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Critical dynamics of the A. transition in liquid 4He: Light-scattering spectrum
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From kinetic-theory considerations a general expression is derived for the frequency-

dependent critical thermal conductivity of liquid 4He near its A. point. Adding the transient solu-

tions yields an expression for the temperature- and frequency-dependent entropy relaxation rate

which includes the corrections to dynamic scaling. This is used to study the fluctuation spec-

trum at and above the A. point. A detailed comparison with the light scattering data of Tarvin,

Vidal, and Greytak yields good agreement.

I. INTRODUCTION

The dynamic-scaling theory'2 when applied to
liquid helium predicts a divergence in the thermal
conductivity and second-sound damping as the A.

point is approached from above and below, respec-
tively. In each case the divergence follows a t ' '
law, where t =. |T—TiilTi. The logarithmic varia-
tion of the specific heat near the A. point causes the
exponent to deviate from the pure scaling value of —,

by about 20'/0. Divergences agreeing with these
power laws were observed in the experiments of
Ahlers and Tyson. However, a later more precise
measurement of the thermal conductivity by Ahlers5

very close to the A. point indicated a definite devia-
tion from the scaling prediction. It was found that
the divergence was stronger than that predicted by
dynamic scaling (when due account was taken of the
specific heat).

A further test of the dynamic-scaling theory is pro-
vided by the light scattering experiments. Above the
A. point the spectrum is expected to be nearly
Lorentzian, with the half-width determined by the
thermal conductivity. Thus the spectrum should
shrink as one leaves the critical region according to
the dynamic-scaling law. Below the A. point this
behavior is to be expected for the width of the
second-sound doublet. The experimental findings of
Tarvin, Vidal, and Greytak and of Vinen et al. do
not show these features. Above the A. point the spec-
trum hardly changes its width, while below, the
breadth of the second-sound lines falls slightly at first
and then rises slowly.

It was found by De Dominicis and Pelitis that there
was the possibility of a violation of scaling in liquid
helium. The Sasvari-Schwabl-Szegpfalusy9 (SSS)
model with an n-component nonconserved order-
parameter field of O(n) symmetry and an n (n —1)/2
component conserved generator field of rotations was
studied in detail by De Dominicis and Peliti, ' Dohm
and Ferrell, " and the present authors. ' It was found

that there exists a curve in the n-D plane along which
the order-parameter relaxation rate is vanishingly
small when compared to the rate for the generator.
This boundary curve was calculated to two-loop order
and it was established that, although liquid helium
(n =2,D =3) is on the scaling side, it is very close to.
the boundary. This led to the characterization of
helium by a small value of the ratio w of the relaxa-
tion rates. According to Dohm" and the present au-
thors" w = O(0.1).

A characteristic feature of a small w is the ex-
istence of a "slow" transient, i.e., a correction to scal-
ing with a small exponent. The smallness of the ex-
ponent causes this correction term to persist deep
down into the critical region. The true critical region
thus becomes practically inaccessible. It was recently
shown by the authors' that, when the corrections to
scaling are taken into account, an excellent fit to the
Ahlers5 thermal-conductivity data can be obtained.
The picture that emerges from that work is the fol-
lowing: Coming from the scaling region, the thermal
conductivity is reduced from its true scaling value by
the "slow transient" and is then prevented from fur-
ther decrease by the "fast transient. " It finally merges
into a constant background value. The Onsager coef-
ficient for the order parameter, on the other hand,
has a correction of the opposite sign. This is because
its scaling behavior, with an anomalously small nu-
merical coefficient, has to match, by means of the
transients, on to a noncritical background value of
the same order of magnitude as the background en-
tropy diffusion constant. We also found' that these
considerations can explain the light scattering data.

In Sec. II of this paper we give a derivation for the
critical part of the thermal conductivity. This is gen-
eralized to a frequency-dependent form in Sec. III
where we also show how the frequency dependence is
closely related to the temperature dependence. This
connection enables us to describe the two aspects
with one combined scaling variable. It is possible to
extract the frequency dependence that is required for
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an analysis of the entropy fluctuation spectrum, with
a minimum amount of formal theoretical manipula-
tion. We find that the decrease in the thermal con-
ductivity produced by a finite frequency corresponds
to an equivalent rise in temperature. This allows us
to obtain the needed frequency dependence by using
the temperature dependence measured by Ahlers' at
zero frequency. The frequency-dependent relaxation
rate found in this way is applied in Sec. IV to a de-
tailed treatment of the fluctuation spectrum. Good
comparison is found between the theory and the light
scattering data, as illustrated in Fig. 7. Predictions
are also made to further such experiments. Section
V provides a brief summary.

It is perhaps useful, before embarking on the cal-
culations, to reiterate that it is not the purpose of this
paper to provide a complete and detailed treatment of the
critical dynamics of the h. transition in liquid 4He. Our
goal is much more restricted and manageable: We
want to demonstrate simply that the Ahlers experi-
mental data contain all of the information required
for understanding the light scattering data above the
A. point. For the sake of simplicity and readability we
include in this paper only the minimum amount of
theory that is needed as a framework, or skeleton, on
which to hang this demonstration. In other words,
our paper can be regarded as a glimpse inside a "black
box" which converts a certain "input" (experimental.
temperature dependence of the thermal conductivity)
into an "output" (fluctuation spectrum). We call
upon the theory only to the extent necessary to pro-
vide a ~orking mechanism for this black box. Our
aim, by establishing the connection between the two
different experiments associated with the input and
output, is to reduce the subsequent task of the theory
to an account of the input alone. This latter task is
the subject matter of another paper' and is not in-
cluded here. We therefore ask the patient reader to
accept the spirit and motivation of the "divide and

, conquer" tactic adopted here and not to insist on a
full theoretical derivation of the input at this time.

II. CRITICAL THERMAL CONDUCTIVITY

The critical properties of liquid helium near the X

point are customarily described in terms of fluctua-
tions in the complex Ginzburg-Landau field

P = ~(itive'~, rather than in terms of the particle picture
used in Sec. 1. The Fourier coefficient of (It expresses
the number of helium atoms of momentum p -8'k as

(2.1)

2m h is Planck's constant. The application of Eq.
(2.1) to critical properties requires that 2m/k, the
wavelength corresponding to p, be very much larger
than the average interatomic spacing. A measure of

the latter is 2r„with r, defined in terms of the atom-
ic density n by

n =3/4rrr' (2.2)

At the temperature T= T&=2.173 'K, r, =2.2 A, in-
creasing by about 7% high up on the A. line. The crit-
ical dynamic properties are associated with the ther-
modynamic fluctuations

Sp, =—sST+n 'SP (2.3)

These fluctuations of the chemical potential are pro-
duced by the fluctuations ST and SP in the tempera-.
ture and pressure, respectively. At the low frequen-
cies of interest in this paper, 5P can be neglected.
According to the time-dependent Schrodinger equa-
tion the time derivative of the phase of P is

dP
dt h

(2.4)

As we are interested in the response of liquid helium
to an applied thermal gradient, we can write

5p, =r Vp, =—r F (2.5)

where F =—Vp, is a constant vector force field, in-
dependent of the spatial coordinate r. After the lapse
of a short time /s. t, Eqs. (2.4) and (2.5) produce the
phase change

5$(r)=A 'dtF r=il 'hp r (2.6)

where hp=F b t, or

p=F (2.7)

Equation (2.7) is nothing other than the standard
superfluid equation of motion applied to the fluctua-
tions in the condensate wave function. It is now con-
venient to switch from wave-mechanical to classical
particle language, and to regard Eq. (2.7) as simply
Newton's second law describing the acceleration of
helium atoms of momentum p. By isotropy, the un-
perturbed equilibrium Bose-Einstein distribution of
Eq. (2.1),

1g(e) =—n, =
( )e '~ —1

(2.8)

( )
ksT),

p
(2.9)

depends upon p only via the kinetic energy e =p'/2m.
As before, m is the atomic mass and P=(ksT) '.
Equation (2.8) takes into account the interactions of
the helium atoms only through their effect on p, , and
is equivalent to the usual Ornstein-Zernike approxi-
mation for liquid helium above the A. point. Close to
the A. point, and in the critical range of small momen-
ta, where both ~)M, ~

and e are small, we have
P(e —p) (( 1, so that Eq. (2.8) becomes
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The error in this. approximation is known to be only a
few percent because of the very small value of the
critical exponent g.

The steady-state linearized Boltzmann equation in
the relaxation time approximation' is

F v g'(a) =—2ya(k, K) hg (k, K) (2.12)

where Ag(k, K) is the perturbation in the distribution
function, v =p/m is the particle velocity, and (2y&)
is the particle mean relaxation time, arising from the
random scattering processes. Solving Eq. (2.12) for
dg and substituting for g'(a) from Eqs. (2.9) and
(2.10) yields

F v AT„4m kaTi F v 1kg=
2ya

'

(a —i4) t4 (k3+ K ) 2ya

(2.13)
The critical mass current density J is now found by
multiplying Eq. (2.13) by mv and integrating ov.r all

momentum values. Taking v in the direction of F
and noting from isotropy that the square of the com-
ponent of v is equivalent to u3/3, we obtain

—ka T& m " d3k kJ = —F
3 t3 (2~)3 ~ (k3+K3)3 2y«

(2.14)

We now invoke the basic feature of the two-fluid
model —namely, the counterflow'6 of normal fluid
that must take place, equal and opposite to Eq.
(2.14), in order that no net mass flow occurs. This
counterflow carries entropy at the rate of s = k~a. per
particle, and hence heat at the rate of k~T&o- per
helium atom. The density of heat current is conse-
quently, as a result of the counterflow,

Q =—ksTqo. m 'J (2.15)

The force F is given in terms of the applied tempera-
ture gradient by

F =—'7 p, = kg cr '7 T (2.16)

Substituting Eqs. (2.14) and (2.16) into Eq. (2.15)
and identifying the thermal conductivity X from

Q=—X '7T (2.17)

we find
r

4 kaTzo 1 t d k k
8rr3 J (k2 + K2) 2 2y (k K)

(2.18)

Introducing the inverse correlation length K by

f2
p, = K (2.10)

2m

brings Eq. (2.9) into the Ornstein-Zernike form

g()= (2.11)

III. FREQUENC Y DEPENDENCE

A. Local limit

Equation (2.18) is easily generalized to the fre-
quency, wave number, and temperature-dependent
thermal conductivity ).(«3, k, K). In the hydrodynamic
limit, which occupies us mainly here, we drop the k
dependence and write simply h. (c«, K). The critical
temperature dependence is expressed via K. By in-
cluding Bhg/Bt in Eq. (2.12) we find the response to
an oscillatory but spatially uniform temperature gra-
dient at angular velocity co to be

~( ) k 4 yo4r ) d3k k3

3 8n3 ~ (k +K ) i«3+—2ya(k, K)

(3.1)
Here we have introduced

kg Ti
Yo (3.2)

to provide a characteristic frequency scale. A related
constant of the liquid is the characteristic diffusion
coefficient

Drj= —=1.58 x 10 4 cm3/sec
m

(3.3)

X(4«, K)

Z(0, K) a-'

' -1/3

=(Z'/ ') 1/3, (3.4)

The Bose-Einstein distribution gives a natural high
momentum cutoff at an effective Debye wave
number given by t'kij/2m = ks T„Thus Eqs. (.3.3)
and (3.2) are related to one another by yo ——, DokD. —1

Alternatively we can obtain Eq. (3.3) from the stan-
dard kinetic theory formula vI, where v is a mean
velocity and I the mean free path of the helium
atoms. (We omit the usual factor of —.) Taking 2m/

1

equal to the De Broglie wavelength /3/me leads to
Eq. (3.3).

Elsewhere" we have shown that Eq. (2.18) is in
complete agreement with the Ahlers' data, both in
absolute magnitude and in temperature dependence,
provided account is properly taken of (i) transients
and (ii) two-loop enhancement. (The latter effect
corresponds to the phenomenon of "velocity per-
sistence" in the language of kinetic theory. ") As ex-
plained at the end of Scc. I, we ask the indulgent
reader to accept the Ahlers data as input and to follow
us in seeing what a minimal black-box theory will

then yield as an output, in the form of predicted fluc-
tuation spectra for the light scattering experiment.
We therefore turn now to the additional feature
posessed, by Eq. (3.1), namely, its dependence upon
—i ao. We have already studied this question and
have found" that the frequency dependence can be
written as
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where

and

2p
«-')

a K'"=50a ~"'
21 F(3)

4

(3.5)

Z = CF —I OJ (3.6)

in the units of p,W/'Kcm. The second and third
terms within the parentheses are the slow and fast
transients, respectively. As mentioned above, the
slow transient enters with negative amplitude. We
have noted' that this minus sign is essential for pro-
ducing the stronger divergence found by Ahlers. '
For the present purposes, Eq; (3.7) can be regarded
as an empirical fit which serves as a convenient way

l.2—

F,(zs)

The parameter o-' differs somewhat from the parame-
ter o. of Eq. (20) of Ref. 18. But, like a, tr' is pro-
portional to apts', the local (i.e., k =0) order-
parameter relaxation rate. As h. (0, K) cK K cc cr' ' ',
it follows from Eq. (3.4) that X(tp, tt) is obtained
from h, (0, tt) by replacing a.' by Z'. Therefore it is
not necessary to regard h. (tp, K) as a function of the
two separate variables co, x. Instead, we change our
notation to write X = X(Z'), a function of the single
scaling variable Z'. As mentioned in Sec. I, this
means that the frequency dependence is already fixed
by the critical temperature dependence. We hasten to
add, as noted in Ref. 18, that Eq. (3.4) is an approxi-
mation. The correction factor Fq(Zq), where Zs ls a
certain scaled frequency, is plotted in Fig. 1.
Although asymptotically I's 1.2 as Zs
corresponding to the 20% underestimate mentioned
in Ref. 18 for Eq. (3.4), the rise is very slow. In the
frequency range of interest the error is less than 10%,
and will be neglected here.

The zero-frequency Ahlers data was found'" to be
represented by

&/2

A. =21.6 t ' (1 —1.18t P +26.1t 6) (3 7)
B

of describing the input, in the sense of Sec. I. The
fact that the numerical values of the transient ex-
ponents inside the parentheses and of the scaling
coefficient in front are predicted by the underlying
theory is not relevant for the present black-box ap-
proach to the fluctuation spectrum. The only thing
that we require for this approach is an extension of
Eq. (3.7) to nonzero frequencies. This is provided by
the above scaling considerations, '9 which permit us to
replace the zero-frequency temperature parameter o-'

by the combined frequency-temperature scaling vari-
able Z'. With

0 (3.8)

Z = Z'/a&k3t2 = a —i 0
where

0 =tp/a k3t2

and
~ 3/2

o- = 5.0—
k

(3.9)

(3.10)

(3.11)

differing from the corresponding variables 0 and cr
of Ref. 18 by the factor a&' (i.e., o = o/a&).
au& = a&k is the scaling value of the order-
parameter relaxation rate at tt =0. (Its numerical
value is co&/2m =0.6 MHz for k = 1.79 x 10' cm '.)
From the above equations we find, in units of MHz,

0
and Kp=0.7 A ', we can express the temperature
dependence in Eq. (3.7) entirely in terms of tt. Di-
viding by the specific heat gives the thermal diffusion
coefficient, again as a function of tt. Equation (3.5)
then permits K to be replaced by o-', which in turn is
replaced by Z'. Dividing by the specific heat then
yields a "universal" critical entropy diffusion coeffi-
cient Ds(Z'), containing both the temperature and
frequency dependence. Ds(Z') takes on the back-
ground value Bs=2.0 X 10~ cm /sec as Z' becomes
large. The entropy relaxation rate ys is obtained by
multiplying by the square of k =1.79 & 10' cm ', the
wave number in the Tarvin et al. experiment. Com-
parison with Eq. (3.3) shows that Bs Dp, as expect-
ed a priori.

It is convenient to redefine the scaling variable Z'
in the dimensionless form

I.O
0 IO

Zs

20

ask 2
Vs

2m 2'
&/2

(1 —0.582Z +0.0234Z 6 ). ,
Z 1/3

t

(3.12)
FIG. 1. Entropy relaxation rate scaling function Fs(Zs)

vs Zs. The dashed line represents the asymptotic value of
1.19. Fs changes by less than 10% in the Zs range of in-

terest.

where cp is the specific heat per particle, in units of
kB. Over the intermediate range of Z values cp can
be fitted sufficiently accurately by a power law, which
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puts Eq. (3.12) into the convenient form

s 5.192 3.022 +0.122Z0.381

2 Z Z ~
' (3.13)

2.0
= 2.9 MHz

1.5-

y -Bk
27r

(MHz)

1.0—

k* l.79 && 10~em 1

0.5—

"I l

0
1

10
l

20 30

FIG. 2. Entropy relaxation rate yq (with the background of
1.0 MHz subtracted) vs the scaling variable Z. cr&=0.41 is

the limiting value of o- as T T„. MAX(I p=0)
corresponds to the frequency at the maximum in the infinite

resolution X-point spectrum. The dashed lines are drawn for
the two different temperatures for which x =0 and K = k and
correspond to the Tarvin et al. (Ref. 6) resolution. The por-
tion of the curve to the right of this line determines the
spectrum.

again in MHz. The background value of Bg men-
tioned above leads to a background for ys/2~ of
Bsk'/2m =1.0 Mhz. This has been subtracted from
ys/2m and the remaining critical portion plot'ted in

Fig. 2 versus Z. yq drops rapidly with increasing Z.
This can result from a rise in temperature, from a

change in the frequency variable, or from finite reso-
lution. It will be noted that, except for relatively
small values of Z, the critical portion of ys/2m is

smaller than its background portion. Furthermore,
this range for Z is effectively inaccessible in the ex-
periment of Tarvin, Vidal, and Greytak. This is be-

cause, as explained in Sec. IV, convolving the experi-
mental resolution function adds I'p/&p& to Z (where I'p

is the half-width at half maximum). With
rp/2vr =1.5 MHz, this addition becomes 2.5, as indi-

cated by the left-hand vertical dashed line in Fig. 2.
Only the portion of the curve to the right of the
dashed line is observable in experiments with this
resolution. It is therefore evident that the critical
portion of ys/2' contributing to the light scattering

spectrum is never larger than 50% of the background
value. This explains qualitatively the relative lack of
temperature variation in the spectrum for T ~ T„,
with this question handled quantitatively in Sec. IV.
For r) T„ the minimum value of Z is I p/co&+a. . a.

increases linearly with T —T&, which further restricts
the range of Z which is involved in the light scatter-
ing spectrum. The second dashed line in Fig. 2 illus-
trates the shift to the right and the lessening of criti-
cal behavior for the temperature at which the correla-
tion length equals (2m) ' times the scattering
wavelength (i.e. , ~ = k). In each of these cases the
structure of yq to the left of the dashed line is inac-
cessible to observation. As the sharpest structure oc-
curs at the smalles values of Z, it is clear why even a
small value of I 0 or a moderate increase in tempera-
ture can have a big effect in washing out the spec-
trum. A rise in temperature moves the accessible
range of Z to the right, causing a loss of structure,
with the spectrum soon becoming Lorentzian.

B. ) -point nonlocality

As shown in Sec. IV, the above treatment of yq is

quite adequate for giving a full account of the fluc-
tuation spectra as observed with the presently attain-
able experimental resolution. It is, however, based
on the k =0 local approximation and neglects the k
dependence of h. (co,k, K). In this approximation the
ao =0 value of y& continues to increase as T T„
and becomes irifinite at the A. point. Consequently
the resulting entropy fluctuation spectrum vanishes at
co =0, as shown in Fig. 12 of Ref. 12. But because of
the finite value of k, ys(0, k, 0) (~, and the spec-
trum does not in fact vanish as co =0. It will look
more like the two lower curves in Fig. 1 of Ref. 18
(for o'~ = —, and T), rather than the extreme case of&p

Ref. 12. Because of the experimental resolution, the
central valley of the spectrum is not observable in

any case, and the error produced by the k =0 local
approximation has only an imperceptible effect on
the convolved spectrum. Nevertheless, we include
here a brief &reatment of the nonlocal correction that
is required close to and at the A. point. The reader
who is primarily interested in how the experimental
spectra compare with the theoretical predictions does
not need this nonlocal refinement. He may wish to
skip the remainder of this section and go directly to
Sec. IV.

The full co, k, and K dependence of y~ has been
calculated by Dohm' in the e expansion. %e restrict
ourselves here to the cu =0 limit. All of the k and K

dependence is then contained in the scaling function

1 2 1
2 2

H(k, ~) = —ln(~ + —k ) —2—ln
K 1

4 g2 2+ ]
A, 2 2

4

(3.14)
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which in the k 0 limit is simply lnK, the local ap-
proximation. The first term of the right-hand
member of Eq. (3.14) puts ~ on a par with

2 k, and

is consistent with the rough rule of thumb. ' This is
modified by the last two terms, which equal 0 and
—

2
for k =0 and K=O, respectively. Consequently

the K =0 limit can be expressed by

H(k, 0) =H(0, jeff) (3.15)

where ~,rr = k/2 Je = k/3. 3.
The factor of 1=3.3 found above corresponds to

the so-called "threshold factor" in the dispersion
theory approach. 2' In the field theory analogue I
describes the effective number of intermediate-state
particles involved in a particular many-body process.
In Ref. 12 we found that the two-term ~ expansion
was not sufficiently accurate for estimating integrals
in three dimensions (i.e., for a= 1). Better accuracy
is obtained with the so-called "~-expansion, " which in

Appendix A yields the preferred value of I =5.0.
Substituted into Eq. (3.11) this gives

Keff
o-), = 5.0

k

' 3/2

=5.0l =5.0 ' =0.41 (3.16)

Using a& in the local expression for ys at the A.

point, rather than o. =0, effectively introduces the re-
quired correction for the nonlocality. o-& is indicated
by the downwards pointing arrow in the lower left-
hand corner of Fig. 2. The corresponding value
ys(a. „)/2n =2.9 MHz is indicated by the horizontal
arrow at the top of Fig. 2.

At this point the critical reader will detect an incon-
sistency. Following Ref. 18 [see, especially, Eqs.
(19) and (20)], we have defined o in Sec. III A

above lEqs. (3.5), (3.6, (3.9), and (3.11)] in terms of
the frequency scale. This is accomplished by equating
3'' to the reciprocal of the logarithmic frequency
derivative of ys. Equation (3.16) on the other hand,
fixes 6-& only from the zero-frequency value of ys,
with no reference to its frequency derivative. This is
because at the A. point, the Ahlerss k =0 thermal
conductivity data are not directly applicable. There-
fore, we need to extract not one, but t~o pieces of in-
formation from the theory. The situation is different
from that in the T & T& local limit, where the value
of ys is already known from the Ahlers data and we

only need from the theory information on the fre-
quency derivative. We have followed the alternative
approach to determining a-& from the frequency scale
at the X point and have found a value approximately
twice that of Eq. (3.16). The inconsistency results
from the error in forcing the frequency dependence
of ys to conform to the simple one-parameter treat-
ment based on Eq. (3.6). As reported following Eq.
(21) of Ref. 18, this approach underestimates
y(0, k, 0), which is correctly rendered only by the

smaller value of o-&. The spectrum based on the
single-parameter approach with cr„=0.41 is discussed
in Sec. IV (see Fig. 5, below). A more accurate two-
parameter spectrum which takes into account the
larger o-& correctly describing the frequency scale has
also been calculated. But not being significantly dif-
ferent, it is not exhibited in this paper. The im-
proved two-parameter spectrum is slightly broader
with a somewhat reduced peak-to-valley ratio (de-
creased by approximately 20'/0).

IV. FLUCTUATION SPECTRUM

The second line follows from the reality of L (co').
One of the simplest forms for the resolution func-

tion is the Lorentzian

1 Io
LI(~) =-

OJ +I 0

p+oo
normahzed to J~ L~(co) de =1. L~(co) is shown in

Fig. 3 by the curve labeled "LOR." The frequency
unit has been chosen I"0=1. In the experiments of

(4.3)

0.4

O
I-

o 0-2
LLI
K

0
0

FREQUENCY

FIG. 3. Resolution function vs frequency. The curve la-
beled LOR is a Lorentizan with unit half-width and unit
area. The curve identified by LOR2 is a squared Lorentzian
with the same half-width and normalization.

In this section we study the fluctuation spectrum
arising from the temperature and frequency-
dependent entropy self-energy ys and thereby make
contact with the light scattering experiments of Tar-
vin, Vidal, and Greytak. The observed spectral in-
tensity versus frequency at given K for infinite reso-
lution is the real part of the entropy Green's function

Gs= 1 (4.1)I~+'ys(~. &)

provided K && k. In general, every instrument has
its own resolution function L (co) and the fluctuation
spectrum actually observed is therefore

Regs(cu) = „I ReGs(ru —cu') L (ao') des'

(4.2)
foo

=Re Gs(~ ~')L(~') d~' .
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Tarvin et al. the resolution function has, however, a
weaker tail than the Lorentzian, and is better approx-
imated by

I.oo

2I i
L2(l») =-

7r (r2l+l»')'
(4.4)

~c Re gs

0.75

shown in Fig. 3 by the curve labeled LOR'. The area
has once again been normalized to unity and this
function has the same half-width as Ll(l»), provided

0.50

r, =(1+Jz)'i'r, . (4.5) 0.25

Regs(&») =ReGs(ol+i I'0) (4.6)

while for L2(l») it is

Regs(l») =ReGs(l»+i I l) +r&lmGs(l»+irl) . (4.7)

The prime denotes differentiation with respect to eo.

To demonstrate the differing effects of L, (ol) and
L2(ol) on the true unconvolved spectrum Gs(l»), we
consider a case in which Gs(l») has a Particularly sim-
ple form. This is the case for T= T& and ~ =0. We
have established earlier'8 that for this case

~.Gs(~) = 1

l l»/Ql~ + ( l l»/l»~)
(4.8)

where we are using the notation of Ref. 18. This un-
convoluted spectrum is identified by the label 1p =0
in Fig. 4 and has the deep valley and sharp peak
described in our earlier work. The effect of smearing
it out according to Eq. (4.6) with a Lorentzian resolu-
tion function having I p

= 1 is sho~n in Fig. 4 by the
curve labeled LOR. We see that the structure has
disappeared and that the spectrum has acquired a
half-width of 2.25, in units of c»/l», . The curve la-

beled LOR' in Fig. 4 exhibits the effect of convolving
with L2(ru) for rl = (1+J2)' 2=1.55. The structure
remains washed out, although the half-width has
been reduced to 2.07, in units of l»/l», . This de-
crease by 9% results from the relatively more com-
pact form of L2.

The above ~ =0 spectrum, although serving to il-

lustrate the effect of instrumental resolution, does
not give a realistic picture of the true A.-point spec-
trum at infinite resolution. As explained at the end
of Sec. III, a sufficiently accurate A.-point spectrum is
obtained from the "universal" self-energy function yq
of Fig. 2 by setting o- equal to a T T& limiting
value, o-&, which we estimated at 0.41. Inserting this
value of cr into Eq. (3.13) gives the h. point ys as a

It is evident from the figure that L2 has a weaker tail
than I.~. To conserve the area it has to be stronger
at the center.

We now carry out the convolution indicated in Eq.
(4.2) with the functions Ll(ol) and L2(l»). The in-

tegration can be done easily using the Cauchy residue
theorem. For Ll(l») the convolution integral becomes

0
0

FIG. 4. Idealized A.-point spectrum for 14 =0 vs dimension-
less frequency. The curve labeled I p =0 is the infinite reso-
lution spectrum. Convolving with a Lorentzian and with a
squared Lorentzian gives the curves labeled LOR, and
LOR, respectively. The half-widths differ by 9%, as indicat-
ed by the vertical arrows.

0.4—

0.3

r,
RESOLUTION —( MHz

2

'O

FIG. 5. Predicted A,-point spectrum vs dimensionless fre-
quency for wave number k =1.79 x 10~ cm ', convolved
with Lorentzian resolution functions for the three different
resolutions shown.

function of frequency. Substituting this y~ into Eq.
(4.1), measuring frequency in units of Ol&, and taking
the real part, gives us the I p =0 curve of Fig. 5. As
discussed in Sec. III, which should be referred to for
additional critical comments, this curve is at present
only of theoretical interest because of the limited ex-
perimental resolution. It is included only for the sake
of completeness. We emphasize that for the purpose
of comparing with the light scattering data that
presently exist, we can set o-& =0 and neglect the
nonlocality of the critical thermal conductivity.

The A.-point spectrum that we find from the above
procedure still has a pronounced structure, although
somewhat milder than in the w =0 case. The struc-
ture disappears when we fold in the experimental
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resolution of I p/2n =1.5 MHz, treating the resolu-
tion function as a Lorentzian, for simplicity. The
dot-dash curve of Fig. 5 represents this case. The
half-width is 3.4 MHz, or 5.7 in units of co&. Of the
various spectra exhibited by Tarvin et al. , the
q g =21 spectrum is the one closest to the k point.
The half-width of this spectrum is evidently 3.1
MHz, about 10% smaller than ours. But we have
seen earlier that using a more realistic resolution
function can decrease the half-width by approximate-
ly this amount. Thus the experiment and the present
theory are in good agreement regarding the absolute
scale of the spectral width. The remaining graph-
the dashed'curve —in Fig. 6 represents the case where
the resoltuion is improved by a factor of 2. It can be
seen that a faint hint of structure reappears. The
underlying structure still remains'largely washed out.

Tarvin, tidal, and Greytak fitted their spectra at
different temperatures to double-Lorentzian shapes
and reported the results of their measurements in the
form of the two fitting parameters ppz (frequency
shift) and I'2 (damping) as a function of temperature.
Consequently we fit our predicted spectra in the same
way and thereby predict the temperature dependences
of co2 and I'2. In doing the convolutions, we use a
Lorentzian resolution function, L~(co). This approxi-
mation should not seriously impair our determination
of ~2 and I 2, as L& will be convolved with both the
theoretical spectrum and the double Lorentzian. Any
inadequacies of L~ can be expected to drop out in the
comparison. The double Lorentzian is the real part
of

Convolved with L, (oo), this becomes

g2(~) =—1 1

2 ((——po2) + I'2 + I'

1

i (cal + Qlz) + I 2 + I p
(4.10)

This is to be compared with the theoretical spectrum
from Eqs. (4.1) and (4.6),

gs(~) = 1
—ipo+ "o+ys(po+ /i'o)

(4.11)

CO2
2

12+I p+ r, +r, (4.12)

Qj
2

ys(i I o) = I 2+ r, +r,
In order to impose a second condition on the two

spectral parameters I 2 and ~2, it is convenient to de-
fine an effective self-energy for g2(co) according to

g2(~) '=—io+yeff (4.13)

The two parameters eo2 and I 2 can now be deter-
mined by matching two features of the two equations
(4.10) and (4.11). The first one is the strength at the
center, i.e., the ~=0 value. This yields

(I'2+ I'p)'+ rozz

0 ys i 0

G, («)) = — +1 1 1

2 i ( — z—) + I'z i( + z-) + I'2

Substituting Eq. (4.10) into Eq. (4.13) we find

OJ2
2

y,„,(iz) = I'2+
z+I2 (4.14)

1.4—
1

(4.9)
where z = i ro No—te th. at y,ff(il p) = ys(iI'p) by Eq.
(4.12). We now obtain the needed second condition
by requiring that the first derivatives should also
agree. Namely,

MHz

l.2

I.0

0.8

6+$
6z Ip

0Jeff
dz fp (r, +I,)'

I', -y, (ii,)
I,+r,

(4.15)

0.6

0.4

0.2—

where in the last step Eq. (4.12) has been used.
Equation (4.15) can be written

ys + I pd ys/dz2=
1 —d ys/dz

(4.16)

00
I

IO

I

l5
I

20

FIG. 6. Double-Lorentzian parameters I 2 and cv2 vs the

temperature parameter a. The dashed curves follow from
Eqs. (4.12) and (4.16), while the solid curves resulting from
the matching of the central value and curvature of the spec-
trum follow from Eqs. (4.12) and (4.17),

ys(iz) and its derivatives are evaluated at z = I p.

Equation (4.16), together with Eq. (4.12) fixes the
parameters I 2 and eo2.

The condition expressed by Eq. (4.16) was ob-
tained by going perpendicular to the real frequency
axis. The true physical frequency dependence occurs,
of course, parallel to the real axis. Therefore we
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have developed an alternative matching procedure
which fits the central curvature of the double
Lorentzian to the zero-frequency curvature of the
theoretical spectrum. The details are provided in Ap-
pendix B. Here we simply quote the final result: 2,0

~ ~ ~

~ ~

~ ~

1 1 1 1 dys dys
I.,+r, r, +y, 3 r, +y,

2

1 dys
2

Again, ys(iz) and its derivatives are evaluated at
z = I"0. The parameters I 2 and co2 are obtained as
functions of the "temperature variable" a and plotted
in Fig. 6. The dashed curves are the results of using
Eqs. (4.16) and (4.12), while the solid curves follow

from Eqs. (4.17) and (4.12). The qualitative features
of both curves are similar. For cr » 1 (i.e., tem-
peratures well removed from T„), 12 is nearly flat,
because of the constant thermal-conductivity back-

. ground. In this limit co2 =0, as the spectrum is near-

ly Lorentzian. As we move closer towards the A.

point, structure develops and eo2 gro~s. This antici-

pates the separation into the second-sound doublet
below T„. Because of the strong temperature depen-
dence of ys, some variation in I 2 might also be ex-
pected. In fact, I'2 remains remarkably constant in

the entire region T & T&, as seen in Fig. 6. This can
be understood most easily from Eq. (4.16) where the
increase of ys(i 1'0) in the numerator is largely can-
celed by the variation of the derivative. The relative-

ly small difference between the solid and dashed
curves of Fig. 6, obtained from two different compu-
tational methods, lends some confidence in the accu-
racy of these predictions. According to Eq. (3.11),
o- 0 as the A. point is approached, provided nonlo-
cality is neglected. The smallness of the error in-

curred in this approximation is indicated by the
downwards pointing arro~ in Fig. 6, located very near
to the origin.

Figure 7 sho~s the comparison of our predicted
temperature-dependent 1 2 with the experimental I 2

data points. The solid and dot-dashed curves
correspond to Eqs. (4.17) and (4.16), respectively.
The dashed curve is the prediction of the planar spin
model calculation of Hohenberg, Siggia, and Halperin
(HSH). 'z The reason why their curve falls off so rap-

idly lies in their neglecting the fairly strong thermal-
conductivity background, as well as their use of too
large a value of w Theirs is the standard dynamic
scaling prediction, which would lead to a vanishing
half-width at large values of K. For comparison, the
dotted curve shows the first "improvement" in the
HSH curve that is provided by our theory. This
results from the smaller value of ~, but with the last
two terms of Eq. (3.13) omitted. Dropping these
transient terms serves to remove completely the ef-

r,—'(MHz)2'

l.5—

I.O

0

TARVIN, VIDAL, and GREYTAK

0 0 00
~O00 0

0

0

0.5—

0
o.ol

l

GI

T-T), {m K)

I

IO

FIG. 7. Comparison of theoretical predictions with experi-
mental data (circles) for I 2 vs temperature. The dashed
curve shows conventional theory while the present calcula-
tions including background and frequency dependence are
represented by the solid and dot-dash curves. The dotted
curve shows the present theory without the transients (back-
ground terms). The arrow indicates the temperature at
which K = k.

fects of background. It is thereby evident that the
second improvement, namely, the inclusion of back-
ground effects, is essential for bringing the theoreti-
cal prediction down to the solid curve and into agree-
ment with experiment. Tarvin et al. have not re-
ported quantitatively the temperature dependence of
co2 above T&. But from their Fig. 12 we conclude that
at T~, m, /2x =1.3 MHz. Our prediction (solid curve
in Fig. 6) of co2/2~ =1.34 MHz is in good agreement.

As a final point we exhibit the effect of using light
of shorter wavelength. We predict the A.-point spec-
tra shown in Fig. 8 for the three different resolutions
I'0=0, 0.75, and 1.5 MHz, with k =3.58 X10 cm '.
This is double the wave number previously employed
by Tarvin et al. A larger k immediately raises the
value of a~ and consequently the I 0 =0 spectrum be-
comes more filled in. (Compare the 1'0 ——0 curves in
Figs. 8 and 5.) Finite resolution washes out the re-
maining structure. We thus conclude that doubling
the light frequency would not be helpful in observing
structure in the spectrum. But it can serve a very im-
portant 'purpose. If the present considerations are
correct, then experiments at this higher frequency
should again produce a flat I q for K && k, and this
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APPENDIX A: THRESHOLD FACTOR

00.

FIG. 8. Predicted A.-point spectrum vs dimensionless fre-
quency for wave number k =3.58 x 10 cm ', convolved
with Lorentzian resolution functions for the three different
resolutions shown.

In Sec. III we found an approximate value for the
threshold factor I = k/K, « from Dohm's" e expan-
sion of the scaling function. Improved accuracy for
~ = 1 can be obtained by instead using the e approxi-
mation of Ref. 12. The zero-frequency thermal con-
ductivity is proportional to the scaling function

temperature-independent value should be four times

the present value of 1 MHz. This predicted increase
of I'2 is a factor of J2 times that predicted by dynam-
ic scaling, or 41% bigger.

where

4mk' " (p'+K')(p'+K') y(p)+y(p')

(Al)

V. SUMMARY y(p) (p2 + 2t4)3/4 (A2)

From elementar'y kinetic theory using the linear-
ized Boltzmann equation, a formula for the critical
part of the thermal conductivity has been obtained
which is identical to that derived in mode-coupling
theory (for the local limit). A "universal" scaling
variable Z is introduced which puts frequency and
temperature changes on the same footing. This
serves to eliminate, as a separate problem, the fre-
quency dependence involved in the fluctuations that
cause the light scattering. The frequency dependence
instead gets reexpressed in terms of an equivalent
temperature dependence of the zero-frequency ther-
mal conductivity of liquid helium. The light scatter-
ing can therefore be predicted on the basis of the ex-
perimental measurements by Ahlers' of the static
thermal conductivity. The detailed analysis of this
equivalence has been expressed in terms of the
dependence of the entropy relaxation rate y~ on the
scaling variable Z.

In Sec. IV, ys(Z) has been used to study the fluc-
tuation spectrum. The effect of a finite instrumental
resolution has been considered and the A.-point spec-
tra for different resolutions and optical wavelengths
calculated. The calculated spectra were reported in
terms of a two-parameter double-Lorentzian
representation and the two parameters I'2 and eo2 ex-
hibited as functions of temperature. The comparison
of these results with the findings of Tarvin, Vidal,
and Greytak6 was quite satisfactory. Although this
paper has been limited to T ~ T&, we have also stu-
died the T ~ T& region' and have concluded that
also there the light scattering observations can be
largely accounted for.

and

p+p'=k (A3)

The k & 0 nonlocal effects fall outside the simple
kinetic theory framework of Secs. II and III of this
paper, and have to be.derived as in Ref. 12 by mode
coupling or by some equivalent formalism. We are
interested in the extreme local limit

A(0, ~) =JLK '

and in the extreme nonlocal limit

A(k, 0) = J|4tk '

where
r

dvr 2r2

' Jo (~ 2+) I43/~2+I
i

and

d3p(p2 pI2)2

4 2r J p 2p I2
(p 3/2 +p I3/2)

(A4)

(AS)

(A6)

(A7)

A(0, ~.«) -A(0.k/i) = A(k, 0) .

Substituting Eqs. (A4) and (AS) gives
t', J.

(A8)

(A9)

For the local case the integration can be carried out

In Eq. (A7) the moments have been scaled to k =1.
Proceeding as at the end of Sec. III, we define the
threshold factor by
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exactly and yields

JL=
3 p(—,4) =1.00 (Alo)

The nonlocal case is more difficult and requires an
approximate evaluation. By means of the techniques
of Appendix 8 of Ref. 12 we find the two-term e ex-
pansion

21 s 20
JgL =—— + —=—= 2.229 9

e-1/2
(A 1 1)

(The integral is the same as evaluated there, except
for the absence of the finite frequency term in the
denominator, and again is rendered with better than
1% accuracy. ) Substituting Eqs. (A10) and (A11)
into Eq. (A9) yields I = 5.0, as reported in Sec. III.
This value is used instead of the ~-expansion value of
3.3.

tive self-energy along the imaginary frequency axis.
In this Appendix we impose instead a condition on
the real spectrum and calculate the resulting I 2. The
condition consists of adjusting 1 2 and ~2 so as to
match the central (i.e. , co =0) curvature of the dou-
ble Lorentzian with that of the theoretical spectrum.

The easiest way to extract the central curvature is
to Taylor-expand the real part of the Green's func-
tion about cu =0 and look for the coefficient of the cu2

term. Working to 0(cu ), we first need

ys(oo+i I'o) = ys+ ( i a)) — +dys ( i~)—' d'ys
dz 2!

(Bl)
where z =—i cu and ys and its derivatives are evaluat-
ed at z = I o. Thus,

gs(td +/I o) = 1

i ~+ I—o+ ys(~+ i ro)

APPENDIX B: ALTERNATIVE MATCHINQ

CONDITION

The parameter I 2 of the double Lorentzian
equivalent to the theoretically predicted spectrum was
calculated in Sec. IV from the behavior of an effec- giving

dVs bio d Ys—i &@+co +ys+I 0—
dz dz

M d YsRegs(co+~1'o) = ys+I'o — —+
dz

oP( I +d y, /dz) '

ys+ I'o —
2

m dzys/dzz

, (I +dy, /dz)'= 7s+Io+2
ys +10 2 dz'

OJ
1 —-=-

ys+ I'o, (ys+ I'o)'

2

I+ — --(ys+ I o)
d'Ys O'Ys '

dz dz2
(B3)

The coefficient of the ~' term gives the curvature index C2 as

dVs

(ys+ ro)',
'2

2
1 d vs——(ys + I'o)
2 dz

(B4)

Turning now to the double Lorentzian, we have from Eq. (4.10),

1 1 1Regz(co+ii'o) = —,(I', +Io), , +-
t

r +I 0 ~2
'

4a22

(I'2+I'o) +a&zz(I'2+I'o) +o)2 «)2+(I'2+I'o)
(B5)

The curvature coefficient C2 is

40)g
C2 1—

(I,+r,)'+~,' ~,'+ (I, +I,)' (B6)



CRITICAL DYNAMICS OF THE A, TRANSITION IN. . .

Equating (a4) and (a6) gives, with the help of Eq.
(4.12)

A small amount of algebra puts the above equation
in the form

1+ d

dz

2
d'vs (l'2+ f'0)' —3 2

Ys 2

r, +r,

1 1 1 1 d 7s d'Vs
2 +

12+ I o 'Vs+ I o 3 Vs+I o dz dz

d ys'
6 dz2

(as)

(a7) which is the desired expression for the parameter I'2.
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