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High-temperature series expansions for the magnetic susceptibility and the specific heat have
been developed for spin-one ferromagnetic systems with Heisenberg exchange interactions,
magnetic dipole-dipole interactions, and single-ion easy-axis anisotropy. The results are valid for
arbitrary strength of the single-ion anisotropy and therefore have broader application than
Marquard's results. We have obtained the first four terms in each high-temperature series. Ef-
fects of the dipolar interactions and the uniaxial anisotropy on ferromagnetic ordering are also
discussed.

I. INTRODUCTION

The problem of magnetic dipole-dipole interactions
has had a long history. Various aspects have been
discussed by many authors. The question of dipolar
ferromagnetism at zero temperature has been sum-
marized by Cohen and Keffer. ' It was concluded that
dipolar ferromagnetism cannot occur in the simple
cubic lattice but is possible, at least metastable, in the
face-centered cubic and the body-centered cubic lat-
tices. In the presence of both exchange and dipole-
dipole interactions, Holstein and Primakoff' have ob-
tained the simple spin-wave energies at low tempera-
tures and Marquard has given the first four terms in

the high-temperature series expansions for the sus-
ceptibility and the specific heat. There are also
Green's-function works employing the random-phase
approximation (RPA) type of decoupling4 and the
high-density diagrammatic expansion. 5 The Green's-
function results generally contain the spin-wave find-
ings but can be applied to a wider range of tempera-
tures excluding, however, the neighborhood of the
critical point. The calculations and results are also
more involved. The hope for extension to higher or-
ders is perhaps very slim. The high-temperature
series expansion (HTSE) calculations, on the other
hand, have been proved capable of extension to high
orders. While giving no information in the ordered
regime, HTSE provides the most accurate description
of the system in the paramagnetic phase and gives
the best estimates of the critical temperature and'the
exponents characterizing the critical behavior.

Magnetic dipole-dipole interactions exist in all mag-
netic materials. For systems of high ordering tem-

perature, exchange interactions dominate and the di-

polar interaction can usually be ignored. On the oth-
er hand, if the ordering temperature is low (order of
few Kelvin or lower), the dipolar interactions can
contribute significantly to all the thermodynamic
quantities measured. GdC13 is a well-known exam-
ple. GdC13 orders ferromagnetically at 2.2'K. The
Gd'+ ions are in orbital s states, thus the crystal-field
anisotropy is negligible and the Hamiltonian consist-
ing of the Heisenberg exchange interactions and the
dipole-dipole interactions only can provide an accu-
rate description of the system. Marquard' has ob-
tained the HTSE for the specific heat and susceptibili-
ty for this compound and was able to deduce from
the experimental data the nearest-neighbor and
next-nearest-neighbor exchange interaction parame-
ters. In a similar procedure, employing Marquard's
high-temperature series, Wolf and collaborators have
been able to obtain the exchange interaction param-
eters of Gd(OH)3 accurately. Tb(OH)3 has also been
treated. While Tb'+ is not an s-state ion, the aniso-
tropy of the system is so extreme that it. behaves like
an Ising system. Again Marquard's high-temperature
series was used after an appropriate modification.

There are however numerous compounds in which
the dipole-dipole interactions are comparable to the
exchange interactions and the single-ion anisotropies
lie between the limiting cases mentioned above. Re-
cently, Friedberg and collaborators' have studied a
series of uniaxial ferromagnetic Ni salts of the gen-
eral formula NiMF6 6H20. All the compounds show
significant dipolar interactions, and the single-ion. an-
isotropy varies from a value comparable with the ex-
change interaction to a value much greater than the
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latter. To analyze their heat capacity and susceptibili-
ty data, Friedberg and collaborators' adopted a
theoretical model of the Oguchi type. While the fit
was satisfactory, the dipolar interactions were left out
of the calculations, and consequently the exchange
interaction parameters so obtained contain the effects
of the dipolar interactions to an unknown extent.

To construct a theory for systems where the dipolar
interactions are important and where the single-ion
anisotropy is allowed to take an arbitrary value is
indeed the motivation of this work. Green's-function
theory for magnetic systems with single-ion anisotro-

py can be formulated, " but perhaps will be rather in-
volved in the presence of both dipolar interaction and
the single-ion anisotropy (in addition to the exchange
interactions). In view of the great success in employ-
ing the HTSE to deduce the interaction parameters
for systems with vanishing single-ion anisotropy, we
decided to obtain a high-temperature series which
would permit the single-ion anisotropy to be of arbi-
trary strength.

The high-temperature series expansion technique
for systems with only exchange interactions has been
well developed. ~ Marquard' has extended the
method to include the dipole-dipole interactions. In
fact Marquard' has also considered the effects of
single-ion anisotropy but his calculations are limited
to systems with weak anisotropy (compared to the
exchange interactions). To allow for arbitrary
strength of the single-ion anisotropy, the single-ion
potential must be treated exactly. The conventional
HTSE technique6 which would treat the single-ion po-
tential in the expansion thus can not accomplish this
goal. Very recently Wang and Lee' have shown a
method to cope with this problem. They split the
Hamiltonian into two parts. The single-ion terms
which comprise the crystal-field potential and the
mean-field potentials are treated exactly; the many-
body diagrammatic expansion procedure is then in-
voked to account for the fluctuations from the mean
field. The first five terms in the HTSE for a spin-one
ferromagnet with anisotropic exchange interactions
and an easy-axis single-ion anisotropy of arbitrary
strength have been computed. "

In this paper we extend their calculations for the
spin-one ferromagnet with easy-axis anisotropy to in-
clude the dipolar interactions. We have found the
first four terms in the series expansions for the sus-
ceptibility and for the specific heat. Our results
reduce to those of Marquard in the limit of vanish-
ing anisotropy for the spin-one case. It has not been
possible to obtain the result for general spin. Howev-
er the Ni-salts studied by Friedberg's group are spin-
one systems' and in a subsequent paper application
of the present results will be made to deduce the in-
teraction parameters for these compounds. In this
paper we shall concentrate on developing the theory
and at the end give a general discussion of the effects

of the dipolar interactions and the single-ion anisotro-
py.

In Sec. II we introduce the Hamiltonian which con-
sists of the exchange interactions, the dipolar interac-
tions and an easy-axis single-ion anisotropy potential.
The HTSE for systems with single-ion anisotropy of
arbitrary strength will be recapitulated in Sec. III be-
fore we present the HTSE results for the susceptibili-
ty and the specific heat of our system. In Sec. IV we
discuss some general effects of the dipolar interac-
tions and the anisotropy on the magnetic ordering.

II. HAMILTONIAN

For.a spin-one ferromagnet with both exchange
and dipolar interactions and an easy-axis anisotropy
the Hamiltonian consists of three terms

where

Hex + Hdipolar +Hanisotropy (2.1)

Hex g~lm Sl ' Sm
l,m

(2.2)

and

3(SI rI )(S rI )
dipolar 2 ~ lm I

'
m . 2

l, m rIm

(2.3)

Haoisotropy = D g (~f) (2.4)

dim 3
flm

(2.5)

where g is the Lande factor and p,g the Bohr magne-
ton. Thus the term H,„represents the Heisenberg
exchange interaction and the term Hd;~i„represents
the interaction of magnetic dipoles in the lattice.

0 '
t py is a uniaxial single-ion anisotropy term

arising from the effects of the crystalline electric
field. The parameter D measures the strength of the
anisotropy and the negative sign in Eq. (2.4) implies
that for D & 0, the z axis is an easy axis for the mag-
netization.

The Hamiltonian of Eq. (2.1) can be separated into

In the equations above, SI denotes the spin opera-
tor on the 1th lattice site, Sf being the z component
of SI. rI is the distance from the l th site to the mth
site. The summation g, in Eq. (2.4) is over all sites
in the crystal lattice, while the double summation

in Eqs. (2.2) and (2.3) is restricted to exclude
l = m. The parameter JI characterizes the strength
of the Heisenberg exchange interaction between spins
on sites I and m. The negative sign in Eq. (2.2) as-
sures that for JI )0 we have a ferromagnetic ex-
change interaction. The parameter characterizing the
strength of the magnetic dipolar interaction is dl

which is given by
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a mean-field (single-ion) part Ho, and a fluctuation
(two-body) part Hi. We write H

0=00 +01 +Hconstant (2.6)

where S-= S +iS, S"and S beirig the x and y
components of S, respectively. Thus we get the fol-
lowing:

Ho= D$ —(Sf)z —2[J(0) + 2E(0)](S') QS(',
I

where H„„,t,„t is a c-number term. To effect the
separation of the Hamiltonian into these parts we re-
place S' by S'—(S') + (S), where (S') is the expec-
tation value of the operator S' to be determined self-
consistently later on. We also use the familiar identi-

ty

S( S =SfS'+
z

(S(+S +S( S+)

Eq. (2.8) that the presence of the dipolar interaction
introduces new fluctuation terms, e.g. , S S', S+S+,
etc. , apart from the usual terms present due to the
Heisenberg interaction, namely, S+S, and
(S'- (S'))(S'- (S')).

III. HIGH-TEMPERATURE SERIES
EXPANSION (HTSE)

The method of obtaining a HTSE for the free-
energy Fand the susceptibility (X) such that the
single-ion anisotropy term is taken into account ex-
actly was developed by Wang and Lee in Ref. 12.
Here we apply the method to treat our Hamiltonian
of Eq. (2.6). The single-ion part of the Hamiltonian,
Ho, is given in Eq. (2.7). We add a Zeeman energy
term to it to account for an applied external magnetic
field along the axis of magnetic ordering. Thus

Ht = —$(J( E( )S(+S— H = DX(S'—) —h /Sf,
I I

(3.1)

—X (J (+m2Eim) (Sf (S')) (S—' —(S*))
I,m

—y (F(mS(+Sm+H c )

—g(a, S,+S++H,c.)

and

H,.„„...= N[J(0) +2E(0)](S*)',
where

(2.8)

(2.9)

(2.10)

where

hm =2[J(0) +2E(0)] (S) +g(t(, sh, „, , (3.2)

h,„t being the applied external magnetic field.
The eigenstates of Hp for spin S =1 are clearly the

eigenstates of the operator S', namely, ~0), ~+1), and
~

—1), where the number n in
~ n) is the eigenvalue of

S'. Let the eigen-energies of these states be denoted
by eo, e(, and a-, , respectively, for ~0), ~+1), and

~

—1). We also add a c number D to Ho, to shift all
the energies by an amount +D. Then

E(0) = XE(
I

(2.11)
&) =+ha

0.3)

Fi =
z d( (rf r( /r(m)
3 2

(2.12)

(2.13)

The. mean-field free energy per ion I'0 is thus given
by

pF = ln /exp( ——p~„)—p[J(0) +2E(0) ] (S*)',
(3.4)

8(m = , d( (rim/r(m)—=3 — 2 (2.14)

where rf is the zcomponent of ri, ri =ri" —ir~, r("

and r$ being the x and y components of ri, respec-
tively, N is the total number of lattice sites, and H.c.
means the-Hermitian conjugate. In the nearest-
neighbor interaction model for the Heisenberg ex-
change, J(0) from Eq. (2.10) is simply Jz where z is
the number of nearest neighbors. It is evident from

where P =1/k((T (k(( being the Boltzmann constant
and T the absolute temperature), and the sum over n

consists of summing over the three states ~0), ~+1),
and

~

—1).
The corrections to I'0 due to the fluctuation part

H~ can be obtained by using the standard finite-
temperature perturbation theory for many-body sys-
tems. '3

(-1)" pP-PhF = X, Jl dr( Jl d r(T, H((& )(H ((rp) H((rn) ) c
pg

'l 0
(3.5)
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~here H~ has been written in the interaction
representation with Ho as the unperturbed Hamiltoni-
an. The angular brackets denote the canonical ther-
mal average over Ho. The subscript t. denotes the
cumulant part of the v-ordered product, or, in the di-
agrammatic analysis, the contribution of only the
connected diagrams. Equations (3.4) and (3.5) con-
sist of a HTSE of the free energy in powers of
P[J(0) +2E(0)l from which other thermodynamic
quantities can be obtained. For example, the zero-
field susceptibility X is the negative of the second
derivative of Fwith respect to the external field, i.e.,
X = —O' F/Oh, '„, and the specific heat
C& =/3'[O'( PF) IO—P'].

In order to compute lLF of Eq. (3.5) we need to
evaluate the thermal averages of the 7-ordered pro-
ducts of spin operators. The diagrammatic method of
Vaks, Larkin, and Pikin' is not applicable here, be-
cause the inclusion of the single-ion anisotropy term
in Ho destroys the simple 7 dependence of the spin
operators in the interaction representation which uses
Ho as the unperturbed Hamiltonian. However, a
more general diagrammatic scheme has been
developed by Yang and Wang, "which employs the
standard basis operators L „~m) (n ~. The operator
L „ transfers an ion from the state ~n) to the state
)m) and its simple r dependence makes the diagram-
matic analysis feasible.

The diagrams representing Pd F can be con—struct-
ed with "semi-invariants" (T,s& S/ ), at a site
and interaction lines connecting appropriate spin
operators on different sites. The operators S;, etc. ,
that occur in the semi-invariants and the interaction
lines connecting spin operators on different sites
result from the terms in H~, the fluctuation part of
the Hamiltonian. These diagrams will be referred to
as the main diagrams. For the Hamiltonian under
consideration in this paper there are four second-
order (in the interaction) and fourteen third-order
main diagrams. These are shown in Fig. 1 where the
semi-invariants (T,S; SJ' S10), are represented by
ovals, and the interactions are represented by wavy
lines. It is worth noting that in the absence of the di-
polar interaction only two second-order [(2,1) and
(2,3)] and four third-order [(3,1), (3,2), (3,7), and
(3,8)] main diagrams remain.

The evaluation of the semi-invariants (SI) is car-
ried out using the standard basis operators, as dis-
cussed in Ref. 11. Thus an SI in the spin operators
consists of a sum of SI in the standard basis opera-

( -) (z z)

+)
(2, i)

C+

(2,2) (2, 3)
(z z}
(2, 4)

(

(+ -)

(- +)
(3, i)

(z z)

(z z)

(z z)
(3, 2) (3, 3)

(+ -)
(+ -)

(+

(y )

(z z)

+)

(3, 4)

(

(z z)

-)
(3, 50)

(- +)

(z z)

(- +)
(3, 5b)

(+ -)

{z z)

(z z)
(3, 6)

(z z z) (+ — z) (z z z)

(z z z) (- + z) (+ — z)

(3, 7) {3,8) (3, 9)

(+ z -) (+ — z) (- + z) (+ — z)

(- + z) (+ - z) (- z +) (+ z -)
(3, lO) {3,ll) (3, Ipa) (3, l2b)

FIG. 1. Second- and third-order main diagrams for the
corrections to the free energy due to the fluctuations. The
spin operators S; S+, and S are denoted by z, +, and —,
respectively. The ovals indicate that the operators enclosed
by them are on the same site. The wavy lines connecting
operators on different sites are the appropriate interaction
lines [See Eq. (2.8).]

tors. For our system we get

S = X(m~S*(n)L.„=L„-L—„,
m, n

s'= I (mls+~n) L.„=i~(L;,+L„),
m, a

S = X (m ~
S

~ n) L „=&2(L ,0+ Lp,), -
m, n

where

L „=(m)(n~

(3.6)

(3.7)

As an illustration consider the evaluation of the SI
(T,S+(r)s (0)),. Substituting from Eq. (3.6) we ob-
tain

(T~s+(r) S (0)) g
= 2 (T~[Lpf(T) +L 0(T)1)[L10(0) +Lp1(0)])g

=2[ (2'Lor(r) Lro(0)). + (2'~L01 (')Lo1(0)). +(2'TL10(r) L1p(0))c+ (&TL10(r)Lp1(0) ),]

= 2[Do-, G~() (r) +0 +0 +D10G01 (r)] (3.8)
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where

(T,L „(r)L„(0)),=D,G.' (r)

D e ", v)0
D email ~~O

(3.9)

and

&mn = ~m +n~ Dmg = Dm —Dn

D =e lge

A. Magnetic susceptibility

To facilitate the computation of the zero-field sus-
ceptibility, we follow the procedure of Rauchwarger

The Green function G„(r) can be represented by a
line labeled by (nm) propagating from 0 to r. D, is
a weight factor associated with the SI
(T,L „(r)L„(0)),. Thus the SI (T,S+(r)S (0)),
consists of two nonzero SI's in the L operators, each
of which is a Green function with a weight factor.
Since each SI in spin operators consists of a sum of
SI's in the L operators, each main diagram in the
spin operators consists of a sum of subdiagrams in

the L operators. The evaluation of the diagrams is
carried out in Fourier space using the rules of Ref.
11. The spin arid space degrees of freedom are
decoupled. The spin degrees of freedom result in the
Green function and ~eight factors, while the space
degrees of freedom result in interaction lines. To
evaluate a diagram in Fourier space one has to sum
over internal frequencies and wave-vector variables,
The former can be accomplished by using Poisson's
summation formula, while the latter depends on the
geometry of the lattice and the range of interactions.

et aI." Namely, each of the quantities which enter
the diagram such as ~„and the weight factors is first
expressed in a power series of h . The contribution
of each free-energy diagram is then evaluated and
also cast in the form of a po~er series of h The
zeroth-order coefficient corresponding to the zero-
field free-energy contribution is retained for a later
calculation of the specific heat. The first-order coef-
ficient relating to the zero-field magnetization (in the
disordered phase) should be identically zero and
therefore serves as a check on the computation. The
susceptibility is obtained from the second-order coef-
ficient of the free energy (in powers of h ). Indeed
after multiplying by a factor 2p the coefficient gives

0'(—pF)
8(ph )'

and the susceptibility X is related to X, by

x '=x —2fJ(0)+2E(0)l .

We arrive at the following form for &&'.

x,/x, =1+Xf(m, n) o (m, n) p
n, m

where

x, = 'p
2+t

and

t =exp( —pD) .

Xo is easily recognized as the susceptibility in the ab-
sence of the exchange and dipolar interactions.
While f(m, n) is the contribution of the spin degrees
of freedom from the diagram (m, n), cr(m, n) is the
contribution of the space degrees of freedom consist-
ing of the lattice sums.

With the aid of a computer we obtain the following:

1

f(2, 1) = 1 4t(—2+ t) + (1+t) (—1+ t)8

(2+ t)2 pD

f(2, 2) = —(—10 + t) + (I + t + t') — (2 + t)+,(2 + t) (I + t) (I —t)(2+ t)' 3 PD (PD)' (PD)'

f(23)4(—4+t)
(2+ t)'

f(2, 4)=, (—4+St t ) — (2+t—)+ (I —t)(2+t)4 8 8
(2+ t)' pD (pD)' (pD)'

f(3, 1) = 4t(2+t2) + (—6+4t —t2)+ — (I —t)(—4+3t+'7t2)
(2 + t) pD (pD)

f(3 2) 12(—4+t)
(2+ t)3
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f(3, 3) = —(—14 —14t+t') + (—14+64t —St') + (4 —lit —17t')
(2+ t)' 3 3PD (pD)'

+ (—4 + t) (1 —t) (2 + t) + (1 —t) 2 (1 + t) (2 + t)(pD)' (pD) 4

f(3, 4) = 1 16 2 64 64
(2+ t)' (pD)'

(1 —t)(—4+lit —t ) + (—1+t)(2+t)+ (1 t) (—2+t)
(PD)' (pD)'

f(3, 5) =f(3, 4)

f(3, 6) = 1 8 16 16
(2+ t)' pD

(—8+13t 2t ) —— (2+t) + (1 —t)(2+t)
(PD) ' (PD) '

f (3 7)
4 (4 —t)'
(2+ t)'

f(3, 8) = —16t2+ (4+t —2t2) + (—1+t)(1+t)(2+t)
(2+ t)' PD (PD)'

I

f(3, 9)=, '( 4+t) +— , (4 —t)(2+t)+, (1 —t)(—4+t)(2+t)2+t PD PD PD ~

f(3, 10) = (10—t)(2+t) + (—8 —8t+36t'+t')
(2+ t)' PD (pD)'

+ (2+t)(—2 —10t+3t') + (1 —t)(2+t)8 24
(PD)' (pD)'

f(3, 11)= 1 16t 8 4
(2+ t)~ 3

(4 —t) + ( 4 t —t ) +— — (3 —3t —t2)(2+t)
pD (pD)'

+
~

(2+3t+4t2)(2+t) + (—1+t)(1+t)(2+t)2
pD ~ PD

f(3, 12) =
~ (—10+ t)(2+t) +

2 (8 —24t+24t2+t~)
2+t ~ 3PD pD 2

+ (4 6t +5 t')(2+ t)—+ (—1+t) (2+ t)'8 8

(PD)' (pD)'
(3.10)

We note that the contributions of diagram (3, Sa) and (3, Sb) are summed to one term f(3, 5) and similarly di-

agrams (3, 12a) and (3, 12b) are summed to f(3, 12). Similarly the contributions of the space degrees of free-
dom for the main diagrams are as follows:

o.(2, 1) = $ [J(q) —E(q)], o.(2, 2) = —JIB(q)122N
q N q

o.(2, 3) =—X [J(q) +2E(q)]',
N q

o(2, 4) = —/IF(q)I' . o.(3, 1) = X[J(q) —E(q)], a(3, 2) = $[J(q)+2E(q)]N q

' 3N q

' 3N

o (3, 3) = —$ [J(q) —E(q)] IB(q) I', (r(3, 4) =—X [J(q) —E(q)] IF(q) I2
N

q

o(3 5) = —X[(F"(q))'B(q)+F (q)B"(q)l, tr(3. 6) =—X IF(q)12[J(q) +2E(q)]
N

q
N q
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o(3., 7) = X $[J(q&) +2E(qI)] [J(q2) +2E(q2)] [J(q&+q2) +2E(q, +q,)]
2

3N q, q

a (3, 8) = X X [J(q)) —E(q))] [J(q2) —E(q2)] [J(q)+ q2) +2E(q)+ q2)]
1

o(3, 9) = $$[F(q,)F'(q2)] [J(q, +q2) +2E(q~+q2)]2

(r(3, 10)=, g X [J(q/+q2) —E(q]+q2)] [F(qi)F'(q2)l1

(r(3, 11)=
2 X X[8(q&)B'(q2)] [ J(q~+q2)+2E(q~+q2)]

4

o (3, 12) = $X [ F(q&) F(q2) B"(q& + q2) +F'(q)) F"(q,)B(q( + q2)]
1

N2~, ~
(3.11)

The quantities J(q), E(q), B(q), and F(q) are the
Fourier transforms of the quantities (in real space)
JIm, EIm, BIm, and F(m, respectively. For example,

expansion parameter and
4

(2+ t)

J(q) = QJI exp(i q rt )
l

(3.12) (2+ t) [J(0) +2E(0)]'

X, = X,(1+C,P'+ C,P'+ ) . (3.13)

The susceptibility X can now be obtained as fol-
lows. Let

64 8C2

(2+ t)' (2+ t) [J(O) +2E(O)]'
C3

[J(0) +2E(0)]' (3.16)

C2 and C3 are obtained from summing the results of
the diagrammatic analysis, i.e.,

Since we have treated the single-ion anisotropy term
exactly (by including it in the unperturbed Hamiltoni-
an Hp), the resulting coefficients of the HTSE, a„are
exact functions of PD.

C2= X o(2,m) f(2,m)
m 1

12

C3= X o(3,m) f(3,m)

Thus from Eqs. (3.13) and (3.14) we obtain

X/Xp =1 +atx + a2x + a3x +

=1+ X a„x",
n 1

(3.14)

(3.15)

B. Specific heat

The high-temperature series for the specific heat
which is exact to all orders of PD can be obtained
from the free energy computed above. The zero-
field specific heat is the simplest to obtain; one
evaluates the free-energy diagram (which actually
represents PF) at h =0 ob—taining a function of
PD, then takes the second-order derivative of the
function with respect to PD, and finally multiplies the
result by (PD) . Similar to the susceptibility series,
the specific-heat series takes the form

where x =p[J(0) +2E(0)] is the high-temperature

where
Cp =2(2 + t) t(PD) k

Cg p= Cp+ks Xg(m, n)o (m, n)p
m, n

(3.17)

g(2, 1) =8(2+t) 4[t(4 —8t +t~)(PD)2+6t(-3 —t +t2)(PD) +6t(1+t)(2+t)]

g(2, 2) =g(2, 1)

g(2, 3) =8(2+t)~[2t(—1+t)(PD)2+4t(2+t)(PD) + (2+t)2]



3816 JAFAREY, WANG, FRIEDBERG, AND LEARNER 20

g(2, 4) =8(2+ t) 4[t(—8+12t —t2) (pD) +2t(8+2t —t2)]

g(3, 1) =4(2+ t) '[2t(4+2t —10t'+ t') (PD)'+6t ( 4—4—2t +18t'+ t') (PD)

+3t(—26+119t +98t2 —1 1 t3) +54t(1 —t) (1+t)(2+ t) (1/PD) ]

g(3, 2) =24(2+t) 5[t(—2+3t) (PD)~+6t(2+t)(PD) +2(2+t)2]

g(3, 3) =g(3, 1)

g(3, 4) =32(2+t) 5[t( 14+—53t —22t +t3) +2t(l —t)(14+St —t ) (1/pD)]

g(3, 5) =g(3,4),
g(3, 6) =16(2+t) 5[t(—10+23t —4t2)(PD) +4t(10+t —2t') +2(l —t) (2+ t)'(1/PD)]

g(3, 7) =0,
g (3, 8) = 8 (2 + t) 4 [2 t (1 —t) (PD) + t (—9 —7 t + t2) + 2 (—1 + t) (1 + t) (2 + t ) (1/PD) ]

g(3, 9) =0,
g(3, 10) =8(2+t) 4[t( 4+8t —t')—(pD) +t(8+12t —St2) +4t(1 —t)(2+ )t( /1pD)]

g(3, 11)= —g(3, 8)

g(3, 12) =—g(3, 10) (3.18)

Cp is obviously the mean-field result, and the other
terms represent the correlations of the fluctuations
which are ignored in the mean-field approximation.
The lattice sums o.(m, n) are the same as the ones
listed for the susceptibility calculations.

where E'(0) is the contribution of the dipoles inside
the Lorentz sphere. L comprises two terms, one
from the inner surface of the Lorentz sphere yielding
the well-known Lorentz factor and the other from
the outer surface of the sample giving the demagnet-
izing field. Specifically

IV. RESULTS FOR CUBIC LATTICES E'(0) = —
—,(g pa)' X [[rt' —3(rf )']/rt' j

I
(4.2)

As we emphasized in the beginning, the main pur-
pose of this paper is to obtain the high-temperature
series expansions applicable to systems in which the
exchange interactions, the dipolar interactions, and
the single-ion anisotropy can take arbitrary values.
The application of the results to several Ni salts will
be given in a subsequent paper. It is, however, in-
structive to demonstrate the application'of the series
to systems with lattices of simpler geometry, and con-
sider some of the general effects of dipolar interac-
tions and single-ion anisotropy on ferromagnetic or-
dering.

%e focus on the three cubic lattices in this section.
For simplicity, we also assume that the exchange in-
teractions extend to the nearest-neighbor ions only.
Thus J(0) = Jz where z is the number of nearest-
neighbor ions to a specific ion, and is 6, 8, 12 for the
sc, bcc, and fcc lattices, respectively. The effective
field due to the dipolar interaction E(0) can be writ-
ten as usual

and

m ND
(glMa) /a, for sc lattice

t

L ='2 —— (gp, s) /a3, for bcc lattice
ND

3 4
1

ND
4 — (gp, s) /a, for fcc lattice

3 4

(4.3)

(gt a)'/tt'
J (4.4)

Here ND is the sample shape-dependent demagnetiz-
ing factor which varies from

3
(4n) for a spherical

sample to zero for a needle-shaped sample. It can
also be shown from symmetry that E'(0) =0 for all
cubic lattices. Now we define a dimensionless param-
eter

E(0) =E'(0) +L (4.1) where a is the lattice constant. 8'measures the
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strength of the dipolar interaction relative to the ex-
change interaction. Then we can write

We first define T,' ' as

k, T~3~

[J(0) +2E(0)] (4.7)
—JW, for sc lattice
3

E(0) = JW, for bcc lattice
2m

3

4m
JW, for fcc lattice

(4.5)

Now

&n y+n —1

n

ka Tc

J(O) + 2E(0)
(4.8)

for a long thin cylinder or needle-shaped sample.
The quantity J(0) +2E(0) is then

J(0) +2E(0)

J 6+ W, for sc lattice
2'

J 8+ W, for bcc lattice
4m

J 12+ W, for fcc lattice
8m

(4.6)

The lattice sums o.(m, n) are evaluated numerically
on a computer by summing over the lattice points in
a given lattice. We list the results for the three cubic
lattices in the Appendix.

With the above information in hand, the high-
temperature series for the susceptibility and the
specific heat are ready to be used. One of the impor-
tant applications of the susceptibility series is to ob-
tain an estimate of the critical temperature for the
phase transition. Usually with five or more terms in
the series the accuracy can be within a few percent of
the exact value. Our series is rather short due to the
complexity of the system. It is found, however, that
at vanishing dipolar. interaction, ' the estimated
values for the critical temperatures, using the first
four terms in the series, all lie within 3% of the es-
timated values using the first five terms. The accura-
cy is best for the fcc lattice, as expected (within 1%
of the values using five terms). We therefore tenta-
tively assumed the validity of the estimate using the
four-term series in the presence of the dipolar in-
-teraction. Quickly, however, we found that as the
strength of the dipolar interaction relative to the ex-
change interaction, W, gets large ( W & 20), the
results become questionable. This was apparent in
the plot of the ratio a„/a„ I for the susceptibility
series versus 1/n. Instead of falling near a straight
line the points become quite irregular for large W.
Excluding situations where dipolar interactions dom-
inate, we trust that the estimates from our series are
generally acceptable.

We have chosen the following procedure to obtain
the estimated value of the critical temperature T,.

where y is the critical exponent for the susceptibility.
Our estimated T, is therefore given by

kg Tc 3 kg Tc

J(0) +2E(0) ) +2 J(0) +2E(0) (4.9)

I I I

s.c. lattice
A:W=O
B:W=0.25

20- C:w= I 0 Mean- Fieldo D:W= IO

l.6—LLI
B

I 4 "-" Co 1.2—
I.O ~~
0.8~ D

~ 0..6- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

0.4
0.2-.~

I I I I I I I I

0 I 2 5 4 5 6 7 8 9 IO

D/[ J(0)+ 2E(0)j

I I I I I I I

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

A

FIG. 2. Plot of ks T,/[J(0) +2E(0)] vs D/[J(0) +2E(0)I
for some representative values of the parameter 8', for a
simple cubic lattice. The mean-field-theory result is shown
for comparison with the HTSE results. These results are for
a long needle-shaped sample.

For a fixed value of D/[J(0) +2E(0)], we solve Eq.
(4.7) iteratively to obtain T, 3'/[J(0) +2E(0)]. Then

. Eq. (4.9) gives the estimated value for T, . We have
taken y =1.25 irr view of the fact that the system
behaves Ising-like in the presence of uniaxial aniso-
tropy.

The variations of ksT, /[[J(0) +2E(0)] for the
three cubic lattices are plotted in Figs. 2—4, for vari-
ous values of W. The mean-field theory predictions
are also shown for comparison. We first note that in-
cluding the correlations between fluctuations has
greatly depressed the values of T, from the mean-
field values. The effect becomes even more impor-
tant in the presence of dipolar interactions. This is
contrary to the intuitive feeling that, because of the
lang-range nature of the dipolar interaction, it can be
better approximated by a mean-field potential than
can the exchange interactions which extend only to
near-neighbor ions. In fact in the presence of dipolar
interactions only, fluctuations can actually prevent
ferromagnetic ordering from occurring even at zero
temperature. The mean-field approximation, howev-
er, yields a nonzero ordering temperature. This is
the situation with a simple cubic lattice as was also
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I I I I I I I

bcc lattice
0:w=O
B:W =0.25
C:w= I.o

2.0 —D: W= 10
1.8
1.6

+ 1.4
o 1.2-

1.0
0.8 p

~ 06-
~~ 0.4-, ~

0.2-
I

0 I 2

Mean- Field

B
~ ~ ~ ~ ~

c
D

4 5 6 7
D/ [ 3 (0) + 2 E (0) j

I I

8 9 10

FIG, 3, Same as Fig. 2, except for a body-centered cubic
lattice.

I I I I I I I

fcc lattice
A'-W =0
B:w =0.25
C: W =1.0

=10 Mean- Field2.0- D W
1.8
1.6—

+ 14
o 1.2-

I.O-
0.8 -r

~ 0.6'-
I ~ 04-

0.2 —.
/

0 I

~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~
B

D

I I I

8 9 IO
I I I I I

2 5 4 5 6 7
D/[ 3(0)~2E(0)]

FIG. 4. Same as Fig. 2, except for a face-centered cubic
lattice,

concluded by Cohen and Keffer. ' Our results are
consistent with their finding. As the relative strength
of the dipolar interaction relative to the exchange in-
teraction 8'increases, T, is further depressed below
the mean-field value. In fact T, is driven to zero be-
fore one has pure dipolar interaction. This is a case
not treated by Cohen and Keffer' but can be con-
firmed by extending their treatment to include the
exchange interaction. Our results for the bcc and fcc
also show no ferromagnetic ordering when dipolar in-
teractions dominate, at least in the absence of the
single-ion anisotropy (D =0). This is in contradic-
tion to the conclusion of Cohen and Keffer. ' lt is in-
teresting to note that for a hexagonal lattice system
without single-ion anisotropy as treated by Mar-
quard, the four term HTSE also gives no ferromag-3

netic ordering for pure dipolar interactions. But, as
we pointed ottt earlier, for large W( W & 20) the esti-
mate of T, made from the short series is rather ques-
tionable.

We should also note that for small enough
amounts of dipolar interaction added to a system with
predominant exchange interactions, T,/[J(0) +2E(0)]
actually becomes larger than the value with pure ex-
change interaction. This is a general phenomenon
and can be understood by noting that for small 8,
the effective field due to the dipolar interaction is
linear in 8', while the fluctuation effects which tend
to suppress the ordering are of second order or
higher.

Finally we note the effects of the easy-axis aniso-
tropy. As expected, the anisotropy supports ordering
and raises the ordering temperature. This is because
increasing D raises the energy of the nonmagnetic
S'=0 state thus reducing its population. For large
values of D the system approaches the Ising limit.
More interesting, however, is the fact that for sys-
tems where no ferromagnetic ordering is allowed at
D =0 because of dominant dipolar interactions, in-
creasing the anisotropy can restore the ordering, ob-
viously through suppressing transverse-type fluctua-
tions. It is found that this is always possible for the
bcc and fcc lattices but no so for the sc lattice. That
is, if we examine the limiting case of D ~ our es-
timated T, for the fcc and bcc.lattices are always fin-
ite and quite high even when the dipolar interactions

l

dominate. On the other hand for the sc lattice T s
owered to zero for large enough value of 8'even in

this extreme anisotropic limit. Again we repeat that
the conclusion should be received with reservation
because the series is probably too short for treatinea ing
cases with dominant dipolar interactions.

In conclusion, we have obtained the high-
' 'iytemperature series expansions for the susceptibilit

and the specific heat of systems in which the ex-
change interactions, the dipolar interactions and the
easy-axis anisotropy can take arbitrary values. This
will provide a theory for analyzing data on the Ni
salts studied recently by Friedberg and collabora-
tors '0 ~o s, for example. We have also given a general
discussion on the effects of dipolar interactions and
easy-axis anisotropy in a ferromagnet. While the reli-
ability of the critical temperatures estimated for sys-
tems where the dipolar interactions dominate is still
questionable, the general features, such as lower T,
for systems with higher fraction of dipolar interac-
tions and the capability of stabilizing the magnetic or-
dering by an easy-axis anisotropy, should remain
valid.
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Here we list the lattice sums cr(m, n) for the three cubic lattices, namely, simple cubic, body-centered cubic,
and face-centered cubic. They were obtained by carrying out the sums of Eq. (3.11) in real space using the com-
puter.

Lattice sum
Simple

cubic lattice
Body-centered

cubic. lattice
Face-centered
cubic lattice

~(2, 1)/J'
o.{2,2)/J2
a (2, 3)/J2
o-(2, 4)/J
o(3, 1)/J'
o (3, 2)/J3
o (3, 3)/J3
o.(3,4)/J3
o {3,5)/J3
a.(3, 6)/J
cr(3, 7)/J3

o{3,g)/J'
o(3, 9)/J
cr(3, 10)/J3
a {3,11}/J
cr(3, 12)/J3

3+0 4174 W
1.4676 W2

6+3.3389 W2

0.8615 W2

1.4591 W2 +0.1232 W3

23.345 W —3.9417 W.
14.855 W —1 3555 W
4.8431 W +0,2469 W
-1.,2498 W3

9.6862 W -0.9876 W

4+6 W'+0, 992 W3

6 —2.25 W2+0.372 W3

0.1025 W3
—0.0256 W3

2,25 W2 —1.1672 W3

0.0923 W3

4+0.4664 W2

4.0961 W2

8+3.7312 W2

10.7871 W2

5 9184 W +0 1783 W
94.6944 W —5.7062 W
19.125 W -6.3079 W
80.352 W +4,7030 W
-2j.6864 W3

160.704 W —18.8122 W

3
+1.0086 W3

8+0.3783 W3

18.963 W +0.1244 W

9,4815 W -0.0311 W

W —1.1966 W

7.4218 W3

6+2.1539 W2

16.6037 W2

12+17.2314 W2

40.5648 W2

16+31.532 W +2.0576 W
64+504.512 W —65.8432 W
144.6872 W —31.5864 W
470.7504 W +13.0752 W
—162.5184 W3

941.5008 W —52.3008 W

8+24 W' —4.5406 W'

12-9W2-1.7027 W3

72 W +51.3101 W
36 W —12.8275 W

27 W2 —20.5459 W3

39.001 W3
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