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The conductivities of two-dimensional conductor-insulator networks generated photolitho-

graphically from laser speckle patterns have been measured. Isotropic networks with =450000
statistically independent units show a percolation threshold f, =41'/o conductor and a critical ex-
ponent t =1.30. Measurements on anisotropic networks and numerical simulations indicate
that either f„t, or the size of the "asymptotic region" must vary with the degree of anisotropy.

I. INTRODUCTION II. EKPERIMENTAL TECHNIQUE

Recently, Lobb, Skocpol, and Tinkham' and Tink-
ham2 have reported electrical-resistivity measure-
ments on a system consisting of superconducting
niobium filaments imbedded in a copper matrix, and
have interpreted their results in terms of percolation
theory. Briefly, they obtained a critical exponent
s =1.05, which is different from the value
0.5 ( s. & 0.9 (Ref. 3) thought to apply to three-
dimensional superconductor-resistor systems. They
speculate that this discrepancy might be due to the
highly anisotropic nature of their system.

Effects in the percolation problem due to this type
of anisotropy have also been previously considered
theoretically. ~~ It was the goal of the experiments
reported here to examine the effects of systematically
introducing anisotropy into a model percolating sys-
tem, in order to obtain a somewhat firmer basis for
further theoretical consideration.

To this end, we have invented a system which con-
sists of metal films patterned photolithographically
from laser speckle patterns, whose anisotropy is easily
varied and controlled. The films are relatively simple
to fabricate and contain a large number of statistically
independent regions. Moreover, the statistical prop-
erties of the speckle -patterns which define their
geometry have been extensively studied' and can be
systematically varied.

We find that the effects of introducing anisotropy
are nontrivial'and fairly dramatic, in that the
behavior of the conductance as a function of percent
metal appears qualitatively changed. Far from the
percolation threshold, these effects can be under-
stood, at least qualitatively, by fairly straightforward
arguments. The behavior of the conductance in the
more interesting region near the percolation thres-
hold is somewhat inconclusive, although it does pro-
vide constraints on the possible alternatives, and
should serve as a guide to aid in the development of
the theory.
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FIG. 1. Schematic of the optical system used to create the
speckle patterns. The y direction is out of the plane of the
figure.

In our experiment, a cw argon-ion laser forms an
approximately elliptical and Gaussian spot on a diffuse
scatterer (see Fig. 1). A speckle pattern, temporally
constant but varying spatially in a pseudorandom
fashion, is formed by the scattered light. Its auto-
correlation function is related to the shape of the
spot; in this case, it is approximately Gaussian with
characteristic widths I„»= lI.I./a„~,where h. is the
wavelength of the light (514.5 nm), L is the distance
from the spot to the observation plane (= 1 m), and

a„~are the widths of the spot (= 1 cm).
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This pattern exposes extremely high contrast,
fine-grained 35-mm film (Kodalith). After develop-
ment the film contains a pattern of clear and opaque
regions whose relative area fractions can be varied by
adjusting the laser intensity and the exposure time
[see Fig. 2(a)]. This pattern is then photolithographi-
cally reproduced as a 100-A-thick NiCr film on a
standard 1 & 3-in. ' glass slide, using standard contact
printing, vacuum evaporation, and lift-off techniques
[Figs. 2(b) —2(d)]. An enlarged section of an isotropic
film is shown in Fig. 3.

The anisotpopic speckle patterns are statistically
identical to an isotropic pattern modified only by a
change of the length scales. Except for relatively
minor imperfections, such as edge roughness, intro-
duced by the photolithographic processing, this
should apply as well to the metal film. The degree of
anisotropy is characterized by the aspect ratio
n =—I„/1»,where x is the direction of overall current
flow. o. is determined experimentally from the ratio
a~/a„of the axes of the spot on the scatterer. Direct
measurements on the films always give a value for o,

which is closer to unity; we attribute this to the finite
resolution of the 35-mm film. The smaller of lay,
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FIG. 3. (a) Photograph of a small section from an isotro-
pic sample: n =1,f=0.419. The black areas are metal. (b)
Sample geometry. The cross-hatched regions are the thick
aluminum or NiCr contacts.
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which ranged between 30 and 40 p,m, is determined
as half the mean distance between metal-glass boun-
daries along the appropriate direction on a sample
with f= 50%, and may be interpreted to be the
length of a "statistical unit"-in that direction. Figure
4 shows an enlarged section from an anisotropic sam-
ple.
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FIG. 2. (a) Response of the high-contrast film to the in-

cident light. (b) Contact printing configuration. The cross-
hatched regions of the photoresist (Shipley 1350B) dissolve
away during development. (c) Deposition of the metal film

by vacuum evaporation. (d) The remaining photoresist is
removed by dissolving in acetone, leaving behind a metal
film in those regions where the speckle pattern intensity
was below the threshold I'.

FIG. 4. Photograph of a section from an anisotropic sam-
ple: a=S, f=0.407. The black areas are metal. Note that
the magnification is less than that of Fig. 3.
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The metallic area fraction f of the film is deter-
d b measuring the optical transmissivity

separately for six regions of the film, each comp
' '

g=—of its area, and interpolating between the mea-

sured transmissivities of the reference film
d the bare glass (f =0). For the isotrop'ic samples,

d fluctuations are =2/0, compare
the expected statistical fluctuations of = nf——'/ where n is the number of statis i-f)] —/n=4 0, w

cal units in t e sampth ampled area. This nonuniformity ap-
pears to be due to either uneven development or in-
trinsic nonuniformity of the Kodalith film. Great
care was needed in the film processing to decrease
the nonuniformity to this level.

The uneven processing of the film, its limited reso-.
lution, and also other factors such as imperfect optics
and nonuni orm ic'f thickness of the metal film, all com-
bine to make this less than an "ideal" model system.
All of these problems can, in principle, be reduced.
For exampe, e i1, th films can be made more uniform by
increasing the characteristic length scale of the pat-
terns; however, this would be at the expense o in-
creasesed statistical fluctuations. Fhotographing the
s eckle patterns on glass plates, with significan y
better resolution, would obtain a simi ar i p
ment, but at the expense of costlier and more
cumbersome processing. For the purpose of this par-
ticular set of experiments, whose primary goal was
the qualitative understanding of the effects of intro-
ducing anisotropy, we consider these imperfections to
be relatively unimportant.

III. RESULTS AND DISCUSSION

Normalized conductivity o/o. , vs area fractton f
f amples with aspect ratios n =~. . . an
is plotted in Fig. 5(a) and listed tn Table
ors

I. The
scatterer use was opd opal glass for the first three sets of
samples, . and white paper for the fourth. For com-

arison with a more familiar system, we performed
Monte Carlo calculations on a 50 y si
tor lattice using a standard relaxation technique;

The conductors inthese results are shown in Fig. 5,'b~.
these lattices had equal probability p of being present

re chosen to bein 0b th directions, but their values were c
1 in the direction parallel to the overall curre nt flow
and n' in the perpendicular direction. (Our films are
electrically equivalent to films with an isotropic

, b t th local conductivities in the two
directions which. differ by a') The graphs show very
similar variation with anisotropy but they cannot be

red oint for point because the microstructures
have differentof the networks are different and they ave i

perco ation res1
'

th sholds. The Monte Carlo arrays con-
rof'

ed man fewer conductors than the number o
the statisticalunits in the isotropic films, decreasing e s a

'

accuracy o e nuf th numerical results. This difficulty is
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FIG. 5. (a) Normalized conductivity vs metal area frac-
tion. The solid curves are a guide to the eye. )e. b) Results of

lattice with the sameMonte Carlo calculations on a square a i

degrees of anisotropy as the data in part (a).

compounded near p„where convergence becomes
much slower. For these reasons the Monte Carlo
graphs are terminated at p =55%.

The qualitative effects of introducing anisotropy in
the conductor lattice can be explained aas follows: For

1 f & p &1, decreasing n will decrease
11 h=half of the conductors in the array, and wi us

decrease the net conductance of the array. The con-
ductances or p p, af ~ and p =1 remain fixed at 0 and
1, respective y. n1 . I the limit n' -0, the conductance
of the array approaches zero, and the array is e ec-
tively one dimensional. In the limit of n -~, the
conductance will increase towards a finite limiting
va ue, o (~). The p dependence of o (Oo) is not
known, but a possible upper limit is B p,
ability of belonging to the backbone of the infinite
cluster, since only the backbone conductors contri-
bute to the conductance of the array.

Similar arguments can be applied to the continuum
Decreasing n at constant f corresponds tosystem.

f overallmaking the inclusions short in the direction o
current flow and proportionately wider in the orthog-
onal direction. Such an inclusion effectively blocks

f the film, sothe current flow over a ~ider region o e
that the conductance of the film as a whole, at fixed
area fraction, wif ' J, ill decrease. In this limit, the film is
analagous to a s ee1 t sheet of metal foil with long slits cut
across it with a razor blade. Because of the large
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TABLE I. Metal area fractions f (+0.002) and normalized conductivities o/oo (+1%) for each of
our samples [see also Figs. 5(a) and 7].

a =0.4 o, =0.04

0.916
0.715
0.652
0.571
0.569
0.567
0.566
0.549
0.490
0.484
0.476
0.474
0.473
0.451
0.438
0.425
0.419

0.792
0.436
0.306
0.182
0.211
0.210
0.197
0.157
0.0688
0.0650
0.0602
0.0606
0.0568
0.0369
0.0217
0.0096
0.0065

0.613
0.507
0.437
0.432
0.419
0.416
0.411
0.407
0.395
0.394

0.395
0.211
0.0624
0.0581
0.0360
0.0194
0.0165
0.0131
0.0121
0.0040

0.751
0.613
0.559
0.540
0.540
0.502
0.479
0.475
0.473
0.467
0.451
0.445
0.443
0.441

0.370
0.163
0.098
0.0840
0.0828
0.0477
0.0287
0.0265
0.0219
0.0179
0.0083
0.0087
0.0063
0.0069

0.918
0.795
0.714
0.687
0.632
0.611
0.569
0.561

0.175
0.0385

. 0.0167
0.0122
0.007 64
0.005 38
0.00403,
0,00294

depolarization factor of the slits, even a few can
cause a sizeable decrease in the conductance of the
film. In the opposite limit o. —~ the slits are direct-
ed with the current flow. In this limit their depolari-
zation factor approaches zero, so that the conduc-
tance of the film approaches f as f 1. Further
from f = 1 the slits begin to overlap, and can isolate
islands of conductor, so that the conductance must
not exceed the percolation probability. 8(p) does
not have as precise a meaning in the continuum case
as it does in the discrete bond or site problem, but
nonetheless can be operationally defined as that por-
tion of the film which carries an appreciable amount
of current. '0 8(p) should be a fairly good approxi-
mation to the conductance of the o. = ~ system only
near f=1, and may have altogether different critical
behavior as f approaches f,.

The isotropic films have lengths and widths of
roughly 900 and 500, measured in units of the
characteristic length of =35 p, m, and contain more
statistical units than any of our anisotropic films.
Their percolation threshold f, and critical exponent t
were determined by fitting the data by eye to a
straight line of the form log (o/o, ) = tlog(f —f,)
+const. The best values were f, =0.407, with
t =1.30, including data within 15% of f„although
the fit was equally good with the same parameters if
all the data were included. These data are plotted in
Fig. 6, together with an estimate due to Straley" of
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FIG. 6. Normalized conductivity vs f—0.407 for the iso-
tropic samples. The dashed curve is an estimate due to Stra-
ley (Ref. 11) of the expected fluctuations of the conduc-
tance.
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the expected statistical fluctuations of the conductivi-
ty if the experiment were repeated many times with
different speckle patterns of similar statistical prop-
erties.

This percolation threshold is an interesting result
because it differs from the value —, which would

characterize systems with perfect symmetry between
the metal and insulating regions, ' and because it
should be calculable from first principles, at least for
an "ideal" speckle pattern for which the intensity dis-
tribution is exponential and the other statistical func-
tions are either known or can be derived. Close in-

spection of a speckle pattern gives the impression
that the dark regions —which become metal after
the photolithographic processing —look vaguely like
channels which separate the bright "speckles". This
description is similar to that of a random network of
overlapping insulating circles for which f, =0.33,"
and suggests that f, & 2. Of course, this does not

apply for all two-dimensional continuous media. By
interchanging the metallic and insulating regions, or
by using speckle patterns which were made more
symmetric by any one of several methods, ' the per-
colation threshold ought to be variable over a sub-
stantial range on either side of '2. An explanation of
the value of the percolation threshold in terms of the
fundamental statistical properties of the pattern
would be highly desirable.

In the limit of an infinitely large network, we
would expect our anisotropic samples to be character-
ized by the same percolation threshold, because .

"stretching" the pattern does not change its connect-
edness. It is well known, however, that fluctuations
in a finite sample become large near the percolation
threshold, so that different samples may have a con-
duction onset over some range of values on either
side of the "bulk" percolation threshold which charac-
terizes the infinite system. '4 A rough estimate of this
range is the condition that the coherence length g be-
comes comparable to the size L of the sample,

1 I I I I I I I I I I I
I
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units across, conduct below the bulk percolation
threshold. Again, this is consistent with the observed
data.

The statistical sizes of the anisotropic samples are
much smaller than the size of the isotropic samples,
so that it is more difficult to obtain from them an
unambiguous value for the critical exponent. The
value obtained depends strongly on the precise choice
of the percolation threshold, and on the extent of the
"asymptotic region" over which the fit is presumed to

- be reasonably valid. By making assumptions about
one or two of these quantities, information can be
obtained about the others. For example, the values
I =1.30 and f, =0.407 for the isotropic data depend
some~hat on the assumption that the asymptotic re-
gion extends at least 15% above f,.

If'we assume that the anisotropic systems have the
same critical exponent and the same asymptotic ex-
tent, ' we find that a good fit can be obtained with

the values f, (n) =0.401, 0.410, 0.427, and 0.500, in
order of decreasing n, with t =1.24. This systematic
variation is in the same direction as would be expect-
ed by considering the conduction onset dependence
on the anisotropy of the sample dimensions, although
a quantitative comparison is difficult.

A second possibility is to assume that the percola-
tion threshold is the same for all the samples, as
would be expected for systems with infinite size. As-
suming an asymptotic region which ranges 15% above
f„wedetermine a best value of f, =0.410 and "criti-

cal exponents" t =0.85, 1.24, 1.75, and 2.3, in order
of decreasing a (Fig. 7). Analysis of the Monte Car-

If the dimensions of the sample are isotropie, the ex-
pected value of the conduction onset should not differ
appreciably from the bulk value, but if the sample di-

mensions are anisotropic, the expected conduction
onset should be different from the bulk percolation
threshold. For our most anisotropic sample with
o, =0.04, conduction ceases somewhere in the range
51.4% ~ f & 56%. This sample is 'topologically
equivalent to an isotropic sample = 1100 units long
and only =25 units across. Since the probability of
finding an insulating path across the width of a finite
sample increases as it is made longer and narrower,
conduction should cease well above the bulk percola-
tion threshold. Similarly, we expect that some of the
o. =5 samples, which are =150 units long and =400

0,0l
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FIG. 7. Normalized conductivity vs f—0.410. The
straight lines are fits to the data.
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lo data yields similar results. In this case, changing
the anisotropy does not alter the sample size. We
take p, = —,, and fit between 0.55 (p (0.65 to ob-

tain "exponents" of 0.8, 1,0, 1.2, and 1.2.
These latter results are in disagreement with the

assumption of universality, which states that the criti-
cal exponents should be independent of the detailed
microstructures; in these cases, the aspect ratio of the
patterns and the ratio of of the conductances. More-
over, Halperin' has pointed out that the conductance
of the, anisotropic system is bounded above and
below by the conductance of the isotropic system,
with two values of op equal to 1 and a . It follows
rigorously that the asymptotic exponent t for these
systems does not vary with u.

We have done renormalization-group calculations
in order to try to understand the behavior of the con-
ductivity in the critical region near p, . We have used
a cell introduced previously by Reynolds" and Ber-
nasconi, ' with the modification that the values of the
conductors may be anisotropic, as in the Monte Carlo
calculations. Our preliminary results indicate that in
the limit p p„for any fixed a (except a =0 or ~),
the macroscopic conductivity of the conductor net-
work becomes isotropic. This reaffirms the earlier
conclusions of Bernasconi 4 and Shklovskii. 5 The
macroscopic conductivity of our patterned films in
the two principal directions must therefore become
anisotropic in the ratio a(n)/v(1/n) n as f f„
since they can be modeled by an anisotropic conduc-
tor lattice after application of a length scale transfor-
mation, which also changes the bulk conductivity by
the factor of o, . We also find, not surprisingly, that
the asymptotic critical exponent is simply the isotro-
pic exponent. However, the size of the asymptotic

critical region becomes vanishingly small as the sys-
tem becomes infinitely anisotropic, so that experi-
mental results. of highly anisotropic systems might be
expected to give an incorrect value for the critical ex-
ponent. This provides a possible explanation for the
data of Lobb et a/. ' These calculations will be
presented in full in a future paper.

To summarize, we find that the asymptotic
behavior of our conductance measurements on ran-
dom inhornogeneous films with different anisotropies
can be explained in either of two ways. If we allow

f, to be independently chosen for each anisotropy, it
is possible to obtain the same effective critical ex-
ponent by fitting over a range of f extending—10—15'/o above f, Altern. atively, if we assume
that f, remains fixed as the anisotropy is varied, we
obtain an effective critical exponent which depends
on the anisotropy. Since the asymptotic critical ex-
ponent must be independent of anisotropy, this sug-
gests that it is the extent of the asymptotic region
which depends on anisotropy. This latter interpreta-
tion is supported by our numerical simulations and
by our renormalization-group calculations.
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