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We present an analytical calculation of the electron-phonon parameters for s- and p-state pair-

ing in Pd, Po and A. ~". The calculation is based on Doniach's six half-sphere Fermi-surface

model for the heavy d electrons, a Debye and an Einstein model for intra- and intersphere

phonon-scattering processes, respectively, and the LCMTO (linear combination of muffin-tin or-

bitals) representation to obtain the electron-phonon matrix elements. The group-theoretical

method of Allen is employed in solving the anisotropic gap equation at the multiply sheeted

Fermi surface for s- and p-state pairing interactions. The phonon-mediated interaction,

I (k, k'), is attractive for all momentum transfers, k —k', and yieMs the BCS parameter,

Ao =0.153, in agreement with Papaconstantopoulos et al. Our results for p-state pairing is

A. ~
=0, when Einstein phonon model is used for both. intra- and intersheet scattering processes

-and A.
&

=0.089Xo when the Debye model is applied to the small-momentum intrasheet transi-

tions of the Cooper, pairs. The weakness of the p-state interaction is due to the cancellation

between the contributions from intrasheet scattering and from large-momentum intersheet

scattering processes. A detailed discussion of the results is presented in terms of the parameters

of our electron-phonon model.

I. INTRODUCTION

Both phonons and spin fluctuations can contribute
to the p-state pairing interaction in narrow-band tran-
sition metals with strong exchange interactions. For
palladium, the spin fluctuations alone lead to a small
attractive p-state interaction, P ~"-0.08, yielding a
transition temperature T, ~

—10 '—10 K.' This
small value indicates that the occurrence of an ob-
servable transition hinges on a significant attractive
electron-phonon interaction.

For the spin-fluctuation pairing, the physical origin
is readily understood in terms of an attractive ex-
change interaction between two electrons with parallel
spins. In the paramagnon model, ' the attraction
given by A. ~" is a result of the irreducible electron-
electron interaction given by the particle-hole ladder
diagrams (cf., Fig. 1 of Ref. 2). This electron-
electron interaction due to spin fluctuations has a
strong lobe in the forward direction, which, as we will

discuss shortly, is necessary for a significant p-state
component.

The phonon-mediated interaction for p-state pairing
in Pd is studied in three recent papers. ' ' Appel and
Fay calculate this interaction using the atomic-site
representation for the heavy d electrons and an Ein-
stein model for the phonons; the result is a very
small repulsive interaction, ~)F~"

~ && h. ~o . Pinski, Al-

len, and Butler4 present a rigorous calculation of the
phonon pairing using electron-phonon parameters
calculated with the Korringa-Kohn-Rostoker (KKR)
method, employing a Born —von Karman force-
constant model fitted to experimental neutron data,

and taking the Fermi-surface sheets of both d and s
electrons into account, they get Xp" =0.44 and
A. ~"-=—0.02. Finally, Foulkes, and Gyorffy estimate
A. ~" from the high-temperature resistivity of Pd.
Their result A.i'" =0.192 is too high, one reason being
that the effect of small-angle scattering on the

,
electron-electron interaction is overestimated by this
procedure. All three of these studies, ho~ever, do
not readily provide physical insight into the problem,
namely, why is the p-state phonon interaction so
small compared with the ordinary BCS interaction
and what are the pertinent properties of electrons,
phonons, and the electron-phonon interaction which
are necessary for a significant attractive p-state in-

teraction that would result in a superconducting tran-
sition at observable temperatures.

For simple metals, such as the alkalis, the question
raised above can be answered as follows. For a
spherical Fermi surface, we can write P"(k, k ') =
f' (.I k I, I

k'I, k k'), where. J
k /

=
/
k'/ = kF. The

angular-momentum decomposition of I'" yields the
p-state (I = 1) pairing coefficient
Il~ = J k k'P"(k k') d(k k'). In simple metals,

e.g. , l~' is comparable with Io" because the phonon
mediated interaction has a strong lobe in the forward
direction, k k' —1, and is small for large angle
scattering, k. k'-0. Taking, in addition, into ac-
count that for the relative orbital motion in a p-state
the Coulomb repulsion between two electrons almost
vanishes, we get the p-state transition temperature
for Na and K as T, ~

& 10 3 and 10 K, respectively,
and furthermore, we have T, ~ && T p.

Returning now to the transition metal Pd, we ad-
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II. T, EQUATION AND ITS EIGENVALUES

In this section we formulate the T, equation and
determine its eigenvalues for s-state and for p-state
pairing. The gap equation defining T, is obtained by
the procedure of Butler and Allen, The anisotropic
energy gap is written

b(k, cu) =XAL(o))FL(k)
L

(2.1)

where the basis functions, FL(k), with L being the
label, are by definition orthonormal on the FS. The
properties of the FL's, the so-called FS harmonics
(FSH's), are discussed in Ref. 8. The FL's are poly-
nomials in the velocity components, vk, vk, vk, theyx' y' z'
have translational symmetry in k space, and they
transform according to the irreducible representations
of the crystal point group. '

Using the expansion for h(k, cu), Eq. (2.1), and
parametrizing the ~ dependence in the manner of
BCS, the gap equation is given by

dress ourselves to the problem of the p-state phonon
interaction in the following manner. We assume the
anisotropic multiply sheeted Fermi-surface model of
Doniach" for the d electrons. The anisotropic-
energy-gap function is expanded in terms of Allen's
Fermi-surface harmonics and the gap equation is
solved for the T, eigenvalues that correspond to s-

and p-state pairing (Sec. II). In Sec. III, we calculate
analytically the form of the phonon interaction
parameters, assuming spherical Fermi-surface (FS)
sheets. The electron-phonon matrix elements enter-
ing the interaction parameters are found in Sec. IV by
employing the linear combination of muffin-tin orbi-
tals (LCMTO) representation of Andersen. '0 "The
wave functions are written in terms of the structure
constants of the Pd lattice and the potential parame-
ters of the canonical d bands. In Sec. V the phonon
parameters are evaluated for singlet and for triplet
pairing, A.f" and Vt", in terms of the p-d and d-f ma-
trix elements of the ion potential gradient. In Sec. VI '

we discuss the phonon parameters with emphasis on
(a) the relative importance of small angle intrasheet
and-large angle intersheet scattering processes at the
FS and (b) the relative contributions of s-p, p-d, and
d-f matrix elements of the ion potential gradient to
intra- and intersheet scatterings.

ALL' X X CLL'r. "xL"L'" 0L'"
L" L"'

(2.5)

where

CLLL =N '(0) XFr.(k)Fr. (k)Fr (k)5(e-„), (2.6)
k

&r. =N '(0) XFL(k)6(6k) (2.7)

and

P LL' P ~LOLL'0 ~ (2.8)

The column vector Z has the elements EL(cu =0).
The FS density of states is given by N(0) = $-„5(e-„).
The form of the Coulomb pseudopotential, Eq. (2.8),
implies that the Coulomb repulsion is ignored, except
for s-state pairing. '3 The gap equation (2.2) has non-
trivial solutions, 6 ~0, only for discrete eigenvalues p

We wish to determine the p's which yield the T, 's
for s-state and for p-state pairing. To this end we
must determine the FSH's for the multiple-sheet FS
model shown in Fig. 1. Before this is done let us, for
simplicity, discuss the case of a single-sheet FS. In
that case, once we have chosen a basis set of FL's,
the matrix A. becomes block diagonal, each block
transforming according to a row of an irreducible
representation. Assuming cubic symmetry and re-
stricting ourselves to the two blocks which transform
accoring to I"~ and the z row of I ~q, the eigenvalues p
are given by diagonalizing the matrix

[1+A(rt)] '

0

li(1",) —~'
0

(2.9)

where, e.g. , h. (I ~) is the matrix, Eq. (2.4), in the
basis of all FSH's that transform according to I ~.

We now turn to the multiply sheeted FS of Fig. 1.
There are six half spheres or three full spheres, cen-
tered at X, Y, and Z. Hence the number of indepen-
dent FSH's now increases by a factor of 3. Starting
with the disjoint representation of the FSH's,

elsewhere. The matrices ), A, and p'are defined by

XLr, =N '(0) $ I "(k, k')FL(k) FI (k')5(e„")&(c„)
k, k'

(2.4)

Here

(2.2)

J3FL(k) for k on the FS sheet X, Y, Z

FL"(k) =' corresponding to a =1,2, 3; (2.10)
0 otherwise;

p '=in(1. 13'~, /T, ) (2.3)

where co]„ is an average phonon frequency defined

we construct symmetry adapted FSH's by usual pro-
jection operator techniques. The three spheres at
X, Y, Z transform into one another according to the
three-dimensional representation I ~

8I"~2, the reason



20 PHONQNS AND SUPERCONDUCTING p @TATE PAIRING IN Pd 3661

where

/).„,g(r)5) = —,
'

[/i))(r)5, 11) +/). ))(r)5, 22)]

+ [ 4 [X)1(r)5 11) /)11(r)5

+ /). 2)) (I')5, 12) I )/2,

(2.20)&))(r25)
I+/ (r,)

Here, it is taken into account that ALL (r) =
Xoo(r,) 8 ~ and, e.g. , X„(r, , 12) =—X„(r,5, ,r, ).
The matrix element X can be decomposed into an in-

trasheet contribution h.
"' (/ = i') and an intersheet

contribution /)'" (i Wi'); hence

FIG. 1. Six-half-sphere Fermi-surface model for the
heavy d electrons of palladium.

F (I', ;k) = (F"' +F"' +F(5))/J3 (2.11)

F,(rI*,";k)= (F(()" +F()"' —2F"))/J6, (2.12)

being that the spheres at a and —a are equivalent.
Taking into account this transformation behavior of
the spheres and restricting the set of I"

~ polynomials
on the spheres to the three zeroth-order polynomials,
Fo' (k) = E3, we get for s-state pairing one sym-
metrized FSH for l ~ and two FSH's for 1 ~2. These
functions are

/)00(r)) = —, (/)o)+2/)N%[))

z (r„)= —,'(/[)0 —/I)'0),

X))(r)5, 11)= Th. )')
ra

Z))(I')5, 12) = —,
' ~2Xj),

/) ))(r)s 22) = —,(/))'[+/)[)),

/))) +(I')5) = —, (/))&+2/)[))r

(r„)=-, (/)';, -q',),1

/))) (I'25) = —,
'

(Z)') —/(P))

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.13)

F (I Iz) .k) F(2)

F,(rI*' k) =(F,(" +F('))/K2,

F,(ry;k) =(F,"' —F(2))/J2 .

(2.14)

(2.15)

(2.16)

We now use the six functions F),(r;k), Eqs.
(2.11)—(2.16), to calculate the eigenvalues p of the
6 x 6 matrix (1 + A) ' x (A. —/2, "). The result is

/100(i'» —/20'o(r))

1 +Zoo(r))
(2.17)

Fo(I'I" «;k) = (Fo' —F 2 )/J2
I

where the two I j2 functions transform as 3z' —r' and
x —y; respectively. Similarly, in determining the
FSH's associated with p-state pairing, we restrict the
set of I ~5 polynomials on the spheres to the three
first-order functions Fl(') (/c) = J3)rk /) v-„) for

a =1,2, 3. The, taking into account that the sym-
metrized FSH's for p-state pairing transform accord-
ing to r)58(r) Sr)2) =2I')58I'25, we get as the z

components the following functions:

Similarly, we can decompose the Coulomb pseudopo-

tentials ppp(I )) and /coo(r)2).
Thus the evaluation of the eigenvalues p for s-state

and for p-state pairing is reduced to that of a few
parameters„X" and A.". We proceed to calculate
these parameters for the FS model, Fig. 1.

III. SPHERICAL FERMI-SURFACE SHEET

The matrix elements ALL, Eq. (2.4), depend on the
phonon interaction,

I (k, k') = $(MN) '0) (k, k')~'g;(k, k')12 (3.1)

~here the electron-phonon matrix element g; is given-
by Eq. (4.7), 0); is the phonon frequency of polariza-
tion i, and M is the atomic mass. Note that our g;
does not contain the displacement factor
I/(2MN0);))/2. We insert Eq. (3.1) into Eq. (2.4) for
A. L,L and assume a spherical FS. Then, the density of
states is

~00(r)2) /coo(r)2)

1 + /).00(r))
(2.18)

m'VkF
8(e-„)= dkF

(25r)5 ~ sphere (5)
k

(3.2)

/ „~(r„)
1+/(„(r,) (2.19) (m'is the d-electron mass, kF is the Fermi momen-

tum) and we can replace the FL, (r, k) by the real
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spherical harmonics, Zr. (kF), where L = (I,m) and kF
is a unit vector on the FS. The resulting expression
for X is

, J J,dkF dkPI'"(kF, kP)Z2, (kP)Z2. (kF) .
22r 3

where

3m'kF v
(22r) 3M') e2N

xJ" J",dkF dkFlr(kF, kF) I Zg(kF)Zg (kF)
(3.3)

From here we can proceed with the analytic evalua-
tion of the A. 's provided we can factorize I""with
respect to k and k' in such a manner that the integra-
tions over k and k ' become independent of one
another.

The matrix element g can be factorized as we shall
see below (Sec. IV).

In P" also occurs the factor co; 2(k —k'). We as-
sume the Einstein model, cu;(q) = cue, for intersheet
scattering processes, where

q =
( k~ —kF~ ~ (22r/a)(J2 —akF/2r)

x Z fo (kF) Zfo (kF)

and

co '(kF) = —,
' $ ru;

' (kF)

For the Einstein (E) model, we have

XLL' XP)'

Hence, Eq. (3.5) can be written

(3.6)

(3.7)

where without loss of generality kF is oriented in z
direction. Substituting Eq. (3.4) into Eq. (3.1) we get
for the Debye (D) model

Xpr =«)e[2«o'(kF)] ' /X') (3.5)

here a is the lattice constant and kF =2.44a '. 'For
intrasheet scattering processes, i.e., k and k' are on
the same sphere, we achieve the factorization by us-
ing the Debye model. Here o&;(q) = u&q, where u; is
the phonon phase velocity. We write

o)( (kF —kF) = [2o)((kF)] $ (kF ' kF)"
v 0

eo

= [2', (kF)] x ( 3
2r) "Zfo (kF) Zto (kF)

(3.4)

X2D2, =o)E[2«o'(kF)] '
XEz + XXB

p~]
(3.g)

IV. ELECTRON-PHONON MATRIX ELEMENT

In Andersen's theory of the electron band struc-
ture, 'o " a Bloch function p„-„(r) (n is the band in-
dex) can be represented by a linear combination of
muffin-tin orbitals Xr. (r),

Returning to the matrix elements h. (I") given by
Eqs. (2.21)—(2.26), we now see that the parameters
A.
"and X" for intrasheet and intersheet scattering can

be replaced by X and A. , respectively.

1

P„-„(r)=N ' X82.„(k) X2, (r) + X e'"'"Xr.(r R)—
L RWO

$8L (k) XL(r) —X —", S«'(k)X&(s)
s 2(2I'+ I)

(4.1)

We employ Andersen's notation, that is, s is the atomic sphere or Wigner-Seitz radius and the S2,2 (k) are the
canonical structure constants. By using the LCMTO secular equation, "we can write the Bloch function for a
canonical d band (I = 2) with subband index u as

2 i/z

Q2 k(r) =[N2, (k)N] '' X 82m2~(k)/2m(r) —X' ' g Sc'2m(k)82m , 2,a(k)@c(r.),21'+ I 2p, 2(2I'+3) m- —2

where the normalization constant N2 (k) is given by
(4.2)

2 2

N2~(k) =1+ x', 2, X Sr. , 2m(k)82m 2~(k)
2P2 2, 2I'+1 2I'+3

(4.3)
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Here p.2 is the mass at the center of gravity of the d band and 1.I is the mass at the bottom of the I band. The ra-
dial part of the function $(.(r) =$((r) ZL(r) is the solution of the Schrodinger equation for a single muffin-tin
well. In Eq. (4.2), the prime on XL. implies that the L' =2 term must be omitted.

Now, taking N2 =1 because of the large value of ((2 (=6.79 for Pd) and neglecting the weak s-d hybridization
at the FS of Pd, we have

8....(k) =8..
Hence, the Bloch function is

$2 -„(r)=N ''QSL 2 (k) ge'"'"O(r —R)(tL(r —R)
L

where

(4.4)

(4.5)

1

SL 2a(k) = 2l +1 2@2(2l +3)
for I =2

1/2

SL2a(k) fOr i &2
(4.6)

The function O(r —R) is unity inside the atomic sphere centered at R and zero outside.
In terms of the Bloch functions Q, Eq. (4.5), the electron-phonon matrix element g for the emission of a pho-

non with wave vector q = k —k ' is given by

g;(ku, k'n') = $e;(q) e'0 a „' Q2 -„(r)V V(r —R)ii(2, k, (r) d r
R

(4.7)

Assuming that the three phonon branches do not interact (i.e. , the dynamical matrix is diagonal for all q) we get
on the basis of the rigid-muffin-tin approximation for 0 V(r)

g(ko k &) = QSL, 2a(k)SL'2a'(" ) , I (i(((r)ZL(r)'7V(r)@((r)ZL (r) d3r
LL' ~ %S sphere

(4.8)

independent of i. We now choose the z axis parallel to V Vand get

g(k(2 k (2 ) $ SL, 2 (k)S( 2 (k')M(r J Zi(r") cos8 ZL (r") dr"

LL'

2 [SL,2a ( k) SL+1,2a (k ) + S'(+1,2 (k)aS( 2a'( k )] Ml(+l ( K) Glp(L, L + 1)
L

(4.9)

where L = (i,m), L +1 = (i + l, m), and

dV
Mi, i+i = (t(((r)

d
4(+l(r) r' dr

dP dr
(4.10)

GL (L',L") = „ZL(r")ZL (r") Z(, (r") dr" (4.11)

3

g(k, xz;k, xz) = g T; l;M; (4.12)

We now assume that the symmetry of the Bloch
functions is n =xy, yz, and zx, according to whether
the wave vector k is near X, Y, or Z in the fcc Bril-
louin zone. Summing up to i =2 in Eq. (4.9), the fi-
nal result for g can be written

Here we can restrict ourselves to the electron-phonon
matrix element g for (3. = u'= zx(=1) since the ex-
pression for (l., Eq. (3.6), is factorized below into an
integral over k and an integral over k'.

Furthermore, taking into account that the k and k '

integrations are carried out over a spherical FS sheet,
it is convenient to represent the structure constants
SLL (k) by an expansion in terms of spherical har-

monics. The structure constants are evaluated in Ap-
pendix A.

Having obtained g, we can now proceed to calculate
the interaction parameters h. , Eq. (3.6), relevant for
s-state and for p-state pairing.

where

T(2 = [Sll 2l (k) +Sll 2l(k')]4&

Tpl . [S00,21 (k)S10,21(k )+Sip 2l (k)Spp 2l(k')]/K3

(4.13)

(4.14)

V. PHONON INTERACTION A.

FOR s- AND p-STATE PAIRING

T23 [S31 21 ( k) +S3(,2l( k )]/ J8/35 (4.15)
In order to get the s-state and p-state parameters

h. (I ), Eqs. (2.21)—(2.26), we need the following ma-
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trix elements, Eq. (3.6) (ZL = [4'/(2I + I)]' 'ZL): of the matrix elements, Eqs. (5.2) —(5.5), in terms of
A,op, i.e., we have

~tII ~00 I ', dkF dkF I g (kF, kF) I', (5.1)
4~ ~s~s'

XIt'= Xfj=,dkF dkF Ig(kF, kF) I'

Xii = —
Xpp

E E

A.pp
=0.802 CApEp

A. ) j =—0.595CApp =—0.742~op

(5.10)

(5.11)

(5.12)

X Z»(kF) Z~0(kF), (5.2)

„~r „,dk, dk, Ig(k, , k,)I'4~ &s&s'

Substituting the intra- and intersheet interactions,
h. L'L, and A. PL by XPq and hLL, .respectively, we finally
get the explicit form of the h. (1'), Eqs. (2.21)—(2.26).
Then we can determine from Eqs. (2.17) and (2.19)
the ratio between the eigenvalues p for s-state and
for p-state pairing; we have

x Z)P (kF) Z)P (kF) (5.3)

Here is A =3m'kF V/Mcus(2m) N. The matrix ele-
ments for the Debye model, Eq. (3.8), are then given
by

p (I't5) (1 —0.595 C) X00

p(1't) (2+0.802C) zE —p,

where p, '—= p,00(I ~) and

(5.13)

A.PP
= C A.PP+ 3

h.f) + X h)03.1 E

v~2

1

sot) ——C ltstt+3 g X)0'
v~2

(5.4)

(5.5)

E 3m'kF V 1
~oo =

(2m) McusN 4m

x (K22 MP4 + 2K23 MF4M4f +K33 M4f)

(5.14)

These integrals are calculated in Appendix B. There
it is seen that only the E&"' for ij= 22, 23, 33 contri-
bute significantly to the X's so that we may restrict
ourselves to p-d and d-f transitions in the electron-
phonon interaction. These K)"' can be written

K&"~ =
IJ

v odd
v+2

K' ' v even
, (v+1)(v+3)

(5.7)

In terms of K&ft"' the parameter h.|0' iS given by

3 3

QXK„t"&M. . . M ..4m
(5.8)

and, hence the v summation in Eq. (5.4) yields

X h.fg~ = $M; t;Mf t;Klft03$
y2 4~ ti „ i 2v+1 2v+3 2

=0.135App (5.9)

As the result of Eq. (5.9) we can now express all

where C = cuE2/2co2(kF) and where it is taken into ac-
count that h. it' =3k.Q+".

When now the electron-phonon matrix element g,
Eq. (4.12), is substituted into the equations above,
the following integral must be dealt with:

K&" = J,dkF dkF Zt"0 (kF) Z~"0 (kF) TI'I, Tj ) )

(5.6)

VI. RESULTS AND DISCUSSION

Let us recall that Doniach's FS model is a basic as-
sumption employed in setting up, the gap equation
and in determining its electron-phonon kernel. This
model, shown in Fig. 1, is a simplification of the ac-
tual d-electron FS found by Andersen' and Mueller
et al. ' ' from energy-band calculations. Recently,
the d-electron FS has been experimentally confirmed
with high precision measurements of de Haas —van
Alphen orbits. ' Despite the complexity of the ac-
tual FS geometry, the simple FS model of Fig. 1 al-
lows for what is perhaps the most pertinent physical
aspect here for s-state vs p-state pairing, namely, a
reasonable separation of the pairing interaction,
P"(k, k'), into two types: (a) intrasheet scattering,
where the Cooper pair stays on one and the same
sphere (or on one set of conjugated half spheres) and
(b) intersheet scattering, where a pair is scattered
between two different spheres. For the first type, the
scattering angle between k and k' is small, ~45.7',
for the second type, the angle is large, &44.3' (k, k'
are referred to the center of the Brillouin zone).
Furthermore, this simple multiply-sheeted FS model

. allows for a straightforward application of the group-
theoretical method of Butler and Allen in solving the
anisotropie gap equation. We expand d (k, m) in
terms of our syn1metry-adapted FS harmonics, which
in our case are linear combinations of spherical har-
monics, and get as eigenvalues of the gap matrix
equation the results, Eqs. (2.17)—(2.20). It follows
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from the eigenvalues, p(I' t) and p(I't5), that the
electron-phonon coupling parameters for s-state and
for p-state pairing are respectively given by 0.5

Zt" —=Zpp(I', ) = —,
'

(kp'p+2Z8p)

XPt" =—li„, (I )5) = —,
'

(Zt't —aft)

(6;1)

(6.2)
0.3

0.2

where Xp$ and Ag~ are the ordinary BCS parameters
for intra- and intersheet scattering and where ) i'~ and
h.j& are obtained from the A.LE, Eq. (2.4), when the
I ~5 functions, Eqs. (2.14) and (2.15), are substituted
for the FS harmonics Fi and FL. What bedevils the
p-state pairing interaction in Pd is the fact that for the
intrasheet (i.e., small momentum) scattering of the d
electrons the dominant d-f contribution to the
squared electron-phonon matrix element, ~g(k, k') ~',

is proportional to
~
k —k'~ . This dependence is

responsible for Xt'~ =—A.@, Eq. (5.12). On the other
hand, for simple metals with a single spherical FS the
dominant s-p contribution to ~g~' results in a strong
foreward lobe of I' (k, k') yielding kt" =

2
Xp". As

for the inteisheet (i.e., large angle) scattering, we get
k[& =—kt]p, Eq. (5.10), and therefore the p-state
eigenvalue h. t", Eq. (6.2), almost vanishes.

To actually calculate the A.
"' and V" from P"(k, k'),

Eq. (3.1), we must also simplify the phonon disper-
sion, co;(k —k'). For the [100] and [110]directions
the dispersions are known from neutron scattering
data. '6 For h.

"we use a Debye model, co,(q) = u, q,
and estimate u; as described in the text following Eq.
(3.6); we then get pp(kE) =2.1 & 10" sec ', where
k~=2.44a ' is the radius of a sphere. The parame-
ters A.

"are determined by momentum transfers,
~
k —k'~ ~1.27(m/a), and, therefore, we use here

the Einstein model, estimating from the experimental
data the proper frequency co~. If, however, the Ein-
stein model were applied to both intra- and intersheet
scattering processes, the result would be

(6.3)

The phonon interaction, I' (k, k'), also depends
on the electron-phonon matrix element g(k, k'), Eq.
(4.7). This is factorized into k and k'-dependent
functions by using the LCMTO representation for the
Bloch waves.

Then, the coupling parameters A.
"=X ' "' and

X"= X.
'"'"'" can be calculated analytically, since the k

and k' integration on the FS are now independent.
The. ratio between the p-state and s-state pairing in-

teractions, kpt /Xp', is given by Eq. (5.13), setting
p, '=0. The result depends only on the value of
C = cop/2''(kF) and is shown in Fig. 2. From the
experimental phonon data, we take C =1.235 yield-
ing a weak attractive p-state interaction.

Finally, the numerical value for the BCS parameter
Xt" depends on two parameters, C and A.g&, the latter
given by Eq. (5.14). With the /ttp~ values given in

0.'[

0.0

FIG. 2. Ratio between s- and p-state pairing parameters,
/A, o, as a function of the phonon parameter,

C =en~/20) (kF), where co~ is the Einstein frequency for in-
tersheet scattering and co(kF) is the Debye frequency for the
momentum kF corresponding to the radius of a subsphere.

Appendix B, A.0~0 can be written
r

~E N(0) 1
Xpp =

Mciog 4~
(0.0862M~2+0. 2382 IM~Mdf I

+0.1646Mjj) (6.4)

To evaluate ~~ we need the following parameter
values: N(0) (density of states; 3m "kF V/2m2N)
=14.15 states/atom Ry; p, ~ (band mass at the center
of gravity) =6.79 a.u. ; aoE (Einstein frequency for in-
tersheet scattering) -3.3 x 10" sec ', kF (Fermi
momentum of a subsheet sphere) =0.627 A ', M
(atomic mass of Pd) 106.4 amu; M~ (squared un-
screened p-d matrix element) =27.4 (ev/A)', Mz&

(squared d-f matrix element, screened by a factor of
2) =1402.8 (eV/A)'. Here M~ is the unscreened
matrix element calculated by Pettifor. "Mgf is
Pettifor's value reduced by a factor v2, by virtue of
screening effects. This reduction is used by Papacon-
stantopoulos et al. " in their calculation of T, for 32
metals. With the above parameter values and the
values found-for the K ' integrals in Appendix B,
we get ltfp and kp" 0.153,'9 in perfect agreement
with the value of 0.148 of Ref. 18.

In summary, based on a simple electron-phonon
model, that yields a reliable value for the BCS param-
eter A.o", we find the p-state pairing interaction A.i" to
be almost zero ()Pt" =0 for the Einstein model). The
reason for the smallness of A.i" is the cancellation
between the contributions from the small-angle in-
trasheet and the large-momentum intersheet scatter-
ing. Both of these contributions, A. t$ and k['t, are
repulsive and it is evident from the eigenvalues for
p-state pairing, Eqs. (2.24)-(2.26), that either XP~

must be sufficiently attractive or Aj] must be suffi-
ciently repulsive in order to arrive at an attractive p-
state interaction due to phonon exchange.
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APPENDIX A: STRUCTURE CONSTANTS

[a.— is a reflection at a plane normal to (—x, 0,z).]
Substitution into Eq. (Al) gives

' ]/2 ' ' 3

Spp (k) = ' $ij'((kR)Zt(k)AL pp,
3i42 R t.

(A7)
t . ]/2 f 14

S, (k) =4 —$i'j (kR) Z (k)A
21P2 R

1/2
1 &I

2l + 1 2i4z(2l +3)

x g e'"'~S(L, 2n;R)
RWO

S...(k) =—

(A1)

where the S(L, 2a,R) are given by Andersen et al
Table II. Expanding S in terms of spherical har-

monics we have
' 1/2

71

2l + 1 2/4p(2l +3)

x $ i' jt (kR ) ZL (k)
L'

The structure constants SLt, ( k ) defined by Eq. (4.6)
can be written

t '1/2 ' '6

S (k) 10 5(4m)3 s
3 77@2 R

]

x $ i j'](kR ) Zt. (k) A/ 3]
L

where vI is set equal to unity ' and

At, pp= g Zt. (R) Zz](R)
RAO

AL ]p= $ Zt(R)Z3](R)
RWO

AL, 3] = X ZL(R) [Z5p(R) +(—
zp )Z53(R)]

RWO

(A9)

(A10)

(A11)

(A12)

x X ZL, (R)S (L, 2a;R )
RWO

(A2)
In general, the structure constants SL (k) can be

written

S(s,xz;R) =—2(4n)]/z —Z (R)

' 1/2 ' ' 4
40m sS(z,xz;R) =—12
21 R

Z3](R),
i1/2 r i4

40m s i

S(x,xz;R) =—12 Z3] ((r R)-
] ]

' 1/2 ' ' 6
s
R

4

S(xz,xz;R) =—10 2807'
11

x [Z,]](R) +(—"
, )' 'Z5, (R)]

(A3)

(A4)

(A5)

(A6)

The following structure constants are of interest here:
] ] 3 SL, ( k) = cL g t'ji (kR) Zt, (k)At t

L'
(A13)

where the coefficients ct. depend on s/R and p, & and
where the AL L have nonvanishing values only for
certain parameter combinations L,L' (cf. Table I).

APPENDIX B' INTEGRALS Kij

These integrals which appear in the parameters h.]p]

are defined by Eq. (5.6). This equation contains the
functions T~ ];(k,k') defined by Eq. (4.12) for the
electron-phonon matrix element g.

TABLE I. L,L' combinations for which the reduced structure constants AL L do not vanish

fL = (I,m), L'= (I', m') j.

(I', m')

(2, i)
(i, &)

(&,0)
(&,o)

(4, i)
(3,&)

(3,0)
(3,o)

(4,3}
(3,3)
(3,2)
(3,2)

(6,&)

(s, &)

(s,o)
(s,o)

(6,3)
(s,3)
(s,2)
(s,2)

(6,s)
(s,s)
(s,4)
(s,4)
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The T, ];given by Eqs. (4.13)—(4.15) depend on
the structure constants S. %hen we substitute S, Eq.
(A13), into Eqs. (4.13)—(4.15) we get Tp], T]2, and

T23 and we can proceed to evaluate the integrals Kij'

The result for v =0 is given by

ing reduced structure constants ALL, Eqs. (A10)
-(A12):

~ 21,00 4( 2 ) 1/2

15%3
4]r x 442

~ 43, 00 J"/

K11 3 ~00~10 ~i i ii'~L, OO~L', 10
(0) 2 2 2 M 2 ~ 2 2 2

LL'

Kztz] =4' x2dzpczp x J/2AL2„
L

K33 42r——x 2d3]C31 XJr AL, 3] p

L

K23 42r=x 2d]pd3]c]pc3] XJ] ~L, ]]~L,3] ~

L

(Bl)

(s2)

(B3)

(B4)

12 g2

16 x4~
7~is

4( 3 )1/2
73

42r x.8&2
5JiS

(B7)

K,&0] = K,]I|] =0 .

Here

J] Ji(kFR) d]o = (
q
)'

1/2 r 4
(42r)' s

C10= C» =4
21JM2 R

c~- (-', )'"(R/s) ci. ~

(B5)

(s6)

4( 3 )1/2

174&V
31 x4~

]I ~15

(88)

K33 =4]r
33 c31[J]A]03] +J3 (330 31 +A32 3])]

%hen only terms with I «4 are considered in the ex-
pansion of Kij we have

K22 4]r7c]0 [J]+ 10, 11 +J3 (+30, 11 ++32, 11 )]

(c]0j])' [1 +54.8333(j3/j])']
4m

r 1]t3

c3] ( ) (—) (s/R) c]0
3 ]2 2 s 1 342

2 33 2 m
] ]

First, we show that in Eqs. (B2)—(B4) only the first
term of the L summation has to be taken into ac-
count. Then, we demonstrate that K11' is negligible
compared with the other K/]0], Eqs. (B2)—(B4). Fi-
nally, we give a proof for the relation (5.7) for the

In evaluating Eqs. (Bl)—(B4), we need the follow-

(c]oJ]) [1.9106 +6.6562(J3/j])'], (B9)

Kzf 41r C]QC3] [J]A]0 ]]A]0 31
() 842

5 7

+JS (~30, ]]~30,3]+~32,]]~32.3])]

3.15 (c]~ )2[2.7645 —'36.9481(j3/j])2] . (B10)
4m

Now, using the fact that M~ and Mdf have opposite
sign, '7 we get

ij 2, 3
K]/] ]Mr 1 ]M/ ]J=

'2

1+1.9106 MdJ +2.7645
M

4~

(B12)

+0.5282 1+0.1214 —0.6738 . (B11)

Since (M4//M~) =50, the term proportional to j3 contributes only 1% to the curly bracket and is therefore ig-
nored. The general formulas for K]/]03(i,j -2, 3) are thus given by

Kr/ 4' x 2dL——dL CL cpg(kFR )A 1]1 L A ]p L

where L, and L& are (11) and (31), respectively.
Next, we show that K]]' is negligible. By summing in Eq. (Bl) up to I =4 we get

K]] —cope]0 (J]A ]]10[J2A 2100 +J4 (+4]00 +34300)l +J$ (A3] QQ +3 33 ]p [J2A 21 QQ +J4 (A4] QQ + A 43 pp)]]

(c]pi]) —„3.15
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This value of Etttp~ is small compared to the E&~~ given by Eqs. (88)—(810). Furthermore, M2~ && Mq~ and,
therefore, we can neglect the s-p contribution to XQ, Eq. (5.8).'

Finally, we have to evaluate the E»" for i,j =2, 3 and v )0. Using the Gaunt numbers,

G)(l, 1 +1)= (3/4n)' (I +1) [(2I +1)(2I+3)] '

G2(l I) = (5/4w)'I21(l +1)[(2I —1)(2I +3)]

G2(l I +1) = (5/4m)' 3(l +1)((+2)[2(21+3)[(2I +1)(2I +5)]' 2} '

the following expansion for the powers of Z~p(k) can be verified:
i

i

( +1) ) 1+ Sv Z ~ 9v(v —2) Z + 13v(v —2)(v —4)
v+3 ' (v+3)(v+5) " (v+3)(v+5)(v+7)

(814)

(815)

(816)

A p
Z10

(+2) t 3Z+ 7(v 1)Z11(v1)(v3)Z
v+4 ' (v+4) (v+6)

(817)

(818)

For even v two types of integrals occur in E'I"'

dk'dk [Z2p(k) +Z2p(k')]Ti );Tj t, =2dLdL ~ dk Zq()(k)SL SL dk'
I J 20 L,. L. g

1/2

2 x 4rrdL dL cl cL. g i JIJ.I'~.LL ~L'L G2p(~~ )
I J I J LLi t J 5

A

Here ZL = [4m/(2!+1)]'I2ZL. Substituting these expansions in E;,~"~, Eq. (5.6), and keeping only the terms with
I & 3—which is consistent with Eq. (812) for ICP~ —one gets three types of integrals. For v = 1, we have

E(~' (4——m—/3) &&2di dL CL CL JI 210,L ~lp, L =g lt p.

and

dk dk' Z2p(k) Z2p(k') T; ],i' —l,i =0

=—2 X 4VTdL dL CL CL f1310L.+10,L, . X
5

=
5 +IJ

'2 2 2 0 (819)

(820)

Again L; and LJ can take the values (ll) and (31), respectively, and the last equation follows from &2p L. =0 (cf.
Table I). Using Eqs. (818)—(820), one arrives at Eq. (5.7).
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