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The order-disorder phase transition in two-dimensional hydrogen-bonded layers of water
molecules in SnCl, - 2D,0 is remarkable in several respects. It has been shown that the peak in
the specific heat is highly symmetric around the phase-transition temperature, and that the crys-
tallographic symmetry of the system does not change. We present neutron-diffraction results
which show that the temperature dependence of the hydrogen-site occupancies is also highly
symmetric around the phase-transition temperature. These results are discussed in terms of a
lattice statistical model which was proposed and solved by Salinas and Nagle. By means of a
comparison with the Rhys F model, this model is shown to account for the experimentally ob-

“served symmetry properties, although the model is in quantitative disagreement with the experi-
mental data. This comparison also offers a reason for the existence of the peculiar anomaly in

the dielectric constant.

I. INTRODUCTION

Stannous chloride dihydrate (SnCl, - 2H,0 or
SnCl; - 2D,0; hereafter abbreviated SCD) has attract-
ed attention recently because of its order-disorder
phase transition. SCD consists of layers of water
molecules alternating with layers of stannous
chloride.! At room temperature, there is disorder in
the positions of hydrogen atoms in the two-
dimensional hydrogen-bonded network. At To=234
K (in the case of the deuterated compound), a nearly
second-order phase transition is manifested in the
specific heat®?; at or near this temperature, there is
also a sharp peak in the dielectric response.*® At low
temperatures, it appears that the hydrogen positions
are ordered.!

This paper has two main purposes. One is to re-
port the results of a neutron-diffraction study of the
phase transition; the other is to discuss these data,
and some of the data mentioned above, in the light
of existing exact lattice-statistical results. We will see
that while the existing model calculations do not
agree quantitatively with the experimental results, the
important symmetry properties of the model show up
in the experiments.

One peculiarity of SCD is that it is an example of a
structural order-disorder system having the same
symmetry in the two phases. Frequently, it is possi-
ble to characterize an order-disorder system by an
"order parameter" having the following properties:

7]=0, T> To »

1)
n=0, T<T, .

Typically, n represents the magnitude of some
symmetry-breaking distortion or polarization. In

SCD, no such quantity has hitherto been defined.
While there certainly exist other examples of phase
transitions in which the symmetry does not change,
such behavior is not typical of order-disorder phase
transitions. Moreover, the specific-heat peak is
unusually symmetric around T, and, as we will
show, the temperature dependence of the hydrogen-
site occupancies has a related symmetry around 7.
All these features of SCD are features of a dimer
model for SCD that was originally proposed and
solved by Salinas and Nagle.5 We will discuss an im-
portant connection between their work and that of
Baxter’ on the F model in applied fields. From this
connection, one sees that in the dimer model of Sali-
nas and Nagle, the variable )

_T-T.
T

can be thought of as an effective staggered field.
From this point of view, all the above-mentioned
features of SCD seem quite natural. The character of
the specific-heat singularity predicted by this model is
known to be wrong®; because of this discrepancy, and
because the role of ice-rule violations is not yet un-

’

()

“derstood, it cannot be said that the SCD model accu-

ractely describes the behavior of real SCD.
Nevertheless, because this is an exactly solvable
model which correctly predicts some of the distinctive
qualitative features of SCD and because the model is
of considerable formal interest in its own right, we
have chosen to organize our discussion around this
model, rather than try to build up a phenomenologi-
cal treatment. ‘

The outline of the paper is as follows. In Sec. II,
we will describe the structure of SCD, and introduce
the Salinas-Nagle model. In Sec. III, we will report
our neutron-diffraction results. Then we will discuss
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our results, together with the specific-heat data and
the dielectric measurements.

II. LATTICE-STATISTICAL MODEL OF SCD
A. Dimer model of the hydrogen-bond network

A simplified picture of the hydrogen-bond network
is presented' in Fig. 1. It is convenient to think of
the structure as being made up of clusters, each con-
sisting of four water molecules. In the following, we
will refer to these clusters as "cities." The cities are
arranged in a rectangular lattice with each city hydro-
gen bonded to four nearest-neighbor cities. There

(a)
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FIG. 1. (a) Shown schematically is the structure of a water
layer in the ordered phase. Arrows are drawn on the bonds
external to the cities, in order to show the staggered polari-
zation. (b) Crosses indicate the position of those hydrogen
atoms that participate in the disorder. The sites are num-
bered as in the work of Kiriyama er al. (Ref. 8). There is
always a hydrogen atom at position 7.

are two inequivalent water molecules in the structure.
Type-I molecules have both hydrogen in the plane of
the network, while in Type-II molecules one hydro-
gen atom is bonded out of the plane. At room tem-
perature, all the in-plane hydrogens are positionally
disordered; at low temperatures, the hydrogens are
ordered as shown in Fig. 1(a). Each layer orders in
the same way. The crystallographic space group is
the same (P2,/c) at room temperature as at 77 K,
and the translational periodicity does not change.!
Assuming the ice rules—that each bond must be
occupied by one hydrogen, and precisely two hydro-
gens must be near each oxygen—we see that any al-
lowed configuration corresponds to a pairing of
Type-1I and Type-II oxygens. On only one of the
three bonds surrounding each Type-I (Type-II) oxy-
gen can the hydrogen be at the far (near) end of the
bond. This situation can be discussed in terms of a
dimer model. One associates a "dimer" with each
bond on which the hydrogen is closer to the Type-II
oxygens. Then, allowed network configurations are
those for which each oxygen is touched by precisely
one dimer. Salinas and Nagle proposed and solved®
such a model for SCD. They found that for some as-
signments of dimer energies, the system has a
second-order phase transition. Certain qualitative
features of this model, which we will call "the SCD
model," show up in the experimental data.
Presumably, the ice rules are only approximately

'valid for real SCD. In this case, the dimer model no

longer strictly applies. However, provided that the
overall hydrogen population of each city remains con-
stant, the basic six-vertex character of the system (to
be discussed shortly) survives. At present, the defect
concentration in SCD is not accurately known. Dif-
fraction studies do not unambiguously test the ice
rules; Bragg intensities depend only on average site
occupancies, not directly on correlation functions,
and it is sometimes difficult even to extract the occu-
pancies from the data. In their preliminary report,
Kiriyama et al.® concluded that there is a substantial
number of defects, but this conclusion was revised
later!; the latest results are consistent with the ice
rules. In this work, we will keep the simplifying as-
sumption of the ice rules.

B. Staggered polarization

Before we discuss our neutron-diffraction results,
we pause to establish the connection between the
SCD model and the family of six-vertex models. It is
useful to characterize the state of the hydrogen-bond
network by its "staggered polarization." The quantity
we extract from our data cannot rigorously be identi-
fied with the staggered polarization we consider here,
but the relation is very close, and the discussion in
terms of this parameter is very simple.
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One sees in Fig. 1 that each "city" has a total of six
internal hydrogens: four hydrogens on each of the
internal bonds, and one more on each of the Type-II
oxygens. The ice rules mandate that the four oxy-
gens in the "city" should have a total of eight hydro-
gens; therefore, on the four external bonds, two hy-
drogens must be adjacent to the city, and two farther
away. This is the six-vertex condition: there are six
possible configurations of the external bonds of a
city. If we represent the position of each hydrogen
on the external bonds by an arrow, each configura-
tion corresponds in an obvious way to one of the
traditional six vertices.

Suppose we formally associate a polarization vector
with each arrow. This could represent some change
in local dipole moment, but need not; at this point,
we are discussing lattice statistics, not charge dis-
placement. Note that if we sum all the moments as-
sociated with a unit cell in the ordered phase of SCD
(see Fig. 1), we find that the net moment is zero;
each individual moment is canceled by another. The
exact cancellation is a consequence of symmetry; the
space group P2,/c, valid for both phases of SCD,
rules out the possibility of any net polarization being
associated with the unit cell.

The kind of ordering shown in Fig. 1 is sometimes
called "staggered polarization." We define a parameter
P, , which we call staggered polarization, by

Ps=ps—ps , @)

where p; is average occupancy of the ith hydrogen
site. (P is the order parameter of the Rhys F
model.) To specify occupancies of the sites internal
to a city, one needs to specify energy differences
between these sites, in addition to specifying P;. It is
reasonable (following Salinas and Nagle®) to approxi-
mate the situation in SCD by assuming that the inter-
nal bonds of each city are energetically equivalent.
This is not required by symmetry, but it seems to be
essentially true, in that the occupancies of sites 1 and
3 [Fig. 1(b)] are nearly equal' at T=297 K. Then
the temperature dependence of {p;} is essentially the
temperature dependence of the single parameter P;.
Using these assumptions, we will show that the Bragg
diffraction intensities depend in a very simple way on
P;. We will see that this set of assumptions does a
reasonably good job of describing the data.

We refrain from calling P; an order parameter in
SCD, because it does not vanish in the high-
temperature phase.

J

Fo= 3

heavy
atoms in
asymmetric unit

Fl=%bH[f1_‘f2+f3_f4'"2(f5'—f6)] ,

III. NEUTRON-DIFFRACTION RESULTS

Single crystals of SnCl,-2D,0 (SnCl,- 2H,0) were
grown by evaporation of solutions of SnCl, and DCl
in D,0 (or HCI in H,0). Diffraction measurements.
were performed at the DR3 reactor at Rise on several
different samples. The data analyzed here takgn us-
ing a neutron beam of wavelength A =0.9282 A in-
cident on a sample of SnCl,-2D,0 measuring
3 x4 x14 mm.? The temperature of the sample was
controlled by a nitrogen flow cryostat, and monitored
by computer.

Certain Bragg reflection intensities are especially
sensitive to changes in the staggered polarization P;.
Let us assume that the only temperature dependence
in Bragg reflection structure factors comes from the
temperature dependence of P;. Thus, we are neglect-
ing the possibility of heavy atom shifts, the possibility
of hydrogen-site shifts, etc. Then the scattering am-
plitude may be written as a simple function of P;.
The Bragg structure factor of a unit cell is

F(hkl) _ 2 bipiei2"(hxi+kyi+,zi)€—wi

- 3

atoms in
asymmetric unit

bipifi . @

~-W, ei21r(hxj+kyj+lzj) ,

atoms equivalent
to ith atom

b; is the scattering length of the ith atom, p; is the
occupancy of the ith site, (x;,y;,z;) are the coordi-
nates of the ith atom, (hk/) are the Bragg indices,

and W, is the Debye factor of the ith atom. Assuming

P1=p3 , P2=ps , 5)

and assuming the ice rules,

prtp=1,

pitps=1,

ps+ps=1, (6)

pr1tp3tps=1,

prtpatps=2 ,
we have

F=Fy+PsF, , @)
where

bifi+bulf2+ fatfs+ s U= fatfimfa—2(fs—fl) ,
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by is the scattering amplitude of the appropriate iso-
tope of hydrogen. Bragg peaks for which | Fo| ~ | Fy|
are therefore a sensitive measure of P;.

Note that the amplitudes Fy and F,; change drasti-
cally when hydrogen is substitued for deuterium.
This comes about because the scattering lengths by
are quite different: bpygrogen = —0.374, ’
beuterium =0.667.° The temperature dependence of
the (014) reflection is shown in Figs. 2(a) and 2(b)
for SnCl, - 2H,0 and for SnCl,-2D,0. We see that
the two are completely different. These figures show
both the effect of the change of sign in by and the
effect of deuteration on the phase-transition tempera-
ture. As explained in the caption, these figures taken
together are evidence that most of the temperature
dependence of the Bragg intensities comes from the
change in the hydrogen-site occupancies, and that the
form we will shortly assume for P, [Eq. (8a)] is rea-
sonable.

Figures 2(b) and 2(c) show data for two Bragg
reflections in SnCl, - 2D,0 scanned as a function of
temperature. One sees that, at T, the slope becomes
nearly vertical. There is a small gap at 7o =234 K,
implying that the transition is first order. The same
conclusion was drawn from the specific-heat study.
There is a significant resemblance between these fig-
ures and plots of the temperature dependence of the
Raman intensities,'® which have also been interpreted
as measuring populations of particular hydrogen atom
positions.

Least-squares fits were performed on the data in an
attempt to extract information about the temperature

10—
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dependence of P;. The form used was
Ps%c sign(T —T,) T-TTC e , (8a)
F*=(Fy+P;F))? , (8b.)

with Fy, cFy, T., and « as fitting parameters.!! (The
reason for choosing this form for P will be clear
from the discussion given in Sec. IV, where we com-
pare the Rhys F model to the SCD model.) The
results of the fits are shown in Table I. The curves
are shown in Figs. 2(b) and 2(c). This form is clear-
ly a reasonable empirical description of the data, but,
not surprisingly, there are indications that the tem-
perature dependence of Eq.(8a) is too simple to
describe the data. In particular, when data for
T > T, and T < T, are fit separately, T,* = T,
which should not be the case. Also, there is correla-
tion between the exponent « and cF,. Fitting both
curves over the whole temperature range [ effective-
ly, forcing T.r =T, (cF))*=(cF,)", etc. ] gives
somewhat different parameters, but although the fit
is worse, the difference is hard to detect visually.
Given the recent structural data, we may estimate
F, and f, at least in the high-temperature regime,
and then calculate the scale factor c. The necessary
data are not available for all atoms in the low-
temperature regime; the values of ¢ given in Table I,
which have been averaged over the two reflections,
have been obtained on the assumption that the high-
temperature positions and Debye factors are valid for
all temperatures. This may explain why cF; for
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FIG. 2. Shows the temperature dependence of the intensities of different Bragg peaks near the order-disorder transition. (a)
shows the peak intensity of the (014) reflection in SnCl, - 2H,0. The curve drawn is derived by taking the parameters from fits
to the SnCl, - 2D,0 data and then allowing for the change in 7. No allowance is made for possible changes in the positional
coordinates, the Debye-Waller factors, or in the temperature dependence of the staggered polarization, P;. (b) and (c) show the
temperature dependence of the integrated intensity of (014) and (032) in SnCl, - 2D,0. The full lines are the results of fits to
Eq. (8) in the text. Taken together, these three figures are qualitative, pictorial evidence that nearly all of the intensity changes
represent the evolution of P,, and that P is approximately symmetric around 7. ‘
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TABLE 1. Parameters derived from fitting Eq. (8) to the data in Figs. 2(b) and 2(c). The units of Fand cF; are such that us-
ing these values in Eq. (8) gives intensities in units 10% times smaller than those of Figs. 2(b) and 2(c). Values of 4 and a
derived from our diffraction data [refer to Eqs. (12)—(15)] are to be compared with values of 4 + and a+, obtained from the

specific-heat results of Matsuo et al. (Ref. 2) [refer to Eq. (16)].

Specific
014) Diffraction heat
Regime TC FO CF] FO (‘Fl C A a A + a4
T<T, 232.5+0.2 64 £2.0 140 £ 11 79.6 £0.8 —82+7 1.74 1.47 0.41 £0.03 1.155 0.49
T>T, 234.6 £0.5 73 £3.0 100 £16 75 +2 —67 £12 1.29 1.09 0.41 £0.1 1.148 0.49
Both 232.8+0.1 65.7%0.3 115 +4 79.3+£0.2 —69 +3 1.44 1.12 0.47 £0.01

T < T, is so different from the other two values. In
any case, it is clear from the error bars on the other
parameters that the values of ¢ are significant only to
around 15%.

IV. DISCUSSION

In this section, we will discuss the results presented
in Sec. III, together with the published specific-heat
results. In the SCD model, there is a simple relation
between P and the specific heat; we will show that
this relation holds approximately in the data, although
the SCD model’s quantitative prediction of the tem-
perature dependence is incorrect. Moreover, both P,
and the specific heat are predicted to be symmetric
around the transition temperature; again, the data are
approximately in accord with this prediction. This
follows from a comparison between the SCD model
and the Rhys F model. This comparison also leads to
a simple qualitative prediction about the temperature
dependence of the dielectric constant.

A. Symmetry of the free energy around T,

It was mentioned earlier that the SCD model is a
kind of six-vertex model. The SCD model has been
included in a general study'? of the staggered six-
vertex problem, but for our purposes, a simpler and
more revealing comparison between SCD and this
model family may be drawn from the work of
Baxter.” He showed that in the special case when the
model parameter A vanishes, the F model in an ap-
plied staggered field is equivalent to the dimer prob-
lem involved in the SCD model. The SCD model al-
lows for a slightly more general assignment of dimer
energies, but we have specialized (Sec. IIB) to the
case in which internal bonds are equivalent; our
problem is now formally identical to the one studied
by Baxter.

Applying a staggered field'? S in the F model at

A =0 is like changing the temperature in the SCD
problem. The correspondence is

1 1 €
-2—S=—2-1n2—7(7 . 9)

S =0 corresponds to T =T, in the SCD model, while

S 2 0 corresponds to T 2 T,. The temperature-
dependent competition between energy and entropy
in the SCD model amount to an effective
temperature-dependent staggered field coupling to P;.
Because of the free energy of the F model is an even
function of S, the free energy of the SCD model is
an even function of ¢’ [refer to Eq. (2)]. Thus, P, is
an odd function of t'; moreover, since

E =—;-e(1 + P), the specific heat should be an even
function of ', apart from a factor of 72.

Clearly, T, is a point of special symmetry in the
SCD model. T, is the temperature at which all cities
become translationally equivalent, in a lattice statisti-
cal sense; at T, the system corresponds to an F
model without a staggered field, while at any other
temperature, two sublattices are distinguished by the
effective staggered field. From this point of view, it
is natural for the two phases to have the same sym-
metry. (This is not the first time an isostructural
phase transition has been modeled as a system in an
effective field; see for example Barma et al.'*) It is
also natural that 7, is never achieved, the phase tran-
sition being slightly first order; at 7., the bond net-
work would achieve an effective symmetry higher
than that of its enviroment.

The basic S shape of the intensity curves is in qual-
itative agreement with the dimer model prediction,
but the singularity in the slope is much stronger than
one would have expected from that model. The ex-
ponents derived from the fits are essentially equal in
the two phases, but the amplitudes F, are about 30%
greater in the low-temperature phase. (Recall that
part of this may be due to changing Debye factors,
etc.) There is some change in the effective Fy’s
between the two temperature regimes; this is indica-
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tive of some changes in the average atomic positions
and Debye factors at the phase-transition tempera-
ture. This somewhat complicates the interpretation
of ¢F; and «; at this point, the experimentally deter-
mined P, is a parameter whose significance is, strictly
speaking, only phenomenological. But we have
shown that P; is approximately antisymmetric in ¢',
and we have shown that most of the temperature
dependence is that of hydrogen-site occupancies.

B. Relation between P, and the specific heat

An important feature of the SCD model is that the
energy is assumed to be dependent on a linear com-
bination of site occupancies, rather than on a sum of
products of site occupancies. That is, states which
are allowed by the ice rules have energies which can
be expressed as the sum of individual hydrogen bond
energies; we have in the SCD model

E=3e(1+P) , (10)
rather than (for example)

i

In the SCD model, then, determination of P; is tan-
tamount to a determination of E. Indeed, the specific
heat,

c 9P
oT
is related to the slope of the Bragg intensities versus
temperature, since
F? 9P
—— =2(Fo+P;F)F
or 2ot RFD RS
As we have seen, there are indeed obvious singulari-
ties in the Bragg intensities. Having extracted P
from the data [Eq. (8)], we may use Eq. (12) and the
relation

oz 1
2

(12)

e=2kT,1n2 : 13)

(from the SCD model) to predict a specific heat of
the form

—a

T-T,
T

C~4 , (15)

where 4 = %NKC(I —a)In2, Nis the Avogadro con-
stant, and k is the Boltzmann constant. Values of 4
and a derived from the diffraction data are given in
Table I. Matsuo et al.2 report (for SnCl, - 2H,0)

T-T.
T.

with values of 4 + and a+ given in Table I. In an
earlier work,? in which fitting was performed over a

~a 4

, (16)

C~A+

wider temperature range, they reported a,=0.574
and a_=0.544 for SnCl,-2D;0 and «+=0.534 and
a-=0.478 for SnCl,-2H,0. In this earlier work,
they did not extract 4 +, but their Fig. 8 shows that
these are quite comparable between the two compounds.

It it clear that there are large error bars on our
values of 4 and a. It is also clear that the value of «
extracted from both experiments depends on how the
fitting is performed (e.g., what range of temperature
is used). Taking all this into account, one concludes
that the agreement is surprisingly good. We conclude
that, as in the SCD model, the energy is given ap-
proximately by

E=%kT,In2(1+P,) . an

Because the SCD model predicted a =0, a result
completely irreconcilable with the specific-heat mea-
surements, Salinas and Nagle® were led to suspect
that other degrees of freedom were contributing to
the specific-heat anomaly. The present result sug-
gests that it is unnecessary to invoke this; the tem-
perature dependence of P; can more or less account
for the specific heat. The important question is why
P; itself behaves in this way.

C. Dielectric constant

The dielectric properties of SCD have also received
considerable attention. There is an anomaly in the
dielectric constant near the phase-transition tempera-

. ture; € ~ 1800 near Ty, and falls off very sharply for

T different from T,.> Although there is some round-
ing of the peak, a critical exponent ¥ =1.75 has been
used to describe the dielectric data in a carefully
selected temperature interval.’> Since SCD is believed
to be centrosymmetric in both phases, and because of
the apparent lack of a traditional order parameter, the
significance of the dielectric measurements has
remained unclear (see the discussion in Salinas and
Nagle!®). In this section, we point out a possible con-
nection between these dielectric results and an in-
teresting property of the SCD model.

Baxter’s work’” on the F model includes a treatment
of applied direct fields, as well as the applied stag-
gered field. In language appropriate to the SCD
model, one would say that Baxter calculated the
response of SCD to an applied field that couples
linearly to the vector polarization defined in the in-
troduction for the external bonds. When the stag-
gered field is different from zero—that is, for T dif-
ferent from T,— the response is zero for small fields.
If this vector polarization can be argued to be propor-
tional to the electric polarization induced by a small
applied electric field, Baxter’s calculation says that
the dielectric constant is zero when T # T,. The ex-
perimental data mentioned above show that the
dielectric constant is, indeed, small except when
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| T — Tyl <2.5°. (See Fig. 1 of Ref. 5.)

It is possible that this property of the SCD model
has nothing to do with the dielectric measurements,
since it has not been demonstrated that the electric
polarization in SCD is simply related to hydrogen-site
occupancies. Indeed, KH,PO, is a famous example
of a substance undergoing a ferroelectric phase tran-
sition involving hydrogen atom displacements which
do not account for the spontaneous electric polariz-
tion. Even in that case, however, the hydrogen dis-
placements are part of the "ferroelectric mode,” and
thereby proportional to the polarization. In the case
of ice, on the other hand, it is widely believed that
much of the low-frequency dielectric response is pre-
cisely the sort of reallocation of hydrogen-site occu-
pancy that we are discussing here. It is interesting to
note in this connection that the dielectric response of
SCD is large at very low audio frequencies (tens of
Hz rather than tens of thousands of Hz); it is natural
to associate this with a cooperative long-ranged
reorientation of permanent moments, rather than
(for example) molecular polarizability.

A different approach to this subject has been ad-
vanced by Salinas and Nagle.!* Motivated by the ori-
ginal report of Mognaschi ef al.'®!7 that € peaks at a
T > Ty, they constructed a model which invoked
strong intraplanar ferroelectric interactions and weak
three-dimensional antiferroelectric interactions. In
this model, as T is approached from above, intra-
planar polarization fluctuations increase until 7 — T
becomes small; then, the antiferroelectric interactions
tend to force adjacent layers to fluctuate in opposite
- directions, leading to a decrease in €. This model is
not vitiated by the newer dielectric results (which do
not say that the peak occurs at T > T,), but it raises
more questions than it answers. From the point of
view of the SCD model, all the experimental results.
mentioned here are natural properties of this particu-
lar hydrogen-bond network; from the point of view
of the previous model of SCD’s dielectric behavior the

isostructural character of the phase transition seems
mysterious.

Of course, the dielectric constant is not really a &
function of temperature; it is significantly broader
than the resolution of the experiment. A more
complete theory is needed; such a theory should take
into account Bjerrum defects, as well as the sort of
hypothetical interactions invoked by Salinas and Na-
gle. But Baxter’s treatment shows that the competi-
tion between staggered polarization and direct polari-
zation is a property of the network; to the extent that
the field-induced polarization is also a property of the
network, it is important to take this competition into
account in treating the dielectric constant.

V. SUMMARY

Except for the character of the singularity at the
phase transition, all of the aspects of SCD’s behavior
that we have discussed here are natural consequences
of the assumption that gb into the SCD model. The
phase transition is isostructural; the specific-heat
peak is highly symmetric around Ty, the staggered
polarization is approximately linear in Py, and the
anomaly in the dielectric constant occurs in a very
narrow temperature range. Given the serious
discrepancy concerning the character of the singulari-
ty at T, one might have considered the model hope-
lessly wrong; but in view of the above, the basic ap-
proach seems to deserve further attention.
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