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1
We study the simple system of (S = 2) Ising spins on a bcc lattice with ferromagnetic

nearest-neighbor and antiferromagnetic next-nearest-neighbor exchange. Particular emphasis is

placed on the region of competition between ferromagnetic and antiferromagnetic ordering of
the second kind OAF(2)). Renormalization-group e-expansion methods along with Monte Carlo

analysis leads to the suggestion that the mean-field bicritical phase diagram becomes, with the

inclusion of fluctuations, a critical-end-point diagram,

I. INTRODUCTION

Renormalization-group calculations, especially
those using ~-expansion techniques, ' have'proven
very useful in predicting the general features of the
critical behavior of complex systems. Even when
complete analytic solutions (to a given order in e) are
absent, information on the structure of the phase di-

agram may be obtained from the renormalization tra-
jectories; On the other hand, Monte Carlo tech-
niques' allo~ one to obtain high-accuracy numerical
results for the phase diagrams of specific models in
the physical parameter space.

The present work was undertaken to study the
phase diagram of a simple system with competing in-

teractions and place particular emphasis on the
fluctuation-induced modifications of mean-field pre-
dictions. We have chosen the specific case of an

(S-
t ) Ising model on a bcc lattice with nearest- and

next-nearest-neighbor interactions (Jt and J2, respec-
tively). Our analysis involves both an e expansion,
which is an extrapolation from four dimensions, and
Monte Carlo methods. As pointed out recently by

Jensen et al. , it is of particular interest to check on
~-expansion predictions extrapolated to d =3 when
they involve the possibility of fluctuation-induced
first-order transitions. In the present case the
renormalization-group and Monte Carlo methods ef-
fectively complement one another.

Figure 1 shows schematically six simple possibili-
ties for the phase diagram; the mean-field result' is
included in Fig. 1(a). The nature of the phases la-
beled F (ferromagnetic) and AF(2) (antiferromagnet-
ic type II) will be discussed in Sec. II.

Our analysis indicates that fluctuations apparently
drive the transition between the paramagnetic and
antiferromagnetic type-II phases first order. This

changes the mean-field bicritical diagram [Fig. I (a)]
to a critical end point suggested in Figs. 1(c) or 1(f).
As noted below, the renormalization-group approach
does not lead to a completely unambiguous predic-
tion. This is due to the incomplete analysis of the
role played by irrelevant variables, which appear in
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FIG. 1. Six simple possibilities for the phase diagram
(temperature vs p =

~ J2~/Jtl near the region where the or-

dering changes from ferromagnetic to AF(2), Figure 1(a)
corresponds to a mean-field theory prediction. The dashed
lines represent first-order transitions and the solid lines con-
tinuous. transitions.
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the construction of the renormalization-group Hamil-
tonian, in determining local features of the phase di-

agram. The consistency of the Monte Carlo results
along with a global viewpoint allow the construction
of a phase diagram for all J] and J2 with reasonable
confidence.

%e emphasize that it is the consistency of the two
techniques, renormalization-group and Monte Carlo,
which prov'ides the confidence in the final results.
Each of the methods has its own weaknesses and am-
biguities. %hen fluctuation-induced first-order tran-
sitions are suspected, high-temperature series6 alone
are of limited utility, and mean-field and related
arguments are of no help. Real-space renormaliza-
tion-group calculations could provide additional sup-
port.

The organization of the remainder of this paper is
as follows. Section II introduces the model and
presents the results of mean-field theory. Section III
contains a brief summary of the e-expansion calcula-
tions, while the Monte Carlo results and a concluding
summary are presented in Secs. IV and V, respective-
ly. Some details of the ~-expansion calculations are
relegated to the Appendix.

II. MODEL

Figure 2 shows a body-centered-cubic lattice; a
given spin has eight nearest neighbors, and the cube
edge is denoted by a. The lattice is divided into four
sublattices, as indicated in Fig. 2.

With nearest-neighbor (nn) interaction J~ and
next-nearest-neighbor (nnn) interaction J2 (we use
the convention that a positive J is ferromagnetic), the
reduced Hamiltonian

where

K~- Jt/ksT if R,R' nn,
K(R,R') K2 Jq/kaT if R,R' nnn,

0 otherwise .
t

(2.2)

Standard mean-field theory' shows that there are
three kinds of sublattice ordering that the system can
support depending on the relative signs and magni-
tudes of the exchange constants J] and J2. Denoting
the order on the i th sublattice by M; the possibilities
are

(i)M~=M2=M3 M4 (F)

(ii) M~ = —M2 = M3 M4 [AF(1)]

(iii)M( -—M3', M2--M4 [AF(2)]

(2.3)

The first possibility obviously corresponds to fer-
romagnetism (F). The ordering described by the
second line is customarily termed antiferromagnetic
ordering of the first kind [AF(1)] and corresponds to
the state in which each spin has its eight nearest
neighbors antiparallel and its six next-nearest neigh-
bors parallel. The third line describes a twofold de-
generate (depending on whether M~ =+ M2) antifer-
romagnetic ordering termed antiferromagnetic order-
ing of the second kind [AF(2)]. This arrangement
can be simply described as two interpenetrating sim-
ple cubic lattices, each antiferrornagnetically ordered. '

The kind of low-temperature ordering which occurs
for a given (J~,J2) is shown in Fig. 3. Mean-field
theory further predicts that for any (J~,J2) increasing
the temperature causes the system to undergo a con-
tinuous transition to a disordered state.

H~„, = —PH)„, = H;„(/ks T—

is given by

H,„,= —,
'

X K(R,R')s(R)s(R'),
RR'

(2.1)

FIG. 2. Body-centered-cubic lattice divided into four
face-centered cubic sublattices.

FIG. 3. Mean-field magnetic ordering phase diagram in
the Ji-J2 plane for the bcc lattice. For any given J] and J2
mean-field theory predicts, that on increasing the tempera-
ture, there is a continuous transition between the ordered
state and the disordered state.
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III. e EXPANSION

s;(q) = Xe'q'"s;(R); i =1,2, 3, 4
R Ei

(3.2)

where I, 2, 3, and 4 label the four interpenetrating
sublattices into which the lattice is decomposed (Fig.
2). The wave vectors run over a reduced Brillouin
zone corresponding to a superlattice. This construc-

Our e-expansion treatment follows the lines
developed for discussing layered metamagnets. ' As
usual, ' we take the s(R) to be continuous classical
variables subject to spin-weighting factors
exp[ —w(s)] with w(s) = —,s~+fs" +... . The essen-

tial step is then to introduce four spin fields S (q),
S&(q), S„(q), and S&(q),

S (q) = —'[st(q) +s2(q) +s3(q) + s4(q)]

S&(q) = —'[st(q) —s2(q) +s3(q) —s4(q)]
(3.1)

S„(q) =
2 [st(q) —s2(q) —s3(q) +s4(q)l

Sa(q) =
2 [st(q) +s2(q) —s3(q) —s4(q)]

with

tion allows one to make a ready analysis of the order-
ing effects associated with competition between the
four sublattices. The variables S (q), S&(q), S„(q),
and Ss(q) diagonalize [neglecting higher-order nondi-
agonal terms of order (q )] the quadratic parts of the
reduced Hamiltonian

H =H;„,—X w(s(R))
R

(3.3)

The weight function w(s) introduces quartic coupling
among the S,(q), a =n, P, y, 5.

A standard momentum shell integration scheme'
produces the recursion relations. The only technical
point is the introduction of distinct spin rescaling fac-
tors c, c&, c„, and c~ for the corresponding spin com-
ponents. The c's are chosen to keep the coefficents
of q'IS, (q) I' in the renormalized Hamiltonian equal
to unity (in magnitude). Some terms in H can be
.easily eliminated. For example, if one is studying the
transition between ferromagnetic and AF(2) ordering
(2Jt = —3J,; J2 (0), the P mode [which corresponds
to AF(1) ordering] is noncritical and can be explicitly
integrated out of the problem. The resulting reduced
Hamiltonian contains no terms with P dependence
and may be written to quartic order schematically as

H„,= -)I d'R (-,
' [r.s.'+ I».l'+ r, (S,'+ST) + I», I'+

I
&Ssl'] + ui(S,'+ST) + u2S.'

+ u3SySs2 + u4S ' (Sy +S$ ) } (3.4)

The symmetry of the Hamiltonian shows the de-
generacy of the y and 5 modes [the two AF(2)
modes]. This degeneracy leads to the condition that

u3 ———6u~ in the starting Hamiltonian (3.3), which ex-
act symmetry, however, is broken while obtaining the
reduced renormalized Hamiltonian, so that the condi-
tion

iltonian, u2 continues to be positive giving the expec-
tation that the transition from the ferromagnetic to
the paramagnetic state is continuous and has Ising

exponents.
A similar approach on the AF(2) side of the phase

diagram (provided the ferro mode is noncritical)
leads to an effective Hamiltonian

Q3 6Q) (3.5) H„= JI d'R (—,
' [r,(S„—'+ S,') +

I
VS„I'+

I VS,I']

Hf= — d R —, r]S'+ VS ' +u2S (3.6)

This is the well-known n = I Hamiltonian which ex-
hibits a continuous transition with Ising exponents
when' u2 & 0, but further admits the possibility of a
first-order line terminating at a classical tricritical
point. We find that starting from the physical Ham-

is now appropriate in Eq. (3.4).
Renormalization-group differential recursion rela-

tions are now constructed to O(e) using standard
techniques. ' Carrying out the usual procedure on Eq.
(3.4) results in a new renormalized effective Hamil-

tonian. In the region with the ferromagnetic ordering
one finds that the AF(2) modes are noncritical and
can be integrated out of the problem. This results in

an effective Hamiltonian taking the form

+ u,
' (S„' + S,') + u,'S„'S,' } (3.7)

Hamiltonians of this form have been analyzed by
Aharony9 and Rudnick' for various fixed points and
their relative stabilities. The line u3 =6u] separates
two domains in the (ut, u3) plane. For uI ) 0 and

u3 & 6u], the n =2 isotropic fixed point is stable,
whereas for u3 ) 6u~, the transition becomes one of
first order. The line u3 =6u] contains an Ising-like
fixed point (which thus corresponds to a nonclassical
tricritical point) that one flows into, if and only if one
starts exactly on the line u3 =6u] with u~ )0. The
degeneracy in our Hamiltonian for the y and 5
modes was such that we started with u3 =6u]. How-
ever this exact symmetry is broken on integrating out
the irrelevant n and P modes.

The effect of the full recursion relations is to make
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u3 & 6u], so that the transition becomes first order
in the neighborhood of the transition region between
ferromagnetic and AF(2) ordering. Numerical itera-
tion of the recursion relations in the AF(2) region
results in u~ rapidly going to zero and then becoming
negative. This suggests that the bicritical point
predicted by mean-field theories" and indicated by
high-temperature series analysis (see below) should
be in fact a critical end point [Fig. 1(c)]. A further
prediction of the renormalization-group analysis ' is
that on going deeper into the AF(2) region (by in-

creasing I J2I), if the transition becomes continuous
[Fig. 1(f)], it will be characterized by n = 2 exponents
with an Ising-like nonclassical tricritical point. ' The
above analysis holds for the AF(l)-AF(2) transition
also, as the symmetry of the Hamiltonian is un-

changed on letting J~ go to —J~.
We now address the question whether there exists

a tricritical point as in Fig. 1(f) for the specific case
of nn and nnn interactions only. Note that when

J& =0, the bcc lattice decomposes into two decoupled,
interpenetrating simple cubic lattices each having only
nearest-neighbor interactions; hence one has a con-
tinuous transition with Ising exponents. Furthermore
it appears that the crossover exponent associated with

J~ is less than unity indicating that the XYor first-
order lines terminating at the Ising-like point

~
J~ I

=0
come in smoothly. (Recall there is complete sym-
metry in J~ —J~). There seems to be no reason for
a first-order transition separating the two ordered
phases at J~ =0+. Hence a bicritical phase diagram
does not seem likely in the region of J~ =0. It seems
most reasonable, then, to associate the multicritical
point at J~ =0'(J2 fixed) with the nonclassical tricriti-
cal point with Ising exponents mentioned above.

The renormalization-group treatment strongly sug-
gests the critical end point shown in Figs. 1(c) and
1(f) and it further suggests that for large I JqI/J~ the
transition is of first order, It does not rule out the
possibility of an even number of tricritical points in-
volved with the transition to the AF(2) state. This
does not seem very 'likely, but we have not dealt
carefully with the specific features of the model and
have not allowed for the possibility of irrelevant vari-
ables modifying local features of the phase boun-
daries.

One must consider how weak further-neighbor in-

teractions might modify the conclusions. We assume
that the same diagonalization scheme is valid, i.e., we
consider interactions in a regime which does not in-
troduce the necessity of more complicated sublattice
decompositions. Those interactions which couple the
two simple cubic sublattices (even at J~ =0) result in

making the transition first order at J~ =0 in the
AF(2) region (J2 (0). The multicritical point form-
erly at J~ =0 moves off to a finite value of J]
depending on the strength of the new interactions.
The usual qualifications concerning the effect of ir-

IV. MONTE CARLO RESULTS

Monte Carlo data on finite-size lattices were ob-
tained by using a basic computer code developed by
Landau' in a different context. The program, writ-
ten in FQRTRAN, required about 175 p,secs per spin
trial (including the time needed for averages) on a
DEC 1099. Most of the data were taken for
N x N & N lattices with N =6, 10, and 14 with
periodic boundary conditions.

In a typical "run" for a given point in the phase
plane, 2000 passes through the lattice (2000 "Monte
Carlo steps") were used to obtain the appropriate
thermodynamic quantities. Such runs were repeated
up to four times in important regions of the phase di-

agram, thereby yielding up to four data points for the
thermodynamic functions. Typically, starting from an
equilibrium configuration, about 200 Monte Carlo
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FIG. 4. Monte Carlo estimate for the specific heat vs
temperature for a 14 x 14 x14 lattice with J~ =+0.5 and

J2 = —0.3325 indicating characteristic behavior associated
with a continuous transition.

relevant variables must again be made.
If the AF(2) symmetry is broken, that is, the qua-

dratic term in Eq. (3.4) is modified to read
r~(1+g)S» +r„(1—g)Sa with IgI &go, a continuous
transition results. ". However, simple perturbations of
physical Hamiltonian (2.1) do not lead to distortions
necessary to break the degeneracy of the two AF(2)
modes.

In the first-order AF(2) region we can determine
the ordered-phase free energy' '2 using a generaliza-
tion of the analysis developed by Rudnick' for n = 2

systems. This allows a mapping out of the first-
order line and estimation of the order-parameter
discontinuities in the vicinity of the critical end point.
Some details are sketched in the Appendix. As ex-
pected one finds no interesting crossover behavior in
the vicinity of the critical end point.
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steps were discarded in allowing the lattice to attain
equilibrium at a nearby point in the phase space. In
detecting hysteresis in the vicinity of a first-order
boundary (see below) runs of the length noted above
were used; the spacing between successive tempera-
tures was generally the same as indicated in the typi-

cal specific-heat run shown in Fig. 4.
Specific-heat values were determined from the

fluctuations in internal energy and were used to
determine T, for the para-ferro transition. As has
been mentioned, a typical run is shown in Fig. 4,
The scatter is not surprising considering the small
range of temperatures (close to T,) studied and can
be reduced by making longer runs. However, our in-

tention in doing the Monte Carlo computations was
not to make a very accurate numerical analysis of this
specific model but rather to complement the ~-

expansion calculations. Finite-size scaling' analysis
was used to determine T,(~). An example is shown
in Fig. 5. Figure 6 shows a typical plot of the fer-
romagnetic order parameter versus I T —T (~) I. The
critical exponent P is given by the slope of the log-log

plot and is found to be about 3, consistent with the

accepted Ising value" of P =0.31—0.33. Such
behavior was found along the ferro-para boundary
with no sign of any hysteresis effects. These obser-
vations are consistent with expectations of a continu-
ous transition between the paramagnetic and fer-
romagnetic phases based on ideas of universality and
indicated by the renormalization-group analysis dis-
cussed previously.

A first-order transition is signaled by hysteresis
and by discontinuous jumps in the internal energy
and order parameter. Clear evidence for a first-order
transition was found for the boundary separating the
ferromagnetic and AF(2) ordered phases as suggest-
ed, for example, by Figs. 1(c) and 1(f). This hys-
teresis clearly persisted to the boundary separating
the paramagnetic and AF(2) phases leading to the

I I i
gII I I I i

I I I1

~ N= l4
x N=IQ

l.O:

O. l

lO lo '
(Tc —T)

lo

conclusion of a critical end point as shown in Figs.
1(c) and 1(f). However, moving out along the para-
AF(2) boundary, the hysteresis weakened suggesting
that a tricritical point might appear as sketched in Fig.
1(c).

To provide further information on these possibili-
ties we considered relaxation to equilibrium in more
detail. As has been discussed by Landau and
Binder' further evidence for a first-order transition
is provided by observation of a two-step relaxation
process (presumably due to the presence of meta-
stable states) on either quenching to slightly below
the transition temperature from high temperatures or
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FIG. 6. Log-log plot of the ferromagnetic order, Mf vs

e(~) —Tfor J] =0.500 and J2= 0.3325. Tc(
The error bars are roughly the size of the points themselves.
The exponent P is found from the slope of the straight line
through the data to be about 0.33.
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FIG. 5. Finite-size scaling plot for T, (N) for the ferro-
para transition with v =0.64. The values of N used are 4, 6,
10, and 14. J) =0.5 and J2= —0.3325.

FIG. 7. (a) Relaxation plot of the AF(2) order M~~ for
J& =0.500, J2 = —0.375 indicating the characteristic two-step
process of a first-order transition. A 18 x 18 X18 lattice was
used and the relaxation to equilibrium studied after quench-
ing to just below the transition temperature from an initial
high-temperature equilibrium state. (b) Similar relaxation
plot of the ferromagnetic order Mf for J& =0.500,
J2 = —0.100 where the transition is continuous to a fer-
romagnetic state. Note the difference in scale.
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FIG. 8. Phase diagram from the Monte Carlo analysis in

the neighborhood of the suggested critical end point. The
dashed lines indicate a first-order transition whereas the
solid line represents a continuous transition.

V. DISCUSSION

a sudden heating to slightly above the transition tem-
perature from low temperatures. Since in this pro-
cess the full thermodynamic structure is not needed,
we were able to deal with slightly larger lattices. A

typical two-step relaxation for the para-AF(2) transi-
tion is shown in Fig. 7 along with a smooth relaxa-
tion indicative of a continuous transition found for
the para-ferro boundary.

Figure 8 shows the summarized phase diagram for
the bcc as determined by the Monte Carlo analysis.
We find the results in qualitative agreement with the
predictions of the e-expansion calculation. In particu-
lar, at least near the mean-field bicritical point, the
transition is found to be first order in the AF(2) re-
gion.

methods. We have presented evidence that, near the
mean-field bicritical point, the para-AF(2) transition
is first-order. Preliminary high-temperature series
analysis, assuming a continuous transition between
the AF(2) and paramagnetic phases, yielded fairly
regular estimates' for critical temperatures. Series
coefficients for the AF(2) susceptibility were used
and transition temperatures were estimated using
Pade approximant analysis. " More recent series ana-
lyses have been reported by Plischke and Oitmaa. "

Our own Pade approximant analysis on the series
of Lambeth et a1.6 for the AF(2) region produced as-
sociated values of y slightly Iower than the accepted
Ising values'5 of —1.25. lit is worth recalling that ac-
cording to renormalization-group analysis, if the tran-
sition is continuous, XY exponents are expected, i.e.,
y =1.31.) The values of T, obtained from the series
expansions are consistently lower than the values of
transition temperature obtained by Monte. Carlo
methods. This suggests that the series are extrapolat-
ed "right through" the first-order transition. When a
first-order transition is expected, high- and low-
temperature series expansions must both be used.
Even then, as pointed out by Saul, Wortis, and
Stauffer, ' the method is not without difficulties.

To conclude, the present evidence suggests that the
mean-field phase diagram of Fig. 1(a) is modified by
fluctuations to the form suggested schematically in
Fig. 1(c). The numerical results suggest the phase
diagram of Fig. 8 for the specific model (2.1). The
renormalization-group analysis is not completely
unambiguous, since we have not investigated the full
dependence of the phase boundaries on the irrelevant
variables. Nor have we used "model dependences" of
the renormalization-group fields on the physical
parameters J~, J2, and T. Hence it is not possible to
rule out completely one or more second-order regions
for the para-AF(2) transitions as indicated schemati-
cally in Fig. 1(f). Renormalization-group analysis
then predicts unambiguously that XY exponents oc-
cur in the continuous regions and Ising-like nonclas-
sical tricritical points separate the first-order and
second-order regions. The addition of weak further-
neighbor interactions does not affect the general con-
clusions.

The work reported here provides an additional ex-
ample of the complex behavior that can result from
rather simple models with competing interactions.
Furthermore, the complementary nature of the two
techniques, Monte Carlo and renormalization-group
~-expansion, has been demonstrated in a problem
which probes the strengths and weaknesses of each.

%'e have reported the results of our analysis of a
model of Ising spins on a bcc lattice with competing
nn and nnn exchange interactions using both
renormalization-group e-expansion and Monte Carlo
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APPENDIX

In this Appendix we sketch further results for the
behavior in the vicinity of the critical end point of
Figs. 1(c) and 1(f). The recursion relations for Eq.
(3.4) can be written down according to the usual
prescriptions. 9 The procedures of Rudnick and Nel-
son" and particularly Rudnick' are followed closely.
The equations describing the "critical manifolds" are

tl
I (I) = t„(0)exp „[2 Au, (I—') Au—(I')/6j dl'

i~ 0

with a similar form for t (I) involving just
[2 —Au2(l')j in the exponential. Here A =3/2m 2.

The line of continuous transitions for the ferromag-
netic phase is given by I (0) =0, which in principle
determines T, (p). Following Rudnick'0 we make the
ansatz that the first-order line is given by the equa-
tion t„(I")= O(e) & 0, with an appropriately chosen I'.

The nature of the critical end point can then be un-
derstood as follows: On the ferro side, the y and 5
modes can be integrated out since I„ is O(e) (hence
effectively noncritical), and an effective renormalized
one-component (the a mode) Hamiltonian which
shows normal critical behavior characteristic of an Is-
ing transition at t =0 is obtained. This describes the
second-order line separating the ferro and paramag-
netic regions.

On the other hand, on the AF(2) side, the y and 5
modes can again be integrated out [r„=O(e)], but
the a mode does not go critical as it did on the fer-
romagnetic side. This is so, because, before the
mode can go critical, there is a crossing of free ener-
gies of the paramagnetic and AF(2) phases and a
first-order transition takes place.

This implies that the critical end point is relatively

h(z) =(—)exp ——1 2
lnz2 2 1+z'

t

(A3)

This is consistent with the above ansatz. The param-
eter I" is chosen such that u~(I') =0, i.e., the renor-
malized Hamiltonian, neglecting O(s ) terms, is
about to go unstable. Hence z remains of order uni-
ty. If, on the other hand, a fixed point is ap-
proached, the transition becomes continuous. We
have determined, by numerically following the renor-
malization trajectories, that in the vicinity of the
mean-field bicritical point, the trajectories indeed
flow unstable. A similar analysis is possible for small

& 0 allotting a mapping of the first-order line.
Considering the complexity of Rudnick's' solution

with only two coupled fourth-order fields, we have
not attempted further analysis. Numerical integration
of the recursion relations along with analytic expres-
sions for the free energy allow further information to
be extracted.

uninteresting compared to bicritical or tricritical
points, where approaching multicriticality implies
crossover effects to a new kind of critical behavior.
In the present case, on moving up in temperature in
the ferro region infinitesimally close to the coex-
istence curve for ferro and AF(2) ordering, a normal
Ising transition without any interesting crossover ef-
fects is observed.

The present picture is consistent with the fact that
on going deeper into the AF(2) region (by making

~ J2~ large), I & O(e), and the u mode can be in-
tegrated out immediately leading to an effective n =2
Hamiltonian (3.7). This Hamiltonian, however, is
such that the stable fixed point is not accessible and
the transition therefore is first order.

Following the techniques developed in Refs. 10
and 13, free energies in the ordered phase can be
readily constructed. The coexistence curve between
the paramagnetic and AF(2) phases and the jump in
the AF(2) order parameter can hence be obtained.
At the critical end point one finds,

I (I', I =0) =(Sm2) '(1+z2)h(z)u (I"), (A2)

where z = u4(l')/u3(l') and
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