experi-
mentally and by independent theoretical models.
Here we consider only those representations charac-
terized by a wave vector at which the Lifshitz condi-
tion can be satisfied. These wave vectors belong to
one of the irreducible stars of Fig. 2, namely k =0, or
q~, q2 or k~, k2, k3.

The basis functions 4 of Eqs. (I) and (2) take dif-

ferent forms depending on whether the array of ad-

sorption sites is a simple Bravais lattice, as in I, or is

not. For clarity we denote the position vectors of the
adsorption sites by r and that of the Bravais lattice
points by R. In the case considered in I, r =R and

the functions 4 can be written (we drop the subscript
T) 4;(R) =$-„(R ) where @-„(R ) is either sin k; R

I I

or cosk; R, There are m independent functions
$-„(R ) equal to the number of independent vectors

I

k; in the star of k. When the lattice of adsorption
sites is a Bravais lattice plus a basis of more than one
site per unit cell, the position of a site r is obtained
by assigning each site uniquely to a unit cell specified
by R and introducing the position vector X of the site
with respect to the origin of the unit cell. Then
r = R +X and the functions 4 can be written in the
product form

C, .(r) =@-„(R)W.(X) (3)
J

(r unique) where the W (X) provide a basis for the
irreducible representations of the group of the k vec-
tor, or small group. If the representation of the small
group is I dimensional, there are Im independent
functions 4;(r) and the same number of com-
ponents of the order parameter.

We now specify the functions W (X). The
number of independent W (X) is simply the
number of sites per unit cell, two and three for the
honeycomb and kagome lattices, respectively. Rather
than define two such functions for the honeycomb
lattice and three other functions for the kagome lat-

tice, we define an overcomplete set of six functions
which can be applied to either case. In particular, we
choose as a unit cell the basic hexagon which occurs
in either lattice. The center of any given hexagon is
specified by the vector R, The vector X takes on six
values X, as shown in Fig. 3(a) and specifies the six
sites within the uriit cell. Any given site belongs to
three (two) different unit cells for the honeycomb
(kagome) lattice so that its position vector can be
written in the same number of ways. For example
the site shared by the three cells of Fig. 3(b) can be
written r = R& +X& =R2+ X5 = R3+ X3. The product
form for the functions 4, given by Eq. (3) when r is
.uniquely specified, is now generalized to

4r, (r) = $@k (R) $ W (X)LYt+y, .
R V

where 5-„-„ is the Kroneker delta. With this form
for the 4r;, Eq. (I) for the density variation be-
comes

Sp(r) =X'Cl~ ggk, (R) X W (X)L-a+g .
R

' Y
(5)

Like the $„, the functions W (X) can be chosen to
J

be real. We choose the set

FIG. 2. k vectors that characterize the superlattice struc-
tures considered in this paper.

W/(XI ) = I, W2(XI ) =cos( —'7rl)

W3( XI ) = sin(
3

rrl ), W4( XI ) =cos( 3
'rrl )

W5( XI ) =sin(
3 ml), W6(XI) =cos(n. l)
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A. Honeycomb lattice

For each of the three stars of Fig. 2, k =0, q~, q2,
or k~, k2, k3, we first consider the case in which all
sites of the honeycomb lattice are equivalent and
then the effect of the reduction of symmetry by a
crystal field h, of one sign on one triangular sublat-
tice and of opposite sign on the other.

Xl

(a} Case (i) k=0

The small group is the entire point group C6„. The
function 8'~ belongs to the unit representation. Its
combination with k =0 gives the unit representation
of the entire lattice which is, by definition, excluded
from Eq. (5) for Sp. The function W6 belongs to the
one-dimensional representation 8~ and yields a densi-
ty which corresponds to the structure of Fig. 4(a).
The transition to this structure is Ising like. This
density is thermodynamically conjugate to the crystal
field h, . Therefore in the physical circumstance in
which h, is nonzero, the Ising transition will be

. suppressed. All other W yield Sp(r) =0 when sub-
stituted into Eq. (6).

2. Case (ii) q&, q2

The small group is C3,. The two functions W~ and
W6 belong to one-dimensional representations of C3.
but yield Sp(r) =0 when substituted into Eq. (6).
The functions 8'2, 8'3 belong to the two-dimensional
representation E of the small group. Thus a four-

FIG. 3. Each adsorption site can be characterized by any
one of the Bravais lattice sites closest to it, and an appropri-
ate XJ vector (a). The central site of the honeycomb array

in (b) can be represented in three different such ways.

(~xi)
(a)

(j3 x J3 ) R 30
(b)

With a given representation now completely specified
by the functions 4&;(r), we can determine whether
the representation satisfies the Lifshitz rule; that is
whether the antisymmetric part of T' contains the
vector representation, in which case the rule is violat-
ed, or does not contain it. The method of ascertain-
ing this is straightforward. ' We note that it is easy
to show that a representation characteriied by one of
the. stars of Fig. 2 and a one-dimensional small
representation satisfies the Lifshitz condition. Thus
we will only remark on this condition when the small
representation is of dimension greater than one.

We now apply this formalism to the honeycomb
and kagome lattices.

(2x I)
(c)

p (2x 2)
(d)

(2x2)
(e)

(2x 2)
(f)

FIG. 4. "Physical" superlattice structures (allowing only
integer occupation numbers) on the honeycomb array
characterized by k vectors of Fig. 2. See text for discussion
of universality classes and order of the various transitions.
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dimensional representation can be constructed. %e
define the basis functions

C'l(r) = $[cos(ql R) W2(X)
R,V

—sin(ql R) W3(X)]ga+x-, ,

lp2(r) = $[cos(ql K) wl(x)
R,V

+sin(ql R) W2(X)]5a+y-„,

43(r) = g[cos(q, R) W2(X)
R,V

+sin(ql K) wl(x)]sa~x-, ,

lp4(r) = X [cos(ql K) w2(x)
R, V

—sin(ql R) W2(X)]sa+y-„.

The LGW Hamiltonian is

H = f g ty. + 12 [(pl —3@ ql —(i/2 —3 lp3&p42) ]

y V [(C,2 + lp2) 2 + ((g)2 +@2)2]

+ W(@21+C 22) (+2+ +42),

which can be seen to be that of two degenerate
three-state Potts models which are coupled by the
fourth-order term. By expressing the third-order in-
variant in terms of y, =——, (dl, +C13), y2

=——(1P2+1P4),
1 1

y3 2 (42 44), and y4=
2 (C2 —41), we find that

1 1

it is precisely that of a model discussed by Schick and
Griffiths. This four-dimensional representation
does not satisfy the Lifshitz rule; i.e., we have veri-
fied that the antisymmetric part of T2 does, in fact,
contain the vector representation. According to the
Lifshitz criterion then, a continuous transition is not
expected. As noted earlier the reliability of sgch ex-
pectations is unclear. Therefore observation of a
transition in this class would be quite interesting.
There are several possible ordered states all of which
are v 3 x J3 830' structures and correspond to cov-
erages which are integer multiples of 6

. A simple

example of coverage
6

is shown in Fig. 4(b). The
functions 8'4, 8'5 belong to the same two-
dimensional representation of C3„as 8'2 83 and
substitution into Eq. (6) shows that no new state is
generated.

The effect of a crystal field is simply to lift the de-

generacy of the two three-state Potts models. Thus
the one four-dimensional representation splits into
two two-dimensional ones. One transition is expect-
ed which can be continuous and in the universality
class of the three-state Potts model. Due to the cou-
pling of the representations, the two components of
the one representation which become nonzero at the
transition can induce nonzero values of the com-
ponents of the other representation. As a result
several physical states are again possible. As above
they are all characterized by simple J3 && K3 R30'
structures on one or both triangular sublattices and
correspond to coverages which are integer multiples
of 6. The example of coverage

6
shown in Fig. 4(b)

1 1

also applies.
%e also stress that the transition to the above

structures can be continuous. It need not be, particu-
larly for small values of the field h, . The reason is as
follows. For vanishing h, the fact that the Lifshitz
condition is not satisfied indicates that the lowest-
order terms in the LG%' Hamiltonian do not produce
a minimum at the values of k =q1 or q2. If a stable
state characterized by these k values is observed then
it is stabilized by a higher-order term in the Hamil-
tonian. For small values of h, this term will still
dominate and if the transition for h, =0 is in fact first
order, it will remain so. Only at sufficiently strong
fields ~ould a continuous transition be expected.

3. Case (iii) k1, k2, k3

The small group of k is C2„which has only one-
dimensional irreducible representations. The func-
tions W1 and W4 belong to the unit representation
A1, 8'2 and 8'6 to the representation 81, and W3
and 8'5 to 82 and A2, respectively. Use of 8'] or
W4 in Eqs. (4) and (5) generates the same three-
dimensional representation which we can write

lxlk 1(r) = icos(k; R) X Wl(X)5-, a+y .
7

The functions W2 or W6 generate another three-
dimensional representation

4k 2(r) = icos(k; R) $ W2(X)8„a+y
l 7

The LG% Hamiltonian can be written

= +4P +0 +c
where

K4P fl $ 4 k. , 1 + lid kl, I C k2, l@k3, 1

I
1

HACH. =r2xck 2+ V $ pk 2 + Wx@k 2
l j

~e +(@kl, l@k2, 2@k2,2+@k1,2ck2, 1@k2.2+Ckl, 2@k2,2ck2, 1) + ylt10. 6@k1,2@k2, 21Pk

+ Z4'0, 6(@kl,1@k2 1@k2,2 + Pkl, 1C k2, 2Pk2. 1 + C k1.2C k2, 1@k2,1)
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The Harniltonian 4p is that of a four-state Potts
model, 3C~ that of a Heisenberg model with cubic an-
isotropy and BC, couples the two representations of
Eqs. (7) and (8) and the one-dimensional k =0
representation Qo 6. The combined Hamiltonian catt
describe a rich variety of behavior. Let us first as-
sume that r2 vanishes at a higher temperature than
r~. In this case there can be a continuous transition
in the class of the Heisenberg model with cubic an-
isotropy. The physical state realized depends on the
sign of the anisotropy W. If Wis positive then only
one component of 4k, 2 will be nonzero and the phy-

sical 2 & I state of Fig. 4(c) will be attained. If W
is negative, all components 4 k 2 will be nonzero
and the coupling 'terms will induce nonzero values of
4k ~ and $0 6. The physical p(2 x 2) state of Fig.

4(d) can be reached in this. way by a single continu-
ous transition as can the unusual state of Fig. 4(e).

If I'~ vanishes at a higher temperature than r2 then
there can be a continuous transition in the class of
the four-state Potts model. Due to the third-order
invariant in X4p all 4k ~ will be equal and nonzero

just below the transition. The physical state is 2 & 2
shown in Fig. 4(f). Due to the nonzero values of
4k ~ in the coupling Hamiltonian, the three-
dimensional representation 4k, 2 reduces to a one-
dimensional and a two-dimensional representation. If
the one-dimensional representation becomes critical,
an Ising transition can occur. The physical state
reached is again the p(2 &&2) state of Fig. 4(d). Thus
this state can be reached either by one Heisenberg
transition or a four-state Potts transition followed by
an Ising one. The two-dimensional representation
does not lead to a physical state.

The above wealth of possibilities is for the case in
which all honeycomb sites are equivalent. In the
presence of a crystal field h, the behavior is much
simpler. To first order in h, the LGW Hamiltonian is
that of Eq. (9) with @p 6 replaced by h, in IC, . As a
result the Hamiltonian describes two nondegenerate
coupled four-state Potts models. The physical states
of Figs. 4(c)—4(f) can be reached by a single transi-
tion in the class of the four-state Potts model. Just
below the transition, however, the state will look like
that of Fig. 4(e) or 4(f) depending upon which
representation becomes critical at a higher tempera-
ture. This is due to the third-order invariant which
favors all three components of the representation be-
ing equal and results in these structures.

8. Kagome lattice

i. Case |i)g-0

The small group is C6„. The function W~ belongs
to the unit representation and so, when combined

( I x I)
(a)

(~5 x J3 j Rso
(b)

(2x 2)
(c)

(2x I)
(d)

with k = 0 gives the unit representation of Go and is
excluded. The three functions W2, W3, and %6 lead
to a vanishing density difference Sp(r), The two
functions W4 and W5 belong to the two-dimensional
representation E2. The Lifshitz condition is satisfied
and the LGW Hamiltonian is that of the three-state
Potts model. One of the three 1 x 1 structures is
shown in Fig. 5(a).

2. Case (a) q~, q2

The small group is C3„. The two functions W~ and
W6 which transform like the one-dimensional
representations A~ and A2 yield identical structures.
The LGW Hamiltonian is again that of the three-state
Potts model. One of the three J3 & J3 830' struc-
tures is shown in Fig. 5(b). The functions W2 W3

belong to the two-dimensional representation E as do
the. functions W4, W5 which give identical structures.
The LGW Hamiltonian has an invariant like that of
the model of Schick and Griffiths. The Lifshitz
condition is not satisfied for this representation.

Case (iii) k~, k2, k3

The small group is C2„which, as noted earlier, has
only one-dimensional representations. The functions
W~, W4 both transform like A~ and give identical

(2x I)
(e)

FIG. 5. "Physical" superlattice structures (allowing only
integer occupation numbers) on the kagome array character-
ized by k vectors of Fig. 2. See text for discussion of
universality class and order of the various transitions.
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structures and three-component order parameters.
The LGW Hamiltonian contains a third-order invari-
ant 4k, ~4k, ~4k, ~ and is that of the four-state Potts

model. Just below the transition from the disordered
phase all components of the order parameter are of
equal magnitude and the structure is 2 x 2 shown in

Fig. 5(c).
The function 8'6 transforms like B~. The LOW

Hamiltonian constructed from the three components
of the order parameter contains no third-order terms
as W6 changes sign under some of the operations of
Gp. The Hamiltonian is that of the Heisenberg
model with cubic anisotropy. When the sign of the
anisotropy is negative favoring the nonvanishing of.
only one component of the order parameter, there
are three 2 x 1 ordered structures of the form shown
in Fig. 5(d). When the sign of the anisotropy is posi-
tive a complex 2 & 2 state is favored which can only
be expressed by fractional occupation of the sites.
Closely related to this representation is that generated
by 8 3 which transforms like 82. The LGW Hamil-
tonian is again that of the Heisenberg model with cu-
bic anisotropy. For negative anisotropy there are
three 2 x 1 states shown in Fig. 5(e) while a complex
2 x 2 state results from a positive anisotropy. All
three of the above three-dimensional representations
are coupled to the two-component k =0 order param-
eter by terms of the form'p

0.5(@k2, 1 k3, 1) +3 @0.4 3@k(,1 $ @k(.1
k I

Finally the functions W2 and W5 which transform
like A~ and A2, respectively, yield no new structures.

C. Order-order transitions

In this section we consider transitions from one or-
dered structure to another. As in Secs. III A and B,
here also one has to deal with a Bravais lattice that
has a basis. To be specific, we concentrate on a phys-
ical system of experimental relevance, oxygen chemi-
sorbed on the (110) face of'W. ' The adsorption
sites form a centered rectangular lattice, and in the
ordered state alternating diagonal rows are preferably
occupied (see Fig. 6). Upon increase of coverage,

(a)

~ 4 ~

4 ~

~ ~ ~
~ 4

0 0 ~ ~
~ ~ ~

~ ~ ~ e

(4x~)
(b)

4 ~ ~
e 4, ~ ~

~ ~ ~
~ ~ 0

~ ~
e ~ ~

~ ~ ~
(4x 2)

(c)

~ ~ ~
~ ~

4 ~ 4 o
~ ~

~ ~ ~
~ ~

4 ~
(exp)

(d)

~ ~

~ 4

FIG. 7. Ordered states of lower symmetry, reached from
the structure of Fig. 6. The structures characterized by the
vectors p, q, and r of the Brillouin zone (a) are shown in

(b), (c), and (d), respectively.

Both functions belong to the unit representation of
C2. For all three cases (p, q, or r) the transition is

Ising like, and the physical states reached are shown
in Fig. 7. With respect to the symmetry of the
W(110) surface, these states are 4 x 1, 4 x 2, and
2 x 2. Note that the heavy dots may denote sites that
are occupied with lour probability, corresponding to
a "superlattice of vacancies. "

additional transitions may occur. To investigate
these, the structure of Fig. 6 is considered as the
high-symmetry phase, with symmetry group P2.
Each unit cell contains two nonequivalent sites, one
occupied with higher and the other with lower proba-
bility. The former will be designated as A sites, the
latter as B sites. The A sites form the Bravais lattice.
The group has only three representations that satisfy
the Lifshitz condition, p, q, and r, corresponding to

]
Gl 2 G2 and —, ( Gr + 62), where G~ 2 are the

reciprocal-lattice vectors. The Brillouin zone and the
vectors p, q, r are shown in Fig. 7(a). The small

group of all three is C„which has only one-
dimensional representations. These can be defined as

W~(r) =1, for all r

IV. SUMMARY AND DISCUSSION

FIG. 6. Ordered state of oxygen on the (110) face of W,
1

near atomic coverage of —.2'

We have enumerated and classified the possible
continuous transitions which can take place from
disordered to commensurate ordered states on the
honeycomb and kagome lattices. In the former case
it is necessary to distinguish those cases in which all

adsorption sites are equally likely as in physisorption



20 CLASSIFICATION OF CONTINUOUS ORDER-DISORDER. . . II 3835

on preplated graphite from those in which subsurface
atoms provide a crystal field which decomposes the
honeycomb lattice into two triangular lattices. In the
case of preplated systems we find several possible
transitions. An Is&ng transition is predicted to the or-
dered structure of Fig. 4(a). A physisorbed system
which would undergo this transition would be of
great interest to study because the expectation of a

logarithmic specific heat is based upon several as-
sumptions concerning, inter alia, the uniformity and
effective dimensionality of these systems. Transi-
tions to any J3 x W3 R30' structure such as that of
Fig. 4(b) is predicted by the Lifshitz criterion to be
first order. The validity of this criterion for commen-
surate transitions remains to be tested. The struc-
tures in Figs. 4(c)—4(e) can be reached by a continu-
ous transition in the class of the Heisenberg model
with cubic anisotropy. That of Fig. 4(f) can be
reached by a transition in the class of the four-state
Potts model. This class is certainly one of the most
interesting theoretically. " Further, its exponents are
thought to be known2 and physisorbed systems
which might undergo this transition have been sug-
gested. An additional Ising transition from the state
of Fig. 4(f) could produce that of Fig. 4(d).

For chemisorbed systems the results are somewhat
simpler. The transition to the state of Fig. 4(a) is

suppressed. Transitions to %3 X J3 R30'phases can
be continuous and in the class of the three-state Potts
model. For small crystal fields, however, they may be
first order. A transition to the state shown in Fig.
4(b) has been reported23 in 1 on Ag(111). The states
of Figs. 4(c)—(f) can be reached by a single continu-
ous transition in the class of the four-state Potts
model. Continuous transitions to the state of Fig.
4(f)' or Fig. 4(d)'" have been reported but no ex-
ponents have been measured.

For the kagome lattice, continuous transitions are
predicted to the structures of Fig. S. The first two
transitions are in the class of the three-state Potts
model, the third in the class of the four-state Potts

model and the fourth and fifth in the class of the
Heisenberg model with cubic anisotropy. An inspec-
tion of these figures and Fig. 1 reveals that none of
these ordered structures can be obtained by the Br2
molecule for all of them require occupancy of a given
graphite absorption site by more than one Br atom.
Therefore any ordered Br2 structure must be charac-
terized by a k vector which does not satisfy the
Lifshitz condition and hence the transition to this
structure is predicted by mean-field theory to be first
order. Again this needs to be tested. However we
note that as the k vector of any ordered Br2 structure
must belong to a star other than one sho~n in Fig. 2
it must contain at least six independent components
which implies an order parameter with an equal

, number of components. This is the case of the 4 x 4
ordered structure suggested by Lander and Morri-
son. ' For Potts models, mean-field predictions of
first-order transitions become correct when the
number of order-parameter components exceeds
three, It appears plausible then that the prediction of
first-order transitions for the Br2 systems will also be
correct.

Lastly we showed how the general methods could
be applied to transitions from one ordered phase to
another. We examined in particular the case of tran-
sitions from the 2 & 1 state of Fig. 6. We found that
continuous Ising transitions were possible to the
three structures of Fig. 7. The 2. && 2 structure of Fig.
7(d) is of interest because both it and the 2 && 2 struc-
ture of Fig. 6 have been observed in the system of
0 on W(110).' Thus it should be possible to observe
the transition between them.
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