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We report a determination of the effective critical exponents B and 7y in *He as a function
of the distance 7 — 7, from the liquid-vapor critical point. These exponents characterize respec-
tively the singular behavior of the densities for the coexisting phases (7 < 7,) and of the
compressibility along the critical isochore for T > T,. The density measurements use the
dielectric-constant method and cover the range 2 X 107! > |¢| > 3 x 1075 where t =(T — T,)/T..
Far away from T, we find B =0.36, but as T, is approached, B decreases progressively.
Although the error becomes large for + <5 x 1074, B, tends into the direction of the limiting
value 8=0.32 that is predicted by recent theories. For 2x1072> ¢ > 5x1074, we find
Yerr=1.19 £0.01. Both the coexistence curve and the compressibility are fitted to power-law
series that include correction-to-scaling terms. The amplitudes of these terms for the coex-
istence curve are compared with those for Xe and SF¢. The slope of the rectilinear diameter is
found to be dp/p, dt =—0.022. For the 80%-’He—20%-*He mixture above T, the singular den-
sity gradient in the earth’s gravity field is found to diverge strongly as T, is approached. The
relevant exponent is again yq==1.18 £0.02 and the amplitude of the singular term is intermedi-
ate between those for 3He and for *He. These results are in good agreement with those calcu-
lated from the Leung-Griffiths model for *He-*He mixtures.
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I. INTRODUCTION

It has been known for several years that the effec-
tive critical exponents e and Begr for pure *He and
“He near the liquid-vapor critical point, measured for
|¢] =|(T=T)/T.] >1074'=5 differ from the asymp-
totic exponents for CO,, SF¢, and Xe determined still
closer to T..5"® These exponents are defined by

dIn|Ap|
=, T=<T., (1a)
eff dlnlt| c a
dn(dp/dP)
7eﬂ‘=—_‘_—"1"i'rr— , p=pc, T=T., (1b)

where Ap=(p.—p1.1)/p., and where p., py, and p,
are, respectively, the number densities for the coex-
isting liquid and vapor phases and at the critical
point. Also (8p/dP) rp~! =k, is the compressibility
in the one-phase region. From the universality prin-
ciple, one expects the asymptotic value of Beg and
veir to be the same for all the simple fluids. Table I
presents a review of the values for the two exponents
as determined' ™! for *He, “He, and Xe and also the
limiting values very close to 7. as predicted from
renormalization-group (RG) theory and series expan-
sion for the lattice gas.'? In the earlier experiments
T. was often determined assuming a simple power
law for the coexistence and compressibility singulari-
ties over a range up to about |¢| =102, The recent
observations®~ 1113 that this assumption is not valid
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for pure fluids shows the importance of the exact lo-
cation of 7, and the need for better experiments with
the He isotopes.

The purpose of the present paper is to describe a
new determination of the densities p, and py and kr
as a function of |T — T,| for *He over a larger tem-
perature range than before. Particular emphasis was
put on the best possible determination of 7, from the
data in the immediate proximity of the critical point,
in order to permit an improved analysis of the critical
singularities. The method used the measurement of
the dielectric constant and we believe this to be the
largest collection of such data for *He, spanning ap-
proximately four decades for T < T,. From their
analysis, we determine first 7, and then B and yery.
as a function of |¢/.

Furthermore using the same method, we report
results on the vertical density gradient for an 80%-
3He—20%-*He mixture near the liquid-vapor critical
point as a function of ¢ along the critical isochor. We
demonstrate experimentally its predicted strong
divergence based on the theory by Griffiths and
Wheeler'* and compare the results with calculations
from the Leung-Griffiths model.!®

In Sec. II, we describe the experimental method
and the procedures; Sec. III contains the presentation
of the results, their analysis, and the comparison with
results in other fluids. Finally, Sec. III describes the
vertical-density-gradient measurements in the 80%-
3He—20%-*He mixture and compares the results with
the predictions.
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o+
TABLE I. Critical exponents and amplitudes for the normalized compressibility P,p;2(dp/8u) 7 =T"*1 "* above T, and the

. . B .
normalized coexistence curve (p; —p)/p, = B|t| T for 3He, *He, Xe, and the lattice-gas model. The symbol a represents the

slope for the rectilinear diameter.

Fluid  Ref. Yeft r+ Range in |1 Befr B Range in |¢| T, a
Expt. (XK)
‘He 1 1.17 £0.0005 0.161 <2x1072 0.355+0.003 140 4x105—2x10"! 5.190
3He 2 1.18 £0.04 0.213 6x10~4—4.5x10"2 0.361 £0.005 1.31 1.5x10™%—3x10"! 3.310 -0.01
3 1.19+0.03 020 1.5x1073—=3x10"2 0.365+0.005 1.33 1x10#—=3x10"! 3.309 —-0.04
4 1.1410.05 10733 x 1072
5 1.16 £0.02 0.22 4x1074—6x1073 3.309
Xe 6 1.23 5%1076—=5x10"5 0.329 148 5Sx1075—5x10"% 289.71
7 0.317 £0.004 131 3x107%—4x1075
9 1.21 0.0676 0.356 £0.002 183 2x1075—3x10"2 289.79 0.691
10 0.73
11 1.260£0.02 0.056 3x1075—4x10"2 0.337+£0.003 1.65 1x1075~10"3 289.76
Theory
Lattice 12
gas
Series 1.250 £0.003
expansion 0.312 £0.005
RG 1.241 £0.002
RG (per- 1.2401 £0.0009 0.320 £0.015
turbative 0.325 £0.001
series)

II. EXPERIMENTAL
A. General considerations

In our experiment, the number density of the fluid
is determined from the dielectric constant € using the
Clausius-Mossotti relation!® where the polarizabilities
p of both He isotopes are the same within experimen-
tal error, about 0.1%.!7 Even though p is only 0.0123
cm?/mole, !” standard capacitance techniques permit a
resolution of 8p/p =107 which is adequate for the
measurements both above and below the critical
point. Recent measurements'” have shown further-
more that p is only weakly dependent on density and
any singular behavior of € at constant volume near 7,
is so small as to be unobservable.!® Hence the
method using the dielectric constant appears to be
ideal for both the He isotopes, since a change in €
will correspond to a change in p alone.

Briefly, the method consists in measuring the capa-
citance of two horizontal superposed capacitors, the
gaps of which are separated by approximately 84 =2
mm. The capacitors are connected to a ratio-
transformer bridge in such a way as to compare the
top capacitance with the bottom one, or with a very

stable reference capacitor in thermal contact with the
measuring cell. Therefore, one can obtain the differ-
ence in the dielectric constants, erop — €gorTom, and
€top, respectively, henceforth labeled €y and ep.

At temperatures below T, and under conditions
where the liquid-vapor meniscus is situated between
the two capacitors, the density of each phase can be
measured, namely, €7 and e lead to py and p;,
respectively. Above T,, the difference eg — € gives
the density change 8p over the height 84. Assuming
for the moment that the density gradient 8p/8z is
constant over the cell height, and noting that for a
pure fluid, the chemical potential change du in the
gravity field is given by

du=pgmdz , 2)

where m is the molecular mass and g is the gravita-
tional constant, we obtain 8p/8u = (3p/0u) r = p*kr.
In practice however, the large values of k7 near T,
produce significant deviations from a constant density
gradient.!2% Also there will be differences between
the densities at the meniscus below 7, and those
recorded by the two capacitors. Hence the actual
measurements only reproduce approximately the
coexistence curve as T, is approached very closely.
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In fact, for the He isotopes, these effects are particu-
larly severe? and introduce by far the greatest uncer-
tainty in the analysis of the results. As we shall see,
gravity effects in *He will limit a reliable determina-
tion of the coexistence curve to —t >3 x 10~ and
the compressibility at p=p. to t > 5 x 107,

In a 3He-*He mixture, the density gradient
(8p/8z) 1 above T, is shown to be the sum of two
terms proportional, respectively, to the compressibili-
ty at constant chemical potential, k7,5, and to the
concentration susceptibility (3X/8A) r». Both quanti-
ties diverge strongly as 7, is approached and are re-
lated by simple thermodynamics. Hence measure-
ments of (8p/8z) r should show a strong divergence.
Therefore, similarly to the pure fluids, there will be
deviations from a constant vertical density gradient
sufficiently close to 7.

Capacitive determinations of (dp/du) r based on
the vertical density profile were already made by
Weber?! for O,. In that experiment, however, six su-
perposed capacitors were used, spanning a total
height of about 12 cm. Measurements of (8X/94) r
for He-*He mixtures along the critical line?? of the
superfluid transition were also carried out with the
same method and using the same double-capacitor
cell as in the research to be described.

B. Capacitor cell

Because the capacitance cell has already been dis-
cussed in Ref. 22, only a brief description is given
here. There are two horizontal capacitors made of
perforated stainless-steel foils, mounted one on top
of the other and spaced in height by 1.93 mm. Pre-
liminary design estimations showed that this separa-
tion was a reasonable compromise between the re-
quirements for good sensitivity in the measurement
of (3p/du) 7, for sampling the density over a small
enough height to minimize problems very close to T,
and for providing an acceptable mechanical rigidity of
the plate system. The purpose of using perforated
foils was to shorten the time for the establishment of
equilibrium in the fluid near T, in particular for the
3He-*He mixture where the isotopes have to diffuse
through the fluid sample to establish the equilibrium
vertical concentration gradient. A stainless-steel
capillary of ~0.15-mm inner diameter connected the
sample cell with the gas supply system at room tem-
perature. The cell was thermally attached to a plat-
form cooled by pumping on a bath of *He, the tem-
perature of which could be regulated to within ap-
proximately 1 uK. Attached to this platform were
also a reference capacitor, Cs, with two leads, en-
cased in a copper container, and a *“He vapor pressure
bulb. The five coaxial lines to the three capacitors
were then electrically connected to a switch leading to
a ratio transformer bridge as described previously.?

All three capacitances in the cryostat were designed
so as to have approximately the same value, and the
measured capacitance ratios

¢y

[T

Cr
Rys=—— and Rpp=
78 Cr+Cs an TB
were then close to 0.5. This matching had the advan-
tage in reducing any differential thermal effects on
the lead impedance during the periodic refilling of the
cryostat with cryogenic fluids.

C. Experimental procedure

First, the effect of pressure on the capacitors Cr
and Cp was determined at 77 K by measuring Ryg
and Ryg as a function of density of *He gas. Second,
the thermometers were calibrated by means of the
vapor pressure of *He and *He using the T'sz and T,
scales, respectively, and the ratios Rys and Rrp of the
empty capacitors were measured against temperature
between 2.8 and 3.8 K. The high-purity *He (less
than 50 ppm “He) was then introduced at a tempera-
ture above T, and its density adjusted to a value close
to p.. After filling, the valve on the top of the cryo-
stat leading to the cell was closed. It was estimated
that the amount of sample in the capillary was then
less than 0.5% of the sample in the cell. The density
variations in the cell caused by temperature changes
in the capillary during one experiment were then cal-
culated to be negligible and unlikely to affect the
data. Alternating measurement of Rjs and Ryp were
then taken at successive temperatures. The R (T)
data were processed, taking into account the correc-
tions due to pressure deformation, 8Rp(T), and due
to the temperature dependence of the empty capaci-
tor, 8Ro(T). From the corrected ratio R (T),
given by

Reore(T) =R (T) —8Rp(T) —8Ro(T) , )

the absolute value of the dielectric constant € or the
difference e — e were obtained via the Clausius-
Mossotti relation. The value p(p;) =0.1234
cm’/mole was used,'” a small correction being made
for the density dependence of p. It must be pointed
out that in practice, this method can only detect the
temperature-dependent term of er —€5. A constant
background term is normalized to zero because it is
undistinguishable from any other apparatus effect.
The times to reach equilibrium were approximately
S min far above T,, but increased to several hours in
proximity of 7T.. In the two-phase region, the times
were appreciably longer than those above T,, which is
consistent with previous observations during
calorimetric measurements.?*~2¢ After completion of
the measurements for one given average fluid density
p, a small amount of fluid was removed from the cell
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at a temperature well above T, and a new series of
measurements were carried out. In this way, the
dielectric constant at about nine densities

1.03 = p/p. =0.97 was determined.

The rationale for this apparent duplication of data
was based on the need to establish the critical tem-
perature with the smallest possible uncertainty. Our
initial attempts were to measure the coexistence
curve extremely close to 7, by rapidly cooling the
fluid at the critical density from a temperature above
T.. This "quenching" method was to permit the two
phases to form but without the time for the establish-
ment of the density gradient within each phase, and
it was to permit measuring the coexistence curve free
from gravity-caused density gradients. However, un-
like in the room-temperature experiments with Xe,’
this method failed. We were never able to see, on
the chart plot of Ry versus time, a clear separation
between the regime in which temperature equilibrium
and phase-separation were established, and the re-
gime where the barometric density distribution was
formed with a much longer time constant. The only
measurements of Ryzs and Rrp that were reproducible
at a given ¢ were those under conditions of complete
equilibrium. Representative data for pr and pp close
to T, for p=p. are shown in Fig. 1. The solid lines
were calculated using the theory of Hohenberg and
Barmatz.!® The parameters used here are listed in
Table II, together with the relevant references.
Clearly from the measurements at p=p, alone, a
determination of T, with the required precision is out
of the question. Hence measurements at slightly dif-
ferent densities p were carried out. Since the men-

iscus was then not situated in the middle of the cell,
but its position was rapidly changing with ¢ near T, it
was possible to measure rather sharply the tempera-
ture and dielectric constant when the meniscus was
starting and finishing to cross one of the capacitors.
This is illustrated for p/p. =0.977 in Fig. 2. Starting
at T > T, and with decreasing temperature, the sharp
minimum in p measured by the bottom capacitor at
A indicates the first droplet of liquid between the
plates, and therefore the arrival of the meniscus from
below. As T decreases further, the meniscus crosses
the capacitor and this passage is completed when a
sharp kink at B signals the coexistence curve on the
liquid side to be reached. Hence both the minimum
and the kink represent points on the coexistence
curve without substantial gravity. effects. The density
at T < T, measured by the top capacitor reflects grav-
ity effects since now the distance to the meniscus is
approximately 2 mm.

This procedure was repeated at a number of densi-
ties. As |p—pc|/p. decreased, the temperature
difference between the sharp features gradually disap-
peared. For |p— p.|/pc =0.025 one curve measured
by one of the capacitors then corresponded very
closely to either py or p, at the meniscus (see Fig.
2). An important check was the internal consistency
between the location of 4 and B at the various aver-
age densities and the coexistence curve obtained
from |p—pc|/pc. =0.025.

After accumulation of a sufficient amount of data
for p, and py, the average dénsity p, +py =2p, was
obtained as a function of T, and the extrapolation to
the vanishing difference p, — py gave the critical den-

Coexistence Curve
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FIG. 1. Portion of the pg and p7 density data, measured by the bottom and top capacitors as a function of reduced tempera-
ture —t =—(T — T,)/T, for the density p= p.- The thin line represents the calculations for the vertical profile, using the linear
model approximation (Ref. 19). The thick solid line is the calculated coexistence curve using the density data in Sec. III.
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FIG. 2. Portion of the pg and p; density data for *He as a function of — for three representative densities. The sharp
features 4 and B for the densities p/p. =1.0285 and 0.977 indicate when the meniscus enters and leaves the bottom capacitor
and hence provide points on the coexistence curve. The thick solid line is again the calculated coexistence curve using the den-
sity data in Sec. III. The thin solid lines and the dashed line are just a guide to the eye for the experimental data.

sity p.. The location of 7, was obtained from a com-
bination of several observations. First, we used the
"kink" points described in connection with Fig. 2, that
were closest to 7,. Furthermore using data for
(B—p)/p.=0.025 at T.— T < 100 uK, we also plot-
ted Ap'/8 vs T for the coexistence curve. These data
were least affected by gravity because the meniscus
was located just below the top capacitor. The two
reasonable choices for 8 were 0.32 and 0.34, the first
one corresponding to the expected asymptotic ex-
ponent. By necessity, there were too few points to
show which 8 came closest to giving a straight-line
representation, but the temperature difference of the

TABLE II. Parameters used in the linear model calcula-
tion for the vertical density profile (8p/9z) 7 of fluid 3He in
the earth’s gravity field. The parameter b2 is calculated us-
ing the "minimization" condition quoted in Ref. 19. P, is
taken from Ref. 2. The choice of B and B8 is based on the
data in the present work, but the calculated (3p/9z) 1 is
rather insensitive to these values in the range ¢ > 3 x 1074,

P.=0.1168 MPa=859.6 Torr

pc =0.01374 mole/cm?

I =0.209 y=119
B =0.99 £=0.32
52=1.286

intercept at Ap =0 for both choices was only 20 uK.
Finally, the combination of the various observations
located the critical temperature (*He, 50-ppm *He) as

T.=3.3098 K ,

where the uncertainties are estimated to be +30 uK
relative to the other temperatures measured and
0.5 mK on the absolute scale obtained using the
*He vapor pressure calibration and the T’ tables.

This value of 7, was then used for the analysis of
the (3p/0u) 7 above T.. In order to determine with
precision the background effects, 8Rp and 8R,, and
to subtract them from the term 8R,,, induced by the
vertical fluid density change, ratio measurements
were carried out up to t =107!, where the latter was
negligible. Because above T, (9P/dT), for He is al-
most constant,® 8Rp varies linearly with 7 and can be
distinguished easily from the effect caused by gravity.
The temperature variation of the two terms 8Rp and
3R gy, became comparable for ¢+ ~5 x 1072 and was
much larger than the change of the empty capacitors,
3Ro(T).

In the *He-*He mixture, the determination of the
exponent describing the divergence of pg — pr above
T, was less accurate than for *He. Here the location
of T, was more difficult because of the very long
times required to reach equilibrium below 7..2* The
critical temperature determined from previous experi-
ments for this same mixture?” 8 was T, =3.705
+0.002 K, and was used as a first guide. The final
value we adopted was 2 mK lower, as determined
from a least-squares fit. Measurements of pg—pr
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were carried out for several densities close to p,.
Model calculations, based on Ref. 15; show that at a
given ¢, pp — pr is maximum along the critical iso-
chore, and indeed our experiments showed a flat
maximum at p=0.0144 cm™>, which we had estimat-
ed to be very close to p..

III. RESULTS AND DISCUSSION

The density data below T, for the *He coexisting
liquid and vapor phases, and also pg — pr above T,
for both *He and the *He-*He mixture have been
tabulated?® and are available upon request.

A. 3He

In Fig. 3, we present the data for the coexistence
curve by a logarithmic plot Ap/t%3? vs —. The ex-
ponent 0.32 represents the asymptotic number calcu-
lated from renormalization-group theory.!2 If the
data were represented by a simple power law with this
exponent, they would have to fall on a horizontal
line. This type of plot was first used by Balzarini and
Ohrn® to expose in a sensitive way the dependence
of B on t. We note the continuous slope change in-
dicating a decrease in B as T, is approached. The
data closest to 7, are mainly those from the densities
p/p.=0.982 and 1.027 (liquid and vapor, respective-
ly), while those beyond ¢ = 1073 include also those
for p/p. =1.00. The systematic difference between
the liquid and the vapor points for ¢ >3 x 1072 is
caused by the nonzero slope of the rectilinear diame-
ter pa=+(p. +py) that will be discussed below.

Quite possibly, the low value of the vapor points
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closest to 7, indicates that the meniscus has reached
the bottom capacitor, and that a small fraction of the
fluid between the plates is liquid.

The dependence of B on the |¢| for |¢| > 8 x 1073
is presented in Fig. 4. It was obtained in two ways:
First, from a fit of groups of, respectively, 15 and 25
neighboring density points (both liquid and vapor) to
a simple power law. Successive groups were made to
overlap by, respectively, 5 and 15 points. Second,
from tracing a smooth line through the plotted points
and taking the slope. For ¢t >3 x 1072, the slope was
obtained using the combination (p; —p)/2p.
= %Ap"q, +Apysp.. Two types of error bars are

shown, reflecting, respectively, the standard deviation
for the fits with the given choice of T, (solid bars)
and the uncertainty introduced by a 87, = 30 uK in
the critical temperature (dashed bars). It is evident
that in spite of the rapidly increasing uncertainty as
—t decreases, B appears to tend to the asymptotic
value predicted by theory. Also on this figure we
show the curves for B, had T, been chosen 100 and
150 uK higher. For comparison, we show the results
for B reported by Stacey, Pass, and Carr® and by
Hayes and Carr’ for Xe. In the more recent work,’
the "quenching" method permitted an essentially
gravity-free determination of the coexistence curve in
the immediate proximity of 7,. The data of Thoen
and Garland,’ not shown here for clarity, tend to
Besr==0.357 for |¢| =5 x 1073,

We now attempt a representation of Ap in terms of
a series of the type®
Ap=|pc—pLvlp?

=B(0P1+C(-)¥+D(-nN. . .] )

Such a series has been suggested by theories that in-

12~ T I-I‘IIII[ T T lll(ll[ LI IIIII] T T lll!?l.].;r«‘; J
= Present work WM ﬁ-i' 4
- Vapor . v ey .
T Liquid  x + o 1
11— |
VAV i
0.32 i
It . i
1.0= —
r . P . 1

09 1 l.l.nul ./1 I N R R Lol 1

1075 1074 1073 10-2 107!

-1

FIG. 3. Coexistence curve of 3He. Logarithmic plot of Ap/||32 vs |¢| for both the liquid side (solid circles) and the vapor
side (crosses). Here Ap=(p,—py)/p. or Ap=(p; —p.)/p,. The data were obtained for samples with several average densities
p. ' The systematic difference between the crosses and circles for |¢] >3 x102 is caused by the nonzero slope of the rectilinear
diameter. The solid line is the fit to Eq. (5) and the dotted line represents an average between liquid and vapor. The data by
Wallace and Meyer (Ref. 2 ) that used an incorrect choice for T, are shown for comparison. The dashed line corresponds to

Bel‘l‘=0360
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FIG. 4. Effective exponent B, as defined by Eq. (1),
obtained for 3He from the coexistence curve data. The
points were obtained by using a simple power law for groups
of, respectively, 15 and 25 data points, with, respectively, 5
and 15 overlapping points between adjacent groups. The un-
certainty expressed by solid error bars represents the stan-
dard deviation for such a simple power law. The dashed er-
ror bars represent the uncertainty in the determination of
T,, namely + 30 uK. For comparison, the data for Xe
(Refs. 7 and 8 ) are also presented.

clude corrections to scaling. However, it appears that
there are still uncertainties associated with such a
representation.’®3! Accordingly we only present
‘briefly our analysis, which may well be outdated by
future theoretical expressions. Here we use again the
individual liquid and vapor data for —t <3 x 1073,

while for —t > 3 x107 the data are combined into
(pL—p¥)/2p., as above. As a first step in the fitting
procedure, we used A'=0.5, based on the work quot-
ed in Ref. 12 and left the other four parameters float-
ing. We experimented with two routines. The first
(R 1) was a modification of a gradient search-type
routine, while the second (R2) was CHIFIT taken
from the book by Bevington.*? The results of these
nonlinear fits are shown in Table III as a function of
|#]max» the maximum distance from T,. Encouraged
by the insignificant variation of 8 with |7, We
chose 8=0.320 as representataive for the results up
to t =4 x 1072 and obtained the amplitudes B, C, and
D as a function of |¢|max as shown in Table III. Our
conclusion is that a two-term expression fits the data
adequately up to |[¢| =1 x10~2 The amplitudes B
and C from the three-term fit are in agreement with
those from the two-term fit within the standard devi-
ation up to |t| =1 x 1072, The three-term fit, ade-
quate until approximately || =2 x 1072, is shown by
the solid line in Fig. 3. This fit produces the B
shown by the solid line up to |¢| =2 x 1072 in Fig. 4.
Above this temperature, the dotted line in both fig-
ures represents the experimental curves. Figure 5
shows the deviation from the three-term linear least-
squares fit, R3, up to |t| =2 x 102 The quoted er-
rors are from statistics alone and do not include the
uncertainties in the choice of T,.

TABLE IIl. The amplitude parameters for the power-law fit Eq. (5) as a function of the max-
imum temperature range |t|max and the number of data points over this range. The fitting pro-
gram R1 is a modification of a gradient search-type routine, R2 is the CHIFIT routine (Ref. 30)
and R3 is a linear fit. The numbers in parentheses were used as input.

[ #] max Number of B B C D
points

R1
5x1073 65 0.321 +£0.006 1.000 0.939 0.259
1x10°2 77 0.318 +0.004 0.966 1.418 -2.89
4x1072 85 0.321 £0.002 0.991 1.171 -1.91
1x10™1 95 0.324 +0.002 1.025 0.911 -1.20

R2
4x1072 85 0.322 +0.002 1.01 ' 1.04 -1.51

R3
2x1073 52 0.320) 0.992 +0.002 0.847 £0.06 )
5x1073 65 0.991 +0.001 0.898 +0.02 0)
1x1072 77 0.992 +0.008 0.877 +0.01 )
2x1072 81 0.995 +0.008 0.814 +0.01 )
1x10-! 95 1.015 £0.02 0.552 +0.01 0)
1x1072 77 0.990 +0.002 0.955 +£0.07 —0.51 £+0.47
2x1072 81 0.987 +0.001 1.06 +£0.04 —~1.25 +£0.18
1x1071 95 0.988 +0.001 1.048 +0.01 —1.26 £0.02

R3 Y r+ E F
2x1072 36 (1.240) 0.139 +0.003 3.19%1.0 -12. +14.
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FIG. 5. (a) Percentile deviation from the three-term fit to the coexistence curve [Eq. (5)] using 8=0.320, A =0.5 over the
range |¢| <2 x 1072 (81 points). (b) The percentile deviation from the three-term fit to the compressibility data [Eq. (7)] with

y=1.24, A=0.5 over the range 3x 10~ <1 <2 x 1072,

In Fig. 6, the results above T, are plotted as
(ps —p7)/pct™2 on the left scale and as the reduced
compressibility (P./p2t~1?%)(8p/du) r on the right-
hand scale. The factor =12 is again used to pro-
duce a more sensitive representation and the chosen
exponent is close to that expected from RG theory,!?
y=1.24. For t >5x107%, the points form a straight
line with a slope of 0.04 +£0.01 and the experimental
data are represented by a simple power law

Fe

+
=+ et
2

Pc

9p
ou

T

=(0.209 +0.015) /119 X001 6)

over more than two decades, with P, =859.6 Torr.
For t >2 %1072, §p becomes small so that the scatter
is large. The solid curve in Fig. 6 is calculated using
the method of Hohenberg and Barmatz!® with the
parameters given in Table II. From the agreement
between the data and the curve, we conclude that for
t >3 %107, where the departure from the linear
vertical density profile is sufficiently small, the data
are consistent with ye;=1.19. The dashed curve in
Fig. 6 represents our data corrected to simulate the

results for a very thin fluid sample. Below

t =3 x 107, the correction is too large to permit a re-
liable calculation of this curve. It is quite obvious
that, unlike for the coexistence curve, our experi-
mental conditions do not permit observing a clear de-
viation of the compressibility from a simple power
law with an effective exponent ..

In spite of these limitations, we want to see wheth-
er our data are at least consistent with the limiting
exponent y predicted by theory and we fit the results
for t >3 x 107 to the expression

%[ﬁ&] =T YA +EA+F .. .) @)
pe | 9u )7

where the exponents are!? y =1.240 and A’ =0.50
and the amplitudes are left floating. Because the
temperature range that could be used for the
compressibility data analysis is appreciably smaller
than that for the coexistence curve, only a fit with
the total range is presented, and the parameters are
presented in Table III.

We now check the relation among the critical am-
plitudes of the leading terms for the coexistence
curve, the compressibility and the specific heat, the

‘.6_ T T T T T T T T
1.4F .
L2
106/08_/0T 1.0
p t4|23 -
¢ 0.8t
B ¢ Present work —01
06 s WM 7
| x CZ ]
— Linear model ]
04 Lo LAl 1ol (B R L 11 1iloos
1073 1074 1073 1072
(T-T)/ T,

FIG. 6. Plot of (pg—p7)/(p.t713) for *He vs t along the critical isochore (left-hand side scale). The dimensionless normal-
ized compressibility (P,/p2)(3p/8u) 1 is the right-hand side scale. The solid line is calculated from the linear model using the.

parameters given in Table II.
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latter two along the critical isochore. The calorimetric
data,? transformed into dimensionless units, give

T +i—~a
EZ_L’.)‘_=_A_’_ +CB ,
P. a

with

A+
304 C=0 L o2 8)

a=0.11+0.01 ,

The exponent « satisfies within the experimental un-
certainty the scaling relation y +28=2 — a with
y=1.24 and 8=0.32. From RG results, the pre-
dicted universal ratio is*

Atrt
7 =0.059 (9a)
in reasonable agreement with the experimental value
+r+
AT 00474001 . (9b)
B2

The greatest uncertainty in the experimental ratio is
introduced by the uncertainty of about 10% in «. So
far, no prediction for the ratios of the confluent
singularity amplitudes such as E/C and F/D has been
made. Such predictions would be highly desirable
since they could be compared to experimental data on
various fluids.

In Fig. 7, we show the linear diameter
pd= ';—(py +p.) vs —tand the comparison with the

data by Chase and Zimmermann,® which are the most
detailed ones taken previously. We deduce a slope

a=p'dpa/dt =—0.022 £0.002 . (10)

From an inspection of a for a number of fluids (see
Table III of Ref. 24), we note that the sign becomes
positive for “He and smoothly increases with 7.
This is shown in the insert of Fig. 7. Hence in this
respect, He is the fluid that is closet to the Ising
model where a =0.

We now discuss the new experimental results in re-
lation to the earlier data of Refs. 2, 3, and5. Figure
3 shows that for |¢| > 1072, there is good agreement
with the results by Wallace and Meyer.2 But since in
the earlier work, a simple power law was assumed,
and the majority of the data were obtained for
|t] > 5 %1072 and as far away as |t| =5 %1072, it is
not surprising that higher values for 8 were quoted,
and the choice of 7, was probably incorrect. A too
high value of T,, respectively, raises and lowers the
average value for By and 7y.s obtained from a
power-law fit (see Fig. 4 ) and therefore might well
explain the values reported in Refs. 2 and 3 for
[t] <1073,

Turning to the compressibility, the amplitude in

| — — . T T T T
at A « This work
- N e T Xe
Eoay o + CZ
N be o Ar
,Od 02— by
Le

1.000

0998

FIG. 7. Rectilinear diameter p, for *He as a function of
—tand comparison with data by Chase and Zimmermann
(CZ). Insert: the slope a of the rectilinear diameter for
several gases as a function of their critical temperature 7.
The slopes for other fluids are given in Table I of the paper
by M. R. Moldover and J. Gallagher, Am. Inst. Chem. Eng.
24, 267 (1978). For SFg and CO,, the slope is, respectively,
0.86 and 0.99. The two points for *He mark the two deter-
minations listed in Ref. 24 .

Eq. (6) is in good agreement with the data of Refs. 2
and 3 presented in Table I. The data of earlier work
are also shown in Fig. 5. The exponent deduced in
Ref. 5 for (3P/9T), data using the linear model was
y=1.16 £0.02 over the range 4 x 10~ <t =<6 x 1072
which is comparable with that in our new experi-
ments. Hence, when a simple power-law analysis is
used, there is reasonable consistency both in y.q and
in the amplitude. For T < T,, the compressibility ex-
ponent y~ was derived from the jump of (8P/97), at
the coexistence curve.’ Here a simple power-law
analysis gave ygr=1.15 £0.02, while a fitting pro-
gram to a leading term and a confluent singularity
gives** an asymptotic yor=1.17 £0.02.

It has been previously suggested® 3’ that the tem-
perature range, where the asymptotic exponents 8
and y might be observed, is smaller for the He iso-
topes than for the heavier fluid such as Xe, which
implies that the amplitudes of their correction terms
C, D, etc. are larger. We have therefore sought to
compare the results of the parameters in Eq. (5) with
the corresponding ones’ in Xe. Recasting the three-
term expression used by Hayes and Carr in their
Table I, and using the parameters for points
1-38 (|¢] <8 x107%), we obtain the NMR frequency
change Af (in Hertz) that is proportional to Ap,
namely ,

Af =4381[¢]%317(1 +3.05(¢]°483 —9.05(¢[°9%3) , (11)

where we have taken 7, =289.75 K. The analysis by

Ley-Koo and Green of the experimental data for SF¢
gives

Ap=1.715[¢]%327(1 +0.48|¢[*4 —0.84[¢|*°) , (12)
up to [¢]=2.1 x10"2 with 7.=318.70 K. The ex-
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pressions for Xe and SF¢ are to be compared with the
He data for || mex=2 % 1072, where

Ap=0.987]¢|%32(1 +1.06]¢]°0—1.25]¢[1%) .  (13)

If a new fit of the *He data is produced with the same
exponents as in Ref. 7, our amplitudes merely change
to C=13and D=-1.9.

It is quite obvious that the situation with respect to
the correction-to-scaling amplitudes is confused;
there is a large discrepancy between Xe and SF¢ that
have nearly the same critical temperature, but the
amplitudes for SF¢ and *He are quite comparable.
From the latter evidence, we conclude that for *He,
quantum effects®® do not appear to shrink the asymp-
totic critical range, at least for the coexistence curve.
Our experiments above T, give only insufficient in-
formation on this point.

B. 3He-*He mixture

In this section, we describe the data for the vertical
density gradient (3p/dZ) ; for the mixture with
X3;=0.80 along the critical isochore.

The idea of our experiments results from the
analysis of (3p/9Z) r in terms of thermodynamic
properties. Let p be a function of the three fields 7,
and P, and A. Then, at constant temperature

op| . [8e] [oa
| +[3], 1], a0

90Z
If we denote the average mass of the mixture by m
and the isotopic mass difference by dm, we obtain

—"’3‘—] ] as)
PT

—|%e

; |9P

Op
dZ

T.A

14

.4

S| __, 27
[BZ . gp [ka,A+8m 94

TP

where k7, , is the isothermal compressibility at con-
stant potential. A simple thermodynamic derivation
leads to

2
14

). ¢

1
= +._
kra=krx 9A

ﬂ' . 16)
PT

PT

In not too diluted mixtures, krx is found to be-
come roughly constant as T, is approached?”-?® and is
predicted to diverge weakly immeasurably close to
T..5 Also, calculations based on the model of Ref.
15 show that (8¥/8X)rp is a smooth function
throughout the critical region. Therefore, it is con-
cluded that k7, and (3X/9A) 7, have the same
divergence as T, is approached. This is consistent
with a derivation that uses a geometrical postulate by
Griffiths and Wheeler,'# and predicts a strong diver-
gence for both.

Finally,

Op| __= 2
I-OZ . mg p“krx
_[,m,

Because the difference in the molar polarizability of
3He and *He is negligible, the number density of the
mixture can again be measured from the dielectric
constant. Although (37/9X)pr has not been meas-
ured directly, it can be estimated from the relation

)

|4
+
ox dm

ar] |..[ex
aIY]P,T]pg[aA ]P,T .

amn

2
PT

av _
dX

v
90X

av
oP

ar

, (18
px X

AT rx 4X T

d_P+Ig£

where the total derivatives are taken along the coex-
istence surface for the *He-*He mixtures; (3¥/9P) 7y
and (a V/aT)p,x = —(6 V/aP) T,x(aP/aT) v,x can be
calculated from existing data.>*3% This analysis gives
(8V/08X) pr=990 +100 cm*/mole for a point on the
critical isochore of the X =0.80 mixture at a tempera-
ture 5 mK above the critical point. Calculations from
the Leung-Griffiths model' for this mixture slightly
above T, yield ~ 1050 cm?®/mole, in good agreement
with the experimental value.

In Fig. 8, the (3p/0Z) r data for the mixture along
the critical isochore p. =0.0144 cm™ are presented in
the form (8p/8Z)'® similar to Fig. 6. For compari-
son, the data for pure 3He and *He are shown. The
latter have been derived from the work of Roach and
of Kierstead.! The dashed line denotes the calculated
curve from the Leung-Griffiths model using Eq.

(17). The error bar indicates an estimate of the sys-
tematic uncertainties resulting from the choice of the
parameters. We draw attention to the relative magni-
tude of the terms in Eq. (17). Very close to T, the
first term on the right-hand side is constant and is

D N o w O

op
1 Os (?)'Z’)T
15

ole
(Grme)

Ll T N R
1073 1072 on

-1

»

FIG. 8. Plot of (3p/8Z) 71123 vs t for the 80%->He—20%-
4He mixture (solid circles) and for pure 3He and *He (solid
lines) above the critical point and along the critical isochore.
The dashed line is the calculated curve for the 80%-3He
mixture from the Leung-Griffiths model using the parame-
ters selected by those authors.
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small compared to the second one which diverges

strongly. Far away from T, (say for ¢ > 1072) the
term with k7 x diverges strongly and is comparable
with the term in (8X/9A) 7. Their sum does not

yield a simple power law.

IV. SUMMARY
A. *He

We have carried out the most extensive series of .
measurements to date for densities of the coexisting
liquid and vapor phases. The critical temperature T,
was located to within +30 uK using data at several
_densities close to the critical density p.. The meas-
urements extend over the range
3x107° < |t| <3 %107 where t =(T —T,)/T..
From measurements of the vertical density gradient
(9p/0z) r in the earth’s gravity field at densities close
to p. and above 7., we determine the compressibility
over the range 2 X 1072 > ¢ >3 x 107,

Our main findings are: (i) The effective exponent
Beir describing the shape of the coexistence curve in
the p-T plane decreases from a value 0.36 far from
T, and is consistent with an approach to the limiting
value 8=0.325 predicted by theory for the lattice-gas
model. The first value is in good agreement with
previous results for *He and *He, while the second
one is consistent with the findings for Xe, SFs, and
CO; very close to T,. (ii) The effective exponent
describing the divergence of the compressibility at T,
is found to be yer=1.19 +0.01 for ¢t >3 x107*in
agreement with previous results. For temperatures
closer to T,, the (9p/98z) 7 in the cell departs substan-
tially from a constant value over the cell height and
this prevents determining y.g sufficiently well. We
have been, therefore, unable to see the expected in-
crease of y. to the limiting value of y=1.24. (iii)
We have, however, been able to fit both the coex-
istence curve data as well as those for compressibility
to expressions containing the asymptotic term (with
exponents 8=0.32 and y =1.24) and correction-to-
scaling terms. Together with the leading term from
specific-heat data, an amplitude relation is obtained
that is in fair agreement with that expected from
theory. The amplitudes of the correction-to-scaling
terms are comparable with those for SFg, indicating
that the critical behavior of He may not be different
from that of heavier fluids. (iv) We have made a

substantially improved determination of the recti-
linear diameter slope a for *He. On a plot of the
slope for pure fluids versus 7,, a (*He) joins on
smoothly to that of the other fluids. There is a
change of sign for a between *He and “He.

B. *He-*He mixture

Here (8p/8z) r has been measured for a 80%-
SHe—20%-*He mixture above T,. Plotted versus ¢, it
is found to be intermediate between that measured
for He and that calculated for “He from compressi-
bility data. Thermodynamic relations show (98p/9z) r
to be proportional to the concentration susceptibility
that is predicted to diverge strongly. This explains
the observed strong divergence of (8p/dz) 7 in spite
of the fact that for mixtures the compressibility at
constant composition does not diverge strongly. Cal-
culations of the (dp/8z) r from the Leung-Griffiths
model for *He-*He mixtures are in good agreement
with the experimental results.

We conclude this paper by noting that *He is of all
the fluids the most susceptible one to gravity effects,
as pointed out by Sengers'? and also by Moldover et
al®® Therefore, the determination of the effective
critical exponents very close to 7, is a particularly dif-
ficult one, and cannot be carried out with the same
accuracy as for Xe. A calculation furthermore shows
that gravity effects for *He in an optical bending ex-
periment® will be at least as severe as in the capaci-
tance method used here. At any rate, our results —at
least for B.s—remove the apparent discrepancy with
the heavier fluids that was thought to exist very close
to T..
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