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We have simulated the two-dimensional classical planar spin model using the Metropolis

Monte Carlo technique. The loss of long-range order as a function of the size of the lattice was.
confirmed. The energy and specific heat were calculated for a square lattice of 900, 3600, and

10000 spins. A sharp specific-heat peak was found at k&T/J =1.02 (J is the nearest-neighbor

coupling), 15'lo above the transition temperature kqT, /J =0.89. T, was determined by fitting

the spin-spin correlation function and the susceptibility to the forms of the Kosterlitz-Thouless

theory. The density of vortex pairs was computed and found to increase exponentially with in-

verse temperature. At T, vortex pairs begin to unbind and also larger clusters of vortices ap-

pear and unbind as the temperature is increased. These larger clusters may be responsible for

the specific-heat peak being sharper and closer to T, than simple theories predict.

I. INTRODUCTION

The usual long-range order associated with low-

temperature phases of three-dimensional systems is
generally believed not to exist in two-dimensional
(2-D) systems, with continuous symmetry, above
absolute-zero temperature. In 2-D crystals Peierls'
showed that the localization of particles on their lat-
tice sites is destroyed by long-wavelength lattice
waves. Similarly, using the spin-wave theory of
Bloch' one finds that the spontaneous magnetization
is destroyed by long-wavelength spin waves. In both
cases the deviation from perfect order is given by a
k-space integral which takes the form

k'

where the lower limit of the integral -1/L where L is

the length of the system. In three dimensions the in-

tegral converges, but in two dimensions it diverges as
lnL and the order is completely destroyed.

The above arg'urgents use harmonic models. More
general proofs using Bogoliubov inequalities have
shown that under very general conditions long-range
order is destroyed for 2-D crystals, magnets, super-
fluids, and superconductors. Computer experiments
on hard disks4 and electrons' in two dimensions
(both not covered by the above proofs) have also
shown the loss of order as the size of the system is
increased. Nevertheless these same simulations
strongly suggest that a phase transition takes place.
High-temperature series expansions for 2-D spin
systems also suggest that a phase transition exists.
The natural question to ask is "What is the nature of
the low-temperature phase, if the usual lorig-range
order is absent?"

Kosterlitz and Thouless' (referred to hereafter as

20

KT) dealt with these systems within a unified
theoretical model. They contend that the 2-D low-

temperature phase is characterized by a power-law de-
cay in the pair-correlation function (as predicted by
harmonic theory) modified by the presence of pairs
of tightly bound topological defects of opposite "sign".
At the transition temperature the pairs unbind to
create a new phase where the correlations decay ex-
ponentially. In crystals the topological defects are
dislocations, in magnets they are spin vortices, and in
superfluid helium they are quantum vortices. The
three-component spin model will not sustain vortices,
because the singularity at the core of the vortex can
be avoided by the core spins pointing outside the
plane. Thus, in this case KT predict that there is no
phase transition. The two-component spin model,
called the planar spin model can support vortices and
should therefore display a KT transition. Because the
KT predictions for this model are the most well

developed and because it is the easiest to simulate we
have decided to use the planar model to test explicitly
the predictions of the KT theory including a detailed
examination of the behavior of the spin vortices.

While this work was in progress, two papers ap-
peared on the Monte Carlo simulation of. the planar
model. McMillan simulated a system of 1024 spins
and looked at the specific heat and susceptibility. Mi-
yashita et al. simulated 225, 900, and 2500 spin sys-
tems to compare the size dependence of various
quantities. %e have duplicated McMillan's work on
the specific heat and susceptibility for a 3600 spin
system. Using the spin-spin correlation function and
the susceptibility we were able to determine T, by fit-
ting the temperature dependence of these quantities
to the KT theory. %e have in addition carefully
compared the specific-heat peak for the 3600 spin
system with that of a 900 spin system. In addition to
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duplicating other simulation work, which is important
by itself to insure their reliability, we have gone
beyond previous work by looking at some different
aspects of the problem. We have confirmed the
spin-wave theory predictions of the magnetization
and the resulting loss of long-range order in the low-

temperature phase. In addition we have calculated
the equilibrium vortex density both above and below
T„and showed that vortex pairs and larger clusters
exist and do in fact begin to unbind at the transition
temperature.

II. CALCULATIONAL PROCEDURE

The two-dimensional planar model is defined by
the following reduced Hamiltonian:

where T stands for ks T/J, J is the coupling strength,
8; is the angle made by spin i relative to some fixed
axis in the plane, and the sum is taken over all
nearest-neighbor pairs (each pair counted once). The
spins are placed on a square lattice with periodic

boundary conditions.
Simulations were performed using the traditional

Metropolis Monte Carlo procedure. ' The maximum
change in angle per spin per step was adjusted every
pass through the lattice to maintain an acceptance ra-
tio of 0.5. A pass is defined as sequentially stepping
through the lattice turning each spin once. In most
cases the energy, susceptibility, and spin-spin correla-
tion function were calculated every pass. Other
quantities were computed less frequently.

Most of our work was performed on a 3600 spin
lattice equilibrating, usually, for 1000 passes and
averaging over another 2000 passes. The large equili-
bration time was used to minimize the correlations
between runs taken at neighboring temperatures.
The first run was taken at T =2.0 starting from a
random configuration. The system is then cooled in
steps varying between 0.20 away from T, and 0.05
near T,. Starting from T =0.80 we then heated the
system back through the transition. A summary of
the 3600 spin results is shown in Tables I and II.

We also performed more extensive runs near the
specific-heat peak as well as runs on different sized
systems. These results and error estimates of various
quantities wi11 be discussed in the relevant sections
below.

TABLE I. Monte Carlo data cooling the 3600 spin system. Temperature listed in column 1, en-

ergy in column 2, standard deviation of the mean energy in column 3, correlation length in column
4, q from high-temperature form of spin-spin correlation function in column 5, q from low-

temperature fit in column 6, susceptibility in column 7, and vortex-pair density in column 8. Last
temperature listed, T =1,1S, started from a completely random configuration.

Energy (S ) +putz/spin

2.00
1.80
1.60
1.40
1.30
1.25
1.20
1.15
1.10
1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.60
0.50
0.30
0.10

—0.5470
—0.6200
—0.7149
—0.8539
—0.9411
—0.9903
—1.0479
-1.1096
-1.1741
-1.2431
-1.3188
-1.3828
—1.4365
-1.4807
-1.5271
-1.5668
-1.6002
-1.6674
-1.7291
-1.8434
-1.9493

0.0007
0.0007
0.0015
0.0010
0.0016
0,0025
0.0028
0,0020
0.0037
0.0017
0.0023
0.0027
0.0014
0,0013
0.0009
0.0006
0.0004
0.0003
0.0005
0.0003
0.0001

2.5
3.0
3.9
4.9
6.0

11.8
23.8
29.2

0.23
0.25
0.27
0.26
0.25
0.28
0.29
0.25 0.319

0.261
0.238
0.245
0.170
0.162
0.130
0.101
0.062
0,0157

4
5

10
15
19
46
38

123
145
280
656

1120
1259
1378
1722
1833
1923
2097
2386
2914
3333

0.094
0.092
0.085
0.065
0.050
0.044
0.034
0.028
0.026
0.016
0.012
0.007
0.003
0.002
0.001
0.0
0.001
0.0
0.0
0.0
0.0

1.15 -1.1029 0.0068 6.43 0.30 58 0.031
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TABLE II. Monte Carlo data vrarming-the 3600 spin system. Temperature listed in column 1,
energy in column 2, standard deviation of the mean energy in column 3, correlation length in
column 4, q from high-temperature form of spin-spin correlation function in column 5, q from
low-temperature fit in column 6, susceptibility in column 7, and vortex-pair density in column 8.
Last temperature listed, T =1.15, started from a completely ordered configuration.

Energy oE (S ) +pair/spin

0.85
0.90
0.95
1.00
1,05
1 ~ 10
1.15
1.20
1.40
2.00

-1.4855
-1.4383
-1.3850
-1.3237
-1.2451
—1.1714
-1.1111
-1.0447
-0.8518
—0.5485

0.0013
0.0012
0.0015
0.0019
0.0020
0.0031
0.0032
0.0025
0.0016
0.0005

28.0
27.6
6.4
4. 1

6.7
3.1

1.9
0.9

0.25
0.28
0.19
0.20
0.31
0.21
0.22
0.12

0.230
0.248
0.302

14&4

1305
1163
734
174
108
61
57
14
4

0.003
0.005
0,007
0;010
0.026
0.027
0.032
0.031
0.057
0.096

1.15 -1.1063 0.0070 5.0 0.26 64 0.032

III. LOSS OF LONG-RANGE ORDER

%e have already mentioned above that the spin-
wave theory predicts that the spontaneous magnetiza-
tion, M, goes to zero in the thermodynamic limit.
Instead of M, we will use the mean-square angular
displacement, (8~~), to discuss the order in our sys-
tem, because within the spin-wave approximation
there is an exact expression for (8 ) and because it is
analogous to the mean-square particle displacement
used in discussing order in crystals. In any system
(8;) diverges if 8; is measured relative to a fixed axis
since a uniform rotation costs no energy. Thus, we
define 8& as the angle relative to the direction of the
instantaneous total spin. This is analogous to sub-
tracting out the change in the center of mass in a sys-
tem of particles, to compute particle positions.

%e will now review some results from simple
spin-wave theory and show how they are confirmed
by our Monte Carlo simulation. In addition to illus-

trating the nature of the low-temperature phase, this
exercise will serve to define certain functions used
later on in the paper.

The spin-wave approximation consists of replacing
the reduced Hamiltonian by"

aC,„= X (8, —8,)'

where n is the displacement vector connecting sites i

and j and all lengths are measured in units of one lat-
tice spacing. All quantities of interest can be ob-
tained as a function of G(n). For example,

(82) = TG(0)

()M () = (cos8) = I ——TG (0)

C(n) = (S(n) S(0)) =e

(4a)

(4b)

(4c)

(82) = (lnN + In2)2 T
4m

(inN + ln2),T
sm

C(n) =const &
r&2

for large n
1

(Sa)

(Sc)

(E) = —2+ —T (Sd)

(E) 2(S (I) .S (0)) 2e
—rio(o) —a(&)] (4

I

where (~M~) is the mean magnitude of the spontane-
ous magnetization, C(n) is the spin-spin correlation
function, and(E) is the energy per spin.

If one approximates G(n) by an integral then one
finds the following explicit results:

Gy
1

2T (fJ
(2)

where we allow 8; to assume all values from —~ to
+~ and where G~ is the lattice Green function given
by

x= I (($2 ) —(S )2) =N' /

(M2) = ($~ ) -N-»4~1

(Se)

(Sf)

1 ei k ~ n

G(n) =—XN
k

4 —2cos(k„) —2cos(k~)

where S„,is the total spin, X is the reduced suscepti-
bility, and (M2) is a quantity occasionally used as the
order parameter in spin systems. The last equation
shows that this quantity tends to zero in the thermo-
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FIG. 1. (82) 'vs ln(N) at T =0.1. The straight line is the
prediction of spin-wave theory.

dynamic limit. Below T„Xdoes not diverge in 3-0
systems because'(S„, } is nonzero, but in the planar
model (S„,) =0 and X diverges for all temperatures
below T,.

All these results agree very well with our Monte
Carlo results. The mell-known lnN dependence of
(92} is shown in Fig. 1 for T =0.1. This is the ana-

log of the divergence of the mean-square displace-
ment of a particle from its lattice site found in two-
dimensional crystals. The slope and intercept of the
line in Fig. 1 are 0.007 86 +0.00016 and
0.00603 +0.00104 compared to the spin-wave predic-
tion of 0.007 96 and 0.005 52, respectively.

The magnitude of the magnetization also decreases
as lnN as described above. The susceptibility
diverges as N' ~ with q =0.0158 +0.0003 compared
to spin-eave prediction of 0.0159. For this calcula-
tion we set (S'tet} =0 because it would take too many
passes for Stot to average to zero.

The mean-square magnetization per spin, (M'},
goes to zero as the size of the lattice is increased
since it is equal to N ~ '.

The energy per spin agrees quite well with spin-
wave theory at T =0.1, but already at T =0.3 correc-
tions are necessary to explain the Monte Carlo
results.

For C(n) we fitted our data [for n=(nx, 0)] to
C(n) =e " t" where G(n) =2m[G(0) —G(n)].

Since we included small values of n we must use the
discrete form of G. The spin-wave prediction is that
vt,„=T/2n =0.0159 at T =0.1. This compares very
well with the fitted value of 0.0157 +0.0005 where
the fitted curve is within a few tenths of a percent of
the Monte Carlo data. However, at T =0.3 this sim-
ple approximation breaks down with q,„=0.048 com-
pared to computed results of q =0.062. One expects
q to deviate from the spin-wave prediction when vor-
tex pairs are present; ho~ever at this temperature no
vortices were observed, thus the difference is prob-
ably due to higher-order corrections in spin-wave
theory.

IV. CORRELATION FUNCTIONS

According to the KT theory the correlation length
and the susceptibility diverge near T, as e ~' where
r =(T—T,)/T, and KT suggest that b is around 1.5
and v is 0.5. Thus, we use these functions to find
T,. We can obtain the correlation length from the
spin-spin correlation function which above T, is of

e forms

C(n) =e "d(n)(e n/&+e-(L n)/s)-

where g is the correlation length and L is the length
of the lattice. The exponential decay is due to the
unbinding of vortices in the KT theory G(n). has
the periodicity of the lattice; thus to insure thit
C(n) = C(n +L) we must add the second term in
the bracket. Below T, we assume C(n) has the spin-
wave form, e "~ ",generalized so that g need not
equal the spin-wave prediction T/2m, but is deter-
mined by fitting to the Monte Carlo data.

The results for q and g for all temperatures for the
3600 spin lattice are sho~n in Tables I and II. By
comparing the two tables we see that q is reasonably
well behaved, but the correlation length is difficult to
pin down. The value for ( can only be trusted when
it is at most less than the largest distance in the hor-
izontal direction which is 30 for a 60 x 60 lattice with
periodic boundary conditions. For example at
T =0.95 g is probably much larger than 30 and thus
the values listed in Tables I and II should be in-
correct. In addition at T =0.95 one finds that the
low-temperature form for C(n) fits the data as well
as the high-temperature form.

To compare with KT theory we tried fitting the
data from T = 1.0 to 1.2 with the KT form g = Cea/' .
We used values of b from 0 to 2.5 and v from 0.45 to
0.75 and T, from 0.74 to 0.99 to fit the average of
the heating and cooling data. We then adjust C using
a least-squares routine to get the best fit;

When we have a standard deviation between the
fitted curve and the data of approximately 1.0, rela-
tive to correlation lengths between 3 and 30, the best
fits fall between T, =0.89, v =0.70, and b =0.90 and
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TABLE III. Monte Carlo averages of energy for three dif-
ferent sized lattices. Averages for 3600 spin system include
heating and cooling data, plus data at T =1.0 and 1.05
equilibrated for 1250 passes and averaged over 5000 passes.

Temperature 900 3600 10000

V. SPECIFIC HEAT

The energy was computed every pass for 900,
3600, and 10000 spin lattices. Results for all three
systems are shown in Table III. The data for the 900
spin lattice were obtained by equilibrating for 500 to
1000 passes and averaging for 1000 to 6000 passes
except for the points at T =1.0, 1.05, and ).10 where
we present data equilibrated for 4000 passes and
averaged over 8000 passes. The equilibration
number of passes was determined empirically so that
the energy had clearly stopped drifting. The number
of passes used to construct the averages was such
that fluctuations in the energy were effectively aver-
aged out. The three points near T =1.05 were run
longer to accurately determine the location of the
specific-heat peak. The 10000 spin lattice was equili-
brated for 100 passes and averaged over 400 passes.

As mentioned before the 3600 spin system was
averaged over 2000 passes both heating and cooling.
To determine the accuracy of the mean value of the
energy at each temperature we break up the 2000
passes'into ten block averages of 200 passes each.
The standard deviation of the mean energy, listed in
column 3 of Tables I and II, is the standard deviation
of the ten blocks divided by J9. Generally when we
used only half the blocks the standard deviation of
the mean decreased by roughly J2 as it should if the

blocks are indeed independent data points. The
resulting data are all accurate to within 0.32% and the
heating and cooling data are always within two stan-
dard deviations of each other. The 900 and 10000
spin systems are accurate to within 1% and 2%,
respectively.

There are two ways of computing the specific heat,
C„, from a Monte Carlo simulation. The first is to
calculate (E2) —(E) which is proportional to C„.
This method. was tried, but the results near the
specific-heat maximum differ greatly between heating
and cooling and also are strongly dependent on how
many passes are included in the computation. This is
not surprising since this method relies on subtracting
two large fluctuating quantities, and thus the result-
ing specific heat will depend strongly on what fluctua-
tions are included. These fluctuations are strongest
near the specific-heat peak making the computation
difficult in this region.

The other method of obtaining C„ is to differen-
tiate the energy with respect to temperature. As
shown in Fig. 4 the energy curve is very smooth so
that the value of C„at T midway between two neigh-
boring temperatures Ti and T2 is very close to
(Ei —E2)/(T, —T2). To check whether we were bias-

ing the shape of the curve we also tried fitting three
points to a parabola arid differentiating to find C„at
the rniddle point. The two methods give the same
results well within the uncertainty of the data.

The specific-heat results are shown in Fig. 5. As
can be seen both the 900 and 3600 spin systems have
a sharp peak near T~=1.02. McMillan found a peak
at 1.07 with 1024 spins. The results for the 10000
spin system are unclear, but not inconsistent. Much
longer running times would be necessary to get accu-
rate C„data for 10000 spins. The height of the peak
appears to be independent of lattice size.
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FIG. 4. Plot of energy per spin vs temperature for 3600
spin lattice. Solid curve is composed of straight lines
between neighboring data points.
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FIG. 5. Specific heat per spin vs temperature for 900,
3600, and 10000 spin systems.

VI. VORTICITY

The central physical ideal of the KT theory is that
the power-law decay of the spin-spin correlation func-
tion is modified by the presence of bound vortex
pairs in the low-temperature phase and then at T, the
pairs unbind causing correlations to fall off exponen-
tially in the high-temperature phase. To determine
the vorticity within any region one merely travels
around a closed loop and calculates the change in
direction of the spins along the path. If there is a
single vortex of unit strength within the loop, then
the net change in spin direction will be 2m times an
integer. We will call this integer the vorticity. On a
square lattice the core of a vortex consists of four
spins at the corners of a 1 x 1 square or plaquette.
The only possible way for the vorticity to be greater
than one is if the four spins have relative angles of
m, —m. , m, and —m as one goes around the plaquette.
This situation has a negligible probability of occur-
ring, thus only vortices of unit strength need be con-
sidered.

The vorticity of a single vortex can be positive or
negative. The vorticity within a region is the sum of.
the vortex strengths of those vortices contained in
the region. Thus, if there are equal numbers of posi-
tive and negative vortices the net vorticity is zero.

Berker and Nelson' have calculated C„for a sys-
tem of vortices using a Debye-Huckle approach.
They found a rounded peak about 38% above T„
whereas our data show a sharp peak 15% about T,. It
is thus clear that their approach is too simplified to
account for features present in our Monte Carlo
simulation.

The specific heat has also been calculated using
Migdal's decimation procedure. ' Here T, was found
to be below the specific-heat peak, but again the peak
was much flatter than we observe.

The interaction potential between vortices goes as

q;q& lnr& where qI is the vorticity of the ith vortex
and r& is the separation between the two vortices.
Thus, the vortices are analogous to parallel infinite
charged wires. This analogy is very useful in discuss-
ing vortices and will be exploited below.

Vortices have been seen in previous Monte Carlo
simulations. However, they were generated by tak-
ing a random starting configuration and then running
the simulation at very low temperatures. In this way
metastable vortices were produced, but these have
nothing directly to do with the phase transition. In
our simulations we also started with a random config-
uration, but our first run was at T =2.0, a tempera-
ture far above T,. We then cooled down slowly
through the transition and then heated back up
through T,. The vortices generated by our simula-
tions therefore represent equilibrium phenomena.

To determine the vorticity within a curve of length
L we computed the change in angle from one spin to
the next, being sure to define the angle difference
between neighboring spins to lie within —m and m.

To compute the vortex-pair density we calculate the
number of vortices in the system by computing the
vorticity around every square in the lattice with side
length equal to one lattice spacing, counting the
number of positive and negative vortices. The
vortex-pair density, v, is defined as the sum of the
positive (or negative) vortices divided by the area of
the lattice. In this way we can also check to see if the
total vorticity is zero as it must be with periodic
boundary conditions, and is necessary from energetic
arguments.

The vortex-pair density was calculated for the last
configuration after 3000 passes at each temperature.
The results are shown in the last column of Tables I
and II.

To determine how the vorticity changes from pass
to pass we calculated v at the end of every 200 passes
for T =1.15 starting from a completely ordered con-
figuration as well as a completely random configura-
tion. The vortex-pair density was virtually identical
for each at the end of 3000 passes, and fluctuated
around the average value by about 10% over the last
2000 passes. Generally, except at temperatures
~here there are very few vortices present, the differ-
ence between heating and cooling values is less than
20%.

Another indication that we are looking at an equili-
brium sample of vortices is that at low temperatures
& —e & ~ where 2p, is the energy necessary to create
a vortex pair. A plot of lnv vs l/T is shown in Fig. .

6. As can be seen for low temperatures ln~ is pro-
portional to l/T with the slope being —9.4 +0.3
which is close to the value estimated by KT of
2p, =10.2.7 Near the specific-heat maximum the
curve levels off indicating a much smaller chemical
potential as it becomes easier to generate more vor-



376$ JAN TOBOCHNIK AND 6. V. CHESTER 20

&&o o
0

~o
0

Ln(&)

-8 I

04 06
I

0.8
I

I.O
I

l.2 l.4

FIG. 6. Log of vortex-pair density vs 1/T for 3600 spin

lattice. Straight line is least-squares fit to low-temperature

data.

tices when many vortices are already present disor-
dering the spins.

To understand what the vortices are doing at the
transition we have displayed in Fig. 7 the position of
positive and negative vortices for each temperature
computed between T =0.80 and 1.05. This tempera-
ture range includes T, and the specific-heat max-
imum. The KT theory predicts that well below T, all

vortices will be tightly bound in pairs with the mean
separation between members of a pair, d, being
around one lattice spacing and very much smaller
than r, the mean separation of one pair from another.
As T, is approached d increases and r decreases as
more vortex pairs appear. At T, the first pairs un-
bind, that is there exists some pairs with d of the
same order as r. Just above T, a few percent of the
pairs will unbind and far above T, essentially all the
vortices will be unbound.

From Fig. 7 we see that the KT picture is close to
correct. However, there are some important modifi-
cations needed. Up to T =0.80 all the vortex pairs
are tightly bound in pairs as shown in Fig. 7(a). The
first pair with d greater than a lattice spacing appears
at T =0.85. Also, note that a cluster of four vortices
also appears at this temperature. At T =0.90 the
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FIG. 7, Position of vortices for 3600 spin system for typical configurations. 0, positive vortices. A, negative vortices.
(a) T =0.80, (b) T =0.85, (c) T =0.90, (d) T =0.95, (e) T = 1.00, and (f) T =1.05.
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first pair with d —r appears. This is a satisfying con-
firmation of the KT picture since we have found
T, =0.89. Also, note that a four vortex cluster splits
up into a three vortex cluster and a single vortex.
Just as the binding of large molecules is often less
than that of smaller molecules we would expect that
the large vortex clusters would unbind first. By
T =0.95 a significant fraction of the vortices belong
to clusters with more than two vortices. For exam-
ple, at T =0.95, 39% of the vortices are in such
larger clusters, as shown in Fig. 7(d). Indeed we see
here an example of two vortex clusters of three vor-
tices each unbound from each other, as well as a sin-
gle vortex pulling away from a cluster of three other
vortices. By T =1.0 more complicated clusters ap-
pear and by T = 1.05, the identification of distinct
clusters becomes difficult because of the large vortex
density.

How would we expect these larger clusters to affect
macroscopic quantities? e might expect T, and
possibly g at T, to be slightly modified, but up to T,
almost all the vortices appear in bound pairs not
larger clusters, thus the critical properties may not
change very much. Above T„however, the effects
may be dramatic with the correlation function falling
off faster and the specific heat may rise faster. The

b/c"larger clusters may be responsible for v in X —e~ '

being closer to 0.7 than 0.5 predicted by KT. Also,
since unbinding would proceed faster with clusters,

the specific-heat peak would be closer to T, and
sharper thorn simple theories predict, as we indeed
observe.

VII. SUMMARY

In conclusion we have shown that the-Monte Carlo
simulation of the planar model can reproduce well-
known low-temperature behavior and provide us with
new information concerning the nature of the phase
transition. %e have seen the usual lnN loss of long-
range order characteristic of two-dimensional systems
with continuous symmetry. Our fits of correlation
functions are consistent with the Kosterlitz-Thouless
picture indicating a critical temperature around 0.89.
e have found a sharp specific-heat peak at a tem-
perature equal to 1.02. The shape and position of the
peak relative to T& indicate that simple analytic
methods used so far are insufficient. Above T, large
vortex clusters unbind more easily than vortex pairs
causing the specific-heat peak to be sharper and
closer to T, than previously calculated.
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