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A computer model for amorphous yttrium iron garnet has been constructed using a modifica-

tion of a method pioneered by Bennett involving the sequeritial addition of hard spheres. The
method is embellished to allow for the presence of local electrostatic forces which are assumed
to keep neighboring ions of like charge as far apart as the basic building algorithm will allow.

0
This distance (between ion centers), for amorphous YIG, is d =2.4 A. The electric-field-gra-

dient distribution at the iron sites is calculated in a point-charge approximation and provides an

excellent interpretation of the observed M5ssbauer quadrupole line shape in the paramagnetic
0

phase; Ion-pair correlation densities out to a range of 10 A have been computed for all combi-

nations of the constituent species. Finally the distribution of iron-oxygen-iron bond angles is

computed and from this, via superexchange theory, a qualitative knowledge of the exchange dis-

tribution is obtained. This suggests that the magnetic properties of vitreous YIG may resemble

those of a dilute antiferrornagnet near its critical concentration.

I. INTRODUCTION

Amorphous solids can usefully be categorized in
terms of the dominant chemical bond present. Thus
metallic, ionic, and covalent bond types each have
characteristic requirements which mold the near-
neighbor configurations in the amorphous state.
Coordination numbers are largest in amorphous rne-

tals where close packing is a characteristic feature.
Structures of covalent amorphous semiconductors, on
the other hand, have much smaller coordination
numbers dictated by the need of each atom to satisfy a
small number of strongly directional bonds. There is
an extensive literature on both metallic and covalent
amorphous materials with theoretical models (of the
random-dense-packing and the continuous-random-
network types, respectively) well developed for each. '

In comparison, amorphous ionic materials have re-
ceived far less attention and, although it seems physi-
cally apparent that the requirements of local charge
neutrality will ensure the cations (anions) will in gen-
eral be surrounded by anion (cation) polyhedra, no
computer model prepared specifically for an ionic
glass has (to our knowledge) yet been presented and
tested with respect to, any of its quantitative predic-
tions.

The lagging of interest in ionic glasses has resulted
primarily from the fact that most simple ionic materi-
als are not good glass formers in the absence of ex-
traneous network-forming additives. Nevertheless,
several well-characterized amorphous oxides have re-
cently been prepared by roller. quenching from the
melt without the addition of any extraneous glass
formers. 2 4 With the preparation of such samples it
now seems an appropriate time to attempt to advance

the theoretical understanding of ionic glasses, particu-
larly with respect to the role played by electrostatic
forces in molding the local configurations.

The present work was triggered by the preparation
by Gyorgy et al.4 of roller-quenched vitreous yttrium
iron garnet, Y3Fe5012 (YIG). Essentially pure vitre-
ous platelets were obtained which, upon crystalliza-
tion, had the properties of stoichiometric YIG.
Although one would perhaps have preferred a binary
rather than a ternary material on which to pioneer a
model for an ionic glass, YIG does have the advan-
tages of being magnetic (and hence open to magnetic
probing of both local and bulk properties) and of be-
ing very thoroughly investigated in its crystalline
form. The passage to the vitreous state has very pro-
nounced effects on the magnetism. Crystalline YIG
is a high-temperature ferrimagnet with Curie tem-
perature Tq =550'K while its amorphous equivalent
does not acquire a bulk magnetic moment at any tem-
perature. 4 Some spin-ordering transition (probably to
an antiferromagnetically aligned phase) does take
place at about 30' K although a detailed study of the
ordered phase-has not yet been reported. Mossbauer
measurements4 confirm some type of spin ordering
below 30'K, establish the valency +3 for the iron
ions, and most importantly, from the point of view of
the present paper, provide an accurate measure (via
the paramagnetic quadrupole spectra) of the electric-
field-gradient (EFG) distributioh at the ferric nuclear
sites.

In this paper we construct a computer model for
amorphous YIG using a modification of the basic
method pioneered by Bennett using sequential addi-
tion of hard spheres. "' The present techniques for
modeling amorphous structures are basically of two
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types corresponding to the extremes of strongly co-
valent directional bonding (network models) and of
spherically symmetric atoms (spherical packing
models). Though many materials do not fit neatly
into either of these categories it seems clear that ionic
materials with formally filled outer electron shells can
best be approached from the latter standpoint.

Dense-random-packing models which incorporate
hard spheres of two or more sizes have already ap-
peared in the literature in the context of amorphous
alloys. In an ionic context it is necessary to embell-
ish these in a manner which recognizes that local
electrostatic repulsion will tend to keep neighboring
ions of like charge as far apart as the sequential
building scheme will allow. For YIG, in which the'
anions are large [ oxygen radius R (0) =1.4 A ] and
the cations smaller [R (Y) = 1.0 A and
R (Fe) =0.5—0.6 A] we find that it is not possible to
build in the Bennett spirit without allowing for some
anion-anion contact but that one can readily exclude
contact between cations. Going further one can build
sequentially maintaining a separation d between ca-
tion centers up to a maximum value d =2.4 A
beyond which the building scheme will not propagate.
This maximum local separation of the trivalent ca-
tions then represents in some manner a minimization
of local electrostatic energy within the building algo-
rithm.

Our main contact with experiment in this paper is
via a calculation of the electric-field-gradient distribu-
tion at the iron sites in the resulting amorphous ag-

gregate. This field gradient (EFG) is a very sensitive
function of the distance d (or of local electrostatic en-
ergy) both in distribution shape and in mean value.
A quantitative agreement with the Mossbauer quadru-
polar data in the d =2.4 A limit lends some credence
to the overall model and particularly to the necessity
of recognizing the role played by electrostatic forces
in molding the local configurations.

We also report computations of radial distribution
functions out to 10 A for all combinations of ion-pair
correlations (i.e., Y-Y, Y-Fe, Y-O, Fe-Fe, Fe-O, and
O-O), predictions which could possibly be tested us-

ing extended x-ray absorption fine structure (EX-
AFS) techniques. Finally we examine the local Fe-
0-Fe geometry within the model, establish the proba-
bility distribution of nearest-neighbor magnetic ions
(defined as sharing a common oxygen ligand), and
qualitatively estimate the expected exchange energy
distribution in the hope that this might eventually
lead to some understanding of the magnetic prop-
erties. In particular a close correspondence with di-
lute antiferromagnetism is suggested.

II. COMPUTER MODEL

Although the degree of ionicity of the bonds in
YIG may be in question, the fact that Y is essentially

close packed in crystalline YIG while the iron sits
fairly equally (in fact in a ratio of 3:2) in both
tetrahedral and octahedral sites in the crystal'" estab-
lishes that hybridization or strongly directional bond-
ing does not play a dominant role. In the crystal the
mean Y-0 bond length is 2.40 A (varying between
2.37 and 2.43 with Y in a distorted dodecahedral site)
while the Fe-0 bond lengths are 2.00 A at the octa-
hedral sites and 1.88 A at the tetrahedral sites. ' Us-

0
ing the conventional radius R (0) = 1.40 A for oxygen,
this establishes an yttrium radius R (Y) = 1.00 A
relevant for YIG. For the ferric ion we find two
values, corresponding, resepectively, to the more co-
valent tetrahedral site and the less covalent oc-
tahedral site, of 0.48 and 0.60 A. Since we do not
wish to differentiate between ferric ions in the glass
(the. Mossbauer data~ show a well-defined single-
peaked EFG at the iron sites) we take the mean
value R (Fe) =0.54 A to be representative of ferric
ions in amorphous YIG in a hard-sphere approxima-
tion.

Spherical systems have been extensively explored
in the literature and many algorithms used to con-
struct new models in the computer. Perhaps most
widely used is the sequential addition method in
which a sphere is brought up into contact with (ini-
tially) a pre-existing seed, and allowed to take up a
position touching three others. In the "global" cri-
terion, which we shall use, the particular "pocket" oc-
cupied by each added sphere is that closest to a
preselected origin or center of the seed. The result-
ing boundary is then free and essentially spherical.

In detail our procedure is as follows. The seed
cluster is made up of two oxygen spheres and one
iron sphere all in contact in the x-y plane with the
center of one oxygen sphere taken as the origin [or
more accurately as the point (0,0,10 5 A), a pro-
cedure which removes the z, —z'symmetry, and
prevents the occurrence of pockets which are acciden-
tally equidistant from the origin]. We use throughout
the criterion that no two cations may touch or even
come closer together than an initially arbitrary center
to center distance d. Starting from the above seed we
first compute the possible positions for a new oxygen
sphere in contact with the three spheres of the seed.
The first pockets must be oxygen pockets since they
involve contact with a cation, the seed ferric ion.
Thus the "seed pocket" calculation results in a "sub-

&strate" of N = 3 ions and the positions of M = 2 new
sites or pockets for an additional ion. Labeling all
substrate ions and pockets according to their type (Y,
Fe, or 0) and formal valence charge (3+,3+, 2 —,
respectively) the following procedure is now general
for general N and M

We first choose the global pocket and fill it so long
as it does not result in a violation of the cation-cation
distance criterion. If it does we strike out this pocket
and proceed to the next global pocket until one is
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found which does not violate this criterion. After fil-
ling this pocket we strike out all pockets which over-
lap the added (N +I)th sphere and proceed to a
computation of the newly created pockets involving
this (N+ I)th sphere. In this respecct we must first
locate the eligible base triads involving the (N+1)th
sphere and decide what type of new pocket is re-
quired. The triads are of two types —either they in-
volve cations or they do not. In the former case we
must add oxygen pockets since to add cation pockets
would be to violate the cation touching and distance
criteria. For triads containing three oxygen ions we
decide the new pocket type as follows. First we cal-
culate the charge on the existing substrate; if it is po-
sitive we compute oxygen pockets, if it is negative we
calculate the existing Y to Fe ratio in the substrate
and choose that cation (for the pocket computation)
which will bri'ng this ratio closer to its formal crysta1-
line value 3:5. After calculating all the new pockets
we strike out those which overlap the existing sub-
strate. We now redefine N and M to represent the
new substrate and pocket sets and repeat the entire
procedure.

The method of choosing the pocket types ensures
that the resulting amorphous aggregate grows with
charge balance and with a correct proportionality of Y
to Fe. Using about one hour of computer time on
the Honeywell 6000 computer we were able to grow
aggregates of about 750 spheres for several different
values of d. As d is increased the fraction of cation
pockets excluded by the distance criterion increases
until, beyond some critical maximum d -d„all the
available pockets are excluded at some stages of the
growing process and the building process terminates.
We found that a cluster of 74S ions could be grown

0
with d =2.4 A (with cluster size limited by computer

0
time restriction only) but for d =2.5 A the building
ceases at N =20 at which point no pockets remain
which satisfy the d criterion. The value of d, there-
fore lies between 2.4 and 2.5 A for our sphere sizes.

III. DENSITY AND PACKING FRACTION

The room-temperature lattice constant of crystal-
line YIG is 12.376 A and there are eight formula un-
its in the cubic unit ce11.' The volume per atom in
the crystal is therefore 11.847 A. The amorphous
computer sample gro~s with a surface boundary
which is approximately spherical in shape although
some iron pockets, since R (Fe) is so small, are occas-
sionally created and filled at "depths" of up to 1.7 A
inside the ".surface" defined by the larger ions. In
Table I we quote the final composition and dimen-
sions for three represeritative clusters built according
to the directions of Sec. II. The first (A) was assem-
bled without any d restriction although cation contact
was prohibited; the second (B) and third (C) are
with d =1.5 and 2.4 A, respectively. The Y to Fe to
0 composition ratios are seen to be very close to the
formal values 3:5:12in a11 cases.

Defining the cluster radius r (N) as a function of N
by the most smoothly varying largest ion (oxygen)
values alone, 'a typical convergence (actually for
d =2.4 A) for reciprocal denstiy 4rrr3(N)/3N as a
function of I/¹is shown in Fig. 1. As can be seen,
limiting values I/N 0 can be obtained with an ac-
curacy of about +2%, From Table I we see that the
glass density for no d criterion is essentially equal to
the crystalline density. As we increase d and allow for
near-neighbor cation electrostatic repulsion the

TABLE I. Basic data for three computer-assembled clusters A, 8, and C. Cluster A is construct-
ed with a simple restriction of no cation-cation contact. Clusters 8 and C add to this an additional
requirement that no cation centers can approach closer than a distance d. Hard-sphere radii
R(Fe) =0.54 A, R(Y) =1.00 4, R(O) =1.40 K.

Cluster A Cluster 8
1.S A

Cluster C
2.4 A

Total number of ions, Np

Number of Y ions, Np(Y)
Number of Fe ions, Np(Fe)
Number of O ions, Np(O)
Np (Y)/Np (ideally 0.150)
Np(Fe) /Np (ideally

0.250)
Cluster diameter 2r(Np)

(
.

) i, 4m. r (N)

Packing. fraction f

, 479
73
121
285

. 0.152

0.253
= 21.9A

11.92+0.25 A3

0.645

748
115
185
448

0.154

0.247
=2S.7 A

12.05 +0.25 A3

0.638

748
112
187
449

0.150

0.250
=26.1 A

12.45 +0.25 A3

0,618
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FIG. 1. Reciprocal density 4wr3(N)/3N as a function of
1/N for cluster model C (with d =2.4 A) where r (N) is the
magnitude of the radius vector for the position of the Nth
ion. The curve connects only the points for the largest (ox-
ygen) sphere positions since these are the least erratic and
provide the best estimate for convergence to 1/N 0 Also.
shown on the ordinate axis is the reciprocal density for crys-
talline YIG.

glass density decreases until, at the value d =2.4 A
which we believe to be most physically realistic, its
value is some 5 +2% less than the crystalline
equivalent. Experimentally we do not yet have an ac-
curate measure of density for the vitreous YIG sam-
ples. From the extrapolated (1/N 0) density
values, the sphere radii, and their proportional con-
centration we readily calculate a packing fraction f
(defined as the fraction of the space occupied by
spheres) which is also shown in Table I.

IV. EFG AT THE IRON SITES

1

Opv &(e j'A )

FIG. 2. Histograms for the probability distribution p(V~~)
of iron-site EFG matrix element V~& for the three computer
models A, 8, and C [see (a) —(c), respectively] defined in
Table I. Shown shaded for model A is the distribution if
iron sites with nearest-neighbor cations (primarily iron)
closer than 1.6 A are excluded, Shown shaded for model B
is the distribution if sites with nearest-neighbor cations0
closer than 1.8 A are excluded. For model C (note the
change of scale on the abscissa for this histogram) we also
show the EFG distribution calculated from the observed
Mossbauer quadrupole line shape (see text).

In this section we use a point-charge model, with
formal valence charges z (Y) = z (Fe) =+3e and
z(O) =-2e, to compute the matrix V" = O' V /8x, f)x&

(ij =1,2, 3) of the second derivatives of the elec-
trostatic potential V at the iron sites m with respect
to the coordinate axes x;. Diagonalizing V" at each
magnetic site to obtain its diagonal elements
V)), V22, V33 we define V~~ as the largest value of

I Vt t I and a positive definite asymmetry parameter
v] = ( V22 —V33)/ Vtt for each such site in the various
cluster samples. The convergence of the quadrupole
sum is quite rapid and an accuracy of about +0.1 (in
units of e/A ) can be obtained in most cases sum-
ming out to only 3 A. Convergence can be tested for
the innermost ferric ions out to radii of order 10 A..

0
Sampling over all iron sites more distant than 3 A
from the cluster surface (typically 80 to 90 sites for

the larger clusters) we obtain the distributions shown
in Fig. 2 for the A, 8, and C clusters of Table I.

The EFG distribution is seen from Fig. 2 to be an
extremely sensitive function of the closest cation ap-
proach allowed by the building algorithm. In cluster
A, for which Fe ions can approach arbitrarily closely
without touching (effectively d =1.08 A) the distri-
bution is two p'caked. One easily verifies from the
coputer calculation that the larger V~~ contribu-
tions result from iron ions which have very close iron
neighbors. In fact [see shaded in Fig. 2(a)] the
higher V~~ peak essentially disappears if we remove
all contributions from iron sites with cation (primarily
iron) neighbors closer than 1.6 A. Since the experi-
mental Mossbauer quadrupole spectra4 establish quite
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clearly the existence of a single-peaked V~~ distribu-
tion in the roller-quenched YIG samples, it follows
that no such near-neighbor iron-cation pairs exist in

the real materials. Evidently the electrostatic repul-
sion between cations prevents the formation of ca-
tion pairs closer than a certain distance d.

1n computer cluster 8, with d =1.5 A [Fig. 2(b)],
only a single V]~ distribution occurs in qualitative ac-
cord with experiment. Nevertheless, even here the
width and extent of the distribution is still acutely
sensitive to the near-neighbor iron-cation distribu-
tion. If, for example [shaded in Fig. 2(b)] we ex-
clude contributions from iron sites with cation (Y or
Fe) neighbors closer than 1.8 A, the mean value of
EFG is reduced by more than 20%. Physically it
seems likely that the best value to take for d is the
largest for which the cluster building process will still
take place, since this minimizes in some sense the lo-
cal electrostatic energy within the confines of the
model. As discussed earlier this limiting value is
d =2.4 A. The EFG distribution for this case (clus-
ter C) is shown in Fig. 2(c). The, mean and peak
values of V~~ have been reduced by more than a fac-
tor 2 from Fig. 2(b).

Since the splitting of the Mossbauer quadrupole
peaks provides a good measure of the peak ( Vt t),„
in the V~~ distribution we may now verify by direct
calculation that the representation in Fig. 2(c) is
indeed close to the correct one. The peak-to-peak
quadrupole separation is 1.05 mm/sec or 12.2 MHz.
It can be expressed'

(—)eg(Vt~)~, „(l +
& q )' (1 —y ) =12.2 MHz, (1)

in which (1 —y ) is the Sternheimer antishieiding
factor for Fe3+ and 0 is the quadrupole moment of
"Fe. The most accurate values presently available
for 1 —y and g are 11 +1 and 0.15 x 10 24 cm2,

respectively. "'2 Although the mean value of the
asymmetry parameter is quite high (see below) the
factor (1+

3
q2) '/2 varies only between 1 and 1.15 at

its extremes (q =0, 1) and we can use the value 1.1
for it without concerning ourselves with the actual q
distribution at this point, With these values, and an
electronic charge e =4.8 &&10 ' esu, we calculate

I

0.2
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I

0.8
[
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FIG. 3. Histogram of the probability distribution p(q) of
EFG asymmetry parameter q for computer model C.

using model C. The distribution appears to be a
monotonically increasing function of asymmetry and
may well approach zero as q 0. Thus, combining
p ( V& ~) and p (q) there is a definite tendency for glass
to avoid high-symmetry EFG sites of any kind.

The linewidth of the individual Mossbauer lines
that make up the quadrupole-split (QS) doublet in
the disordered magnetic regime is large compared
with the natural Lorentz linewidths expected for a
sharp line. In terms of the full width at half max-
imum the observed linewidth is 0.71 mm/sec (8.24
MHz) compared with the natural Lorentz width
~ =0.20 mm/sec. It follows that the quadrupole line
shape must, for this case, already be an approximate
(slightly broadened) measure of actual EFG distribu-
tion in the glass. Theoretically we merely have to
perform a Lorentz broadening calculation to establish
a fairly quantitative determination of actual EFG dis-
tribution in the glass.

From Fig. 2(c) we expect a reasonable representa-
tion for the EFG distribution to be obtainable in
terms of an asymmetric Gaussian. We try

1

V]].—VM
p ( V») = A t exp—

«M (3)
( Vt t),„=0.39e/A' (2)

directly from Eq. (1) in excellent agreement with Fig.
2(c). We conclude that the computer cluster C is the
most physically relevant of our models and is to be
used for any further predictions or comparison with
experiment.

In Fig. 3 we show the probability distribution histo-
gram p(q) for field gradient asymmetry parameter q

(Vp) () = A ( exp—

where VM is the value of V~~ for which p(V~~) is
maximum, A~ is an amplitude factor, and a and bare
dimensionless constants. In terms of this distribution
we calculate a Lorentz broadened symmetric quadru-
pole doublet line shape in the form

"" (~/2)'exp( —[(( Vttl —V~)/xVM]']dV»
y =A2

(w/2)'+ (y —Vtt)'
(4)
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in which A 2 is an amplitude factor, y runs between
and ~, Lorentz width w =0.20 mm/sec, and

x = b when ( Vt t ( ) V~, and x = a when ( Vt t ~
& V~.

Using Eq. (4) the best fit of theory with experiment
is shown in Fig. 4 and gives values V~ 0.49
mm/sec (5.7 MHz), a -0.54, and b =0.85. The dis-
tribution p ( V») represented by these values of a and
b is shown in Fig. 2(c) and accords very convincingly
with the computer histogram for this same function.
As seen from Fig. 4 the fit to the QS line shape is
quite good. The corresponding best fit becomes
worse if w is significantly increased from its natural
linewidth value lending additional credibility to the
entire fitting procedure.

V. PAIR-CORRELATION FUNCTIONS

FIG. 4, Best theoretical fit (full curve) using Eq. (4) to
the experimental Mossbauer line shape (filled circles). The
amplitude parameter is arbitrary while the abscissa is meas-
ured in channel units of 0.01881 mm/sec per channel. Ex-
perimental data from Ref 4 and M. Eibschutz (private corn-
munication) .

I

1 2 3 4 5 6 7 8 9 10
r (A)

FIG. 5. Pair correlation function g&F, (I.) which measures
the density of Fe ions at a distance r from a Y ion in com-
puter sample C(d =2.4A). Shown in this and Figs. 6—10
are r values corresponding to simple planar geometric confi-
gurations as illustrated, where open circles represent oxygen
ions, closed circles iron, and hatched circles yttrium.

P ions in the material. For continuum YIG we can
i 3 5use the fact that p=(—„)A ' and cy= —,e, cp, = —,o,

and co =
20 to obtain specific values. Since it is these

values which we expect the correlation functions for
the discrete model to approach at very large separa-
tions r we write them in the form

g y(r ~) = 8'e =0.0125, n =Y,Fe,O

g p, (r ee) =
4S

=0.021, n =Y,Fe,O

g p(r ~) =
2e

=0.05, n= Y,Fe,O
1

in units of A. '
Since quite generally g &(r) c =grt (r) c& it is only

necessary for YIG to calculate the six correlation
functions gyp(r), gpep(r), gyp, (r), gyy(r), gpqp, (r),
and gpp(r). to obtain the complete pair-correlation in-
formation. In the actual computer summation we
sam le over spherical shells of radius r and thickness
0.1 . However, since the cluster sample has a well-
defined spherical boundary it is not necessary to re-

To 0.771

g tr(continuum) = crtp (5)

where cp =No(P)/No is the relative concentration of

In this section, using computer model C(d =2.4
A) we compute the various ion-ion correlation func-
tions out to a range of 10 A. Consider a particular
atom of type n (i.e.,n =Y,Fe,O). We compute the
average density g /r(r) of ions of type P at a distance
r from ions of type e. In a continuum model this
correlation function is both independent of e and r
and is easily calculated in terms of the total material
density p in the form

tO
I

oW

L

0 oo5-

I I '. I I I I I I . I I

2 3 4 5 6 7 8 9 10
r (A)

FIG. 6. Same as Fig. 5 but for correlations gyp(r) or ox-
ygen density from an yttrium.
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FIG. 7. Same as Fig. 5 but for correlations gF,F,(r) of
iron-iron density.
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FIG. 9. Same as Fig. 5 but for correlations gz+(r) of
yttrium-y ttrium density.

strict our sums to A ions more than a distance r from
the surface. It is easy to incorporate into the com-
puter program the necessary geometrical correction to
allow for the sampling of an incomplete r-radius shell
near the surface and thereby to incorporate all o. and
38 ions into the averaging process. This contrasts with
the situation for the EFG computation in which only
sites well inside the cluster could be sampled. Ac-
cordingly the resulting statistics are quite good partic-
ularly at larger r values; they are. worst for gvv(r) be-
cause of the low relative concentration of Y in the
material.

The results for g s(r) for r out to 10 A are shown
in Figs. 5—10. The correlation functions for the clus-
ter models A and 8 differ significantly only in the
case of iron-iron correlations with r 4 A. In Fig.
11 we show for comparison these near-neighbor
iron-iron correlation results for the three clusters A,
B, and C. The statistics are poor at very small radius
(r & 2 A) in Figs. 11(a) and ll(b) because the
number of such pairs, being proportional to r', is
again quite small within the cluster sample.

Certain obvious planar geometrical configurations
of the hard sphere components can be correlated with
features in the correlation histograms. Perhaps the
most impressive, in Figs. 7 and 11, is the markedly

enhanced occurrence in the cluster samples of iron-
iron separations corresponding to the closest planar
approach normal to the line of centers between two
touching oxygen spheres. This coordination
corresponds to an iron-oxygen-iron bond angle of ap-
proximatley 90' and, in superexchange theory, '

gives rise to ferromagnetic interactions between the
magnetic ions involved. On the other hand these fer-
romagnetic contributions are likely to be small in
magnitude compared with the antiferromagnetic su-
perexchange arising from bond angles closer to 180'.

VI. BOND ANGLES AND SUPEREXCHANGE

In crystalline YIG the overwhelmingly dominant ex-
change is antiferromagnetic and arises via superex-
change through a single-anion bond (iron-oxygen-
iron) with a bond angle of7 126.6'. Each tetrahedral
ferric ion has four such nearest-neighbor (nn) bonds,
and each octahedrally coordinated iron has six. In
the computer model C for amorphous YIG there ex-
ists a complete spectrum of iron-oxygen-iron bond
angles 0 for singly bonded irons ranging from 0 = 76
(corresponding to the minimum Fe-Fe separation of
2.4 A) to 180'. Since we anticipate that only single-
anion bonds will lead to significant magnetic ex-
change contributions, and since theoretically' ' we

0.1-

TO 0.807

g ace
0.1—

TO 0.557
OOO

lO
I

0'CC
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I I I I I I I I I

'l 2 3 4 5 6 7 8 9 10
r (A)

0 I I

2 5 4 5 6 7 8 9 10
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FIG. 8. Same as Fig. 5 but for correlations gF,p(1') of ox-
ygen density from an iron.

FIG. 10. Same as Fig. 5 but for correlations goo(r) of
oxygen-oxygen density.
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FIG. 12. Histogram for the probability distribution p(8)

of Fe-0-Fe bond angles 6I in computer model C. For iron
pairs with 8 & 90' a significant fraction (shaded in the histo-
gram) have equal bridging paths via two oxygens, enhancing
the exchange contribution for these by a factor of 2.

0
0

FIG. 11. Pair correlation function gF,F,(r) out to r =4 A
for the three computer model samples 3, B, and C defined
in Table I ((a)-(c), respectively].

know the qualitative variation of superexchange with
bond angle, a determination of the probability distri-
bution p(8) of these bond angles in the glass is im-

portant in building any serious model for the magnet-
ic properties.

In order to sample the bond angle distribution p(8)
we examine the local environment about all Fe ions
which are more than 4 A from the cluster surface (a
180' bond leads to an iron-iron separation of 3.9 A).
A total of more than 200 bonds are involved and give
the histogram for bond angle shown in Fig. 12. For
those ferric ions involving bridging bonds with
8 (87.6' some 40% (shown shaded in Fig. 12) are
equally bridged by two oxygens, enhancing their su-
perexchange contributions by a factor 2. The bond
angle distribution is peaked fairly strongly in the
76 (8 & 90' region. In particular, the distribution of
Fig. 12 is to be compared with the 5 function at
8=126.6 expected in this context for crystalline
YIG.

Since, for Fe + (3d5) we anticipate'3'4 the presence
of an antiferromagnetic direct contribution to ex-
change (via e orbitals) in addition to the ferromag-
netic superexchange contribution at or near 8=90',
it is not immediately obvious that the resultant total
exchange parameter J(8) becomes ferromagnetic at
any angle. Materials with Fe +-0 -Fe + bonds near
90' have not been well studied. A few are
known, t~ '8 such as n-NaFe02 (with 8=101') and
CuFe02 (8 =96'), but no separate determination of
the relevant exchange contributions seems to have
been made in either case. Nevertheless, the fact that
these materials are layer structures in which the in-
plane exchange J(8 —90) is expected to dominate,
and that no long-range magnetic order exists in either
above 14'K suggests that, regardless of its sign,

~
J(8 —90)

~
is not larger than a few percent of that

[J(8=126.6)] existing in crystalline YIG. The angle
n =

~
8 —90~ at which superexchange changes sign

does vary a little with cation and anion type but is
typically of order 10—20'. Assuming that the su-
perexchange term dominates J(8) in amorphous YIG
we therefore expect an exchange distribution of the
qualitative form shown in Fig. 13(a). Combining this
with p(8) from Fig. 12 now allows us to sketch the
qualitative form expected for the probability distribu-
tion of exchange p (J) in amorphous YIG. It is
shown in Fig. 13(b) .

Let us now examine the distribution of nearest-
neighbor magnetic ions (defined as single-ion bridged
magnetic neighbors) about the iron sites. From clus-
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FIG. 14. (a) Probability p(n) that a magnetic ion in

amorphous YIG model C has n single-anion bonded mag-
netic nearest neighbors. (b) Probability p'(n) that a mag-
netic ion in amorphous YIG model C has n "strongly mag-
netically interacting" nearest neighbors, defined as neighbors
for which bond angle 8 is greater than 11S'.
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FIG. 13. (a) Qualitative form expected for Fe-0-Fe su-

perexchange as a function of bond angle 8. (b) Qualitative
form of the probability distribution p(J) of exchange J in

amorphous YIG. (c) Probability distribution of exchange in

a translationally invariant lattice which is only partly filled
with magnetic atoms, exchange J ~ 0, arising only from
magnetic atoms on nearest-neighbor sites.

ter model C we compute the probability p(n) that a
ferric ion has n magnetic nearest neighbors about it.
This function is shown in Fig. 14(a). It peaks at
n =5 but within our limited sample we do find one
site with n =0 and, at the other extreme, two with
n =9.

From the distribution p(J) of Fig. 13(b) it is evi-
dent that, at least in lowest order, amorphous YIQ
behaves magnetically like a dilute antiferromagnet.
If, for example, we take a lattice with translational in-
variance and randomly fill a fraction x of its sites

I

with magnetic ions and the rest with nonmagnetic
ions then, assuming only a nn antiferromagnetic ex-
change to be nonzero, the distribution function p(J)
takes the double 5 function form of Fig. 13(c). The
comparison with Fig. 13(b) is informative and we can
take the analogy further.

If we consider all iron pairs with bond angle 8
greater than say 115' to be "strongly" interacting [see
Fig. 13(a)] and those with 8 (115' to be weakly in-

teracting, then we can compute the probability p'(n)
that a ferric ion has n "strongly interacting" nearest
neighbors about it. This function is shown in Fig.
14(b) and, normalized to unity, is also given in Table
II. It is peaked at n =2 and has no instances in our
sample of coordinations greater than n = 5. We now

TABLE II. Normalized probability distribution p'(n) of "strongly antiferromagnetic" nearest
neighbors; (A) in amorphous YIG and (B) in a 25%-filled body-centered cubic lattice.

Number of
Neighbors

n=0

(A) p'(n)

(B) p'(n)

0.10

0.10

0.27

0.27

0.30

0.31

0;23

0.21

0.06

0.09

0.04

0.02

0.00

0.00

0.00

0.00

0.00

0.00
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attempt to fit this distribution with a normalized bi-
nomial expansion of [(I —x) +x), i.e.,
p'(0) = (I —x), p'(I) = mx(1 —x)" ', etc. , which is

appropriate for a lattice of coordination number m

which is 100x% filled with magnetic atoms. As
shown in Table II the distribution (0.75+0.25)' pro-
vides an excellent representation of the computer dis-
tribution. It follows that the magnetic properties of
amorphous YIG should, in some low order, be simi-
lar to that of a dilute (25% filled) body-centered cu-
bic lattice of S =

2
antiferromagnetically interacting

spins.
The literature on dilute ferromagnets and antifer-

romagnets is already extensive but it is not the pur-
pose of the present paper to pursue the above analo-

gy in detail. Suffice it to say that, since the critical
concentration (percolation limit) in a bcc lattice below
which long-range order cannot exist even at absolute
zero is about 22%, ' the situation for amorphous YIG

corresponds to a system close to critical concentra-
tion. This would account nicely for the very low
transition temperature observed compared with that
of crystalline YIG. Also, since the antiferromagnetic
exchange interactions are so large compared with the
ferromagnetic ones (which have been completely
neglected in the dilute system analogy) any occurrence
of spin-glass phenomena is unlikely. Frustration is at
most very weak if only nearest-neighbor irons are
magnetically important as assumed, and the ordered
phase is therefore probably antiferromagnetic in the
amorphous sense.

ACKNOWLEDGMENT

It is a pleasure to acknowledge many valuable dis-
cussions with M. Eibschutz throughout the course of
this work, particularly with respect to an interpreta-
tion of the Mossbauer quadrupole data.

'For a recent review see J. L. Finney, in The Structure of
Noncrystalline Materials, edited by P. H. Gaskell (Taylor
and Francis, London, 1977).

A. M. Glass, M. E. Lines, K. Nassau, and J. %. Shiever,
Appl. Phys. Lett. 31, 249 (1977).

A. M. Glass, K. Nassau, and J. W. Shiever, J. Appl. Phys.
48, 5213 (1977).

4E. M. Gyorgy, K. Nassau, M. Eibschutz, J. V. Waszczak, C.
A. Wang and J. C. Shelton, J. Appl. Phys. 50, 2883
(1979).

5C. H. Bennett, J. Appl. Phys. 43, 2727 (1972).
See for example R. W. Cochrane, R. Harris, and M.

Plischke, J. Non-Cryst. Solids 15, 239 (1974).
~S. Geller and M. A. Gilleo, J. Phys. Chem. Solids 3, 30

(1957).
M. A. Gilleo and S. Geller, Phys. Rev. 110, 73 (1958).
G. S. Cargill, Solid State Phys. 30, 227 {1975).

' T. C. Gibb, Principles ofMossbauer Spectroscopy (Chapman
and Hall, London, 1975), p. 30.
S. N. Ray and T. P. Das, Phys. Rev. B 16, 4794 (1977).

' S. N. Ray, T. Lee, T. P, Das, R. M, Sternheimer, R. P.
Gupta, and S. K, Sen, Phys. Rev. A 11, 1804 (1975).
P. W. Anderson, in Magnetism, edited by G. T. Rado and
H. Suhl. (Academic, New' York, 1963), &ol. 1, Chap. 2.

'4See for example J. B. Goodenough, Magnetism and the

Chemical Bond (Interscience, New York, 1963).
'5T. Ichida, T. Shinjo, Y. Bando, and T. Takada, J. Phys.

Soc. Jpn. 29, 795 (1970).
C. A. Taft, D. Raj, and J. Danon, Phys. Status Solidi B
64, 111 {1974).

' A. H. Muir and H. Wiedersich, J. Phys. Chem. Solids 28,
65 (1967).

' A. H. Muir, R. W. Grant, and H. Wiedersich, in Proceed-
ings of the Conference on Applied Mo'ssbauer Effect, Tihuny,

1969, edited by I. J. Gruverman (Plenum, New York,
1971), p. 557.

' G. S. Rushbroooke and D. J. Morgan, Mol. Phys. 4, 291
(1961).

J. M. Coey, J. Appl. Phys. 49, 1646 (1978).


