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Excitation energy spectrum in helium II
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We obtain the roton part of the excitation energy spectrum in He II qualitatively. We point

out that the distinct difference between this calculation and that of Parry and Ter Haar is that

we do not use the Born approximation in the evaluation of t-matrix elements. W'e found that in

addition to the contribution due to the hard-core part, the attractive potential helps to form the

roton dip.

It seems that the roton part of the excitation ener-
gy spectrum, namely, E(k) vs k, of liquid He II has
not been well explained yet. Brueckner and Sawada'
applied the t-matrix method to a hard-sphere boson
system with high density and gave the excitation
spectrum E(k) in terms of the t-matrix elements.

E(k) = [(N,t„+S k /2m)

with
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Parry and Ter Haar used the Born approximation in
the evaluation of these t matrices by including an
outside attractive potential. Their conclusion is that
this attractive potential gives a poorer agreement with
experimental result than the hard core alone or. that
of the Brueckner and Sawada calculation.

We are going to see how the Parry and Ter Haar2

formulas, namely, the Born approximation to the t-

matrix elements, are reached. We know

to set

nt(ka)ji(ky) j~(ka) n—((kr)
4k

[n (ka) +j '( ka)]' t

tk k =g" d r &k(")v(r)ek(r)

indicating the outside attractive potential part. We
get

E(k) = [( tt k /2m + Y+ Nptkt )

with

—(Y+Nptpp k k )(Y+Nptk k pp)], (4a)

This is different from the Born approximation, for we
introduce nt(kr), which will play a very important
role in giving us the roton part.

We are starting our calculation by accepting the
Brueckner and Sawada hard-core results as the start-
ing point. We set tk k k k + k k th k k 1ndicat"
~ ~ (1) (2) (1)

ing the hard-core part and

and

tk, -„=J d r 4 k (r)v'(r)yk(r) (2a) X g'sinka
2kma3

(4b)

v'(r)gko (r) =yku 5(r —a) +v(r)Qz' (r), (2b)

where a is the hard-core size, and Pq' (r) is the Ith
partial wave and r-dependent component of Q-k(r).
pk (r) is the plane-wave eigenfunction, while p-k(r)
is the exact state wave function. If we know p-k(r),
we can obtain E(k) right away. Since pk(r) [or its
1th partial wave component gkt'~(r)] is not known, we
substitute it by its free-wave counterpart p-k(r) [or
its 1th partial wave (I/JQ)jt(kr)], and get the result
of Parry and Ter Haar, or the Born approximation
result. Immediately we see that this substitution is
not well justified, since, in general, jt(ka) WO yet
litktt'(a) =0. What we do in our approximation is

oo, for r (a
4» exp—

I

r —a

I

r —a-exp- for r &a
pw

as was given in Brueckner and Sawada; we will use
X =30 as reported in Parry and Ter Haar. Note that
in so doing, we are not fitting a parameter; here we
merely follow the optimized process for hard-core po-
tential as was done.

Khanna and Das' fitted the experimental curve
with a potential
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They use the following set of parameters:

6= 14 11 & 10 ' erg, pg =0 1103 A

p, ~2 =0.2206 A2; a =2.1 A

In Khanna and Das, they used the approximation due
to Brueckner and Sawada, for example,

We will take the zero energy, zero momentum state
as the ground state of He. This is, of course, an ap-
proximation (see Fig. 1). We have therefore

r fgpogqd( r ) = r P(z 0 (~)(r)

and

took-k, + t00k —k, [t00.00 + t00.00] (sinka/ka)

1 sin ka
G, (a,a) ka

where

C1r+Cp, a (r
AzAi (z) +B2Bi(z), a & r & a, (g)

They found that they could find a quantitative agree-
ment with the phonon part. And hence by using this
very potential, Eq. (5), we can obtain everything,
such as the sound velocity, etc. , which characterizes
the phonon parts.

We are going to approximate for Q k (r) in the
following way. For k &0,

and

2 = [2mVO/it (a —a')]' (r —a)

11
1 =4n J dr r Qtz~, t~&(r) pt ~Eel(,r), (9)

y-„(r) = Xi'(2i+1)0 (~

x cosgt [jt(kr) —tan5tgt(kr)]Pt(cos8)

(6)

and it is subjected to the overall normalization, such
that, k WO

1=Jock (r)f-„(r)d r

with C]„C2, A2, and 82 being determined by the
normalization Eq. (9) and their continuities at boun-
daries. From experiment, we set R~~ =4.36 A, or
p =2.06 & 10 particle/cm'.

It is seen that due to these approximations we have
limq~E(k) WO. Actually we ought to have
limk~E(k) =0; however here the roton part
(k & 1), not the phonon part (0 & k & 1), is our
main concern. Therefore we get

t

IVptk (2) = (tok pk + tok ko
—t0000 )+p,

=Sap X (2i+1) jt( ka) &t dr r j—t(2kr)gt( kr) V(r)—
I even

p oo 't

—
hatt( ka) J dr —r J't (2 kr)u(r) /[gt( ka) +jtz( ka—)]'z-

t

fO

4mp J,—dr r(C~r+C2)v(r)+J dr r[A2Ai(z)+B2Bi(z)]u(r) (10)
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FIG. 1. We use the triangular part aba' as approximation
in the ground-state wave function for the real potential
abta t.
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FIG. 2. Evs k curve, the roton part, from this calculation.
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30.0-- TABLE I. Dispersion-curve values in 4He given by our
calculation compared with the experimental ones (see Ref. 4).
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10.0--

S.O--
t

1.20 1.SO 1.SO 2.10 2.40 2.70

2.3
2,2

2.1

2.0
1.9
1.8
1.7
1.6
1.5
1.4

Expt. energy (eV)'

13.55
11.65
10.00
8.95
8.70
9.25

10.25
11.20
12.20
12.95

Theoretical result (eV)'

15.83
13~ 16
11.06
9.67
7.92
8.19
9.11

10.34
11.67
13.05

FIG. 3. E vs k curve, the roton part, from experiment. 'eV is electron volt.

Nototk q=4mp ~ dr r u(r)Qk (r)~a

pR))
Noh' a, oo =4~p-dr r jo(kr)ua

"u(r) 4(E-o.t~)(r)

What we get then is a roton minimum, which is lo-
cated at the same point on the curve as for the exper-
itnent (cf. Figs. 2 and 3 and Table 1). However, we
can not get the correct values at k & 1, as said above,
and at k )2.8, for then this must be due to some
other mechanism.

Note here we do not use the Born approximation,
instead we take care of hard core in Eqs. (6) and (8).
We evaluate the matrix elements by very drastic ap-
proximation in wave functions. This is done mainly
for convenience. In so doing, we think that, includ-
ing the outside potential, we understand the roton
minimum. There is an interesting paper~ dealing
with the same subject. They use a parameter to fit
the experimental curve for hard-core potential only.
Although their fit seems very satisfactory, ho~ever,
this very parameter remains to be explained. What
we are presenting here is a derivation with inclusion
of the outside potential at the same time without the
use of any parameter.
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