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Stability of 4He superlattices on graphite
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Using the variational method proposed by Lowy and Woo, we calculate the ground-state ener-

gies of the
3

- and 4 -coverage superlattices of He physisorbed on graphite. The properly sym-1 4

metrized single-particle factors in the trial wave function are constructed from expansions in an

orthogonal basis set whose elements are the eigenfunctions of a Hamiltonian with a laterally

averaged substrate potential. Calculation of the energy of the 4He monolayer in the liquid phase

is performed in a manner consistent with the superlattice calculation. The 3-coverage superlat-

tice is found to be stable, while the 4-coverage monolayer chooses to remain in the liquid phase.

I. INTRODUCTION II. METHOD OF CALCULATION

The monolayer of 4He physically adsorbed on a
graphite surface has been a fascinating subject of
study, particularly in view of recent interest in two-
dimensional ordering. As the areal density changes,
the monolayer can in principle be found in phases of
two-dimensional liquid, lattice gas, and two-

dimensional solid. At
3

and 4 coverages, the mono-

layer can exist in either liquid or superlattice phase.
Experimentally, '2 it has been observed that at 3

coverage and near zero temperature, the adsorbed
4He atoms form a registered lattice gas. There is still
some uncertainty about the phase of a monolayer at
—„coverage. A theoretical calculation was carried out

by Novaco' comparing the ground-state energy of
each superlattice with that of the liquid phase4' at
the same density. But the ground-state energies of
the two phases were not calculated by the same
method, rendering the comparison somewhat unreli-
able, since in some cases the energies lie very close
to each other. We present here a variational calcula-
tion of the ground-state energies which treats the two
phases consistently, and discuss in those terms the
stability of the superlattice.

The method used was proposed by Lowy and
Woo. It was first applied to the solidification of bulk
quantum systems and then to the solidification of
4He monolayers adsorbed on graphite surfaces. ' Sub-
strate effects were not included in the latter. In the
present calculation we include static substrate effects
and bring the theory one step closer to reality. In
Sec. II we first describe the system to be studied. We
then motivate our choice of wave function and
present the method of calculation, pointing out pre-
cisely where approximations are made. The results
are given in Sec. III.

We consider N helium atoms adsorbed on a gra-
phite surface of area A. The areal density is then
n —= W/A. The Hamiltonian of the system is given by

N ~2 N N

H= X 'vr2+ X u(rj)+XU(r)
I $ 2m

u(r) =4m[(o/r)' —(o/r) ] (2)

with a=10.22'K, o.=2.556 A. U(r) is taken to be
the sum of pairwise contributions from all helium-
carbon interactions. Again a Lennard-Jones potential
is assumed .

v(lr-Kkl) =-.
I r —Rkl

'12
-2

I r —Rkl,
(3)

where R~ denotes the position of the kth carbon
atom in the substrate. We take

~=15.55'K and ra=3.09 A

It includes three terms. The first term represents the
kinetic energy of motion in directions both lateral and
normal with respect to the substrate surface. The
second term describes helium-helium interaction, r&,

.

denoting the distance between the ith and jth ada-
toms. The third term describes helium-substrate in-

teraction. r; denotes the position vector of the ith
adatom, the z =0 plane being defined at the substrate
surface with the substrate occupying the z «0 half
space, and the (x,y) measured from a coordinate sys-
tem attached to the substrate lattice where the origin
is at one adsorption site.
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The origin of these values will be discussed in the
Appendix.

The variational wave function 'I is taken as the
product of the single adatom wave functions $(r;)

~(r k)/2
and a Feenberg-Jastrow variational factor e

i 1 Jgk 1

(4)

Since the adatom is bound in the z direction and ex-
periences a periodic potential provided by the sub-
strate„ the single adatom wave function is chosen to
be the product of two expandable factors

$(r) =~""'X(z)

We write the exponent of the first factor as

t(p) = X toe'o",

(s)

where p stands for the two-dimensional position vec-
tor p

—= (x,y) and {G) represents a set of two-

dimensional reciprocal-lattice vectors that corresponds
to the superlattice structure assumed. By expanding
t( p) in this way, the single adatom wave function
becomes properly symmetrized on the substrate sur-
face. The coefficients {to ) will then be determined

as variational parameters. A liquid phase of the
rnonolayer corresponds to a constant surface part of
the single adatom wave function, thus {to }=0. In
contrast, when the monolayer finds itself in registry
with the substrate surface, at least one member of
the set {to) has to be finite. It is in this sense that
our calculation of the ground-state energies is con-
sistent for the two phases.

The second factor in $(r) is written as

x(z) = XC„M„(z),

where M„(z) denotes the vth bound-state wave func-
tion of the adatom in a laterally averaged substrate
potential. Details of calculating M„(z) are given in
the Appendix. {C„}will be determined variationally.
We normalize x(z) by the condition

x'(z) dz = IJp

Finally, in 4, we take

u(r) =-(ao/r)',
where a represents yet one more variational parameter.

The expectation value of the ground-state energy E
can be expressed in the exact form

E = Pt'~(r~) — —V3~ t( p~) + InX(z~) + U(rt) d r~
4m 2 Qz

t

2

+ —
I P (r), rz) — V')u(r)z) +u(r(3) dr) d r3

4m

where P (rt) and P (rt, r2) are the one- and two-particle distribution functions, respectively, the general defi-
nition of the n-particle distribution function being

P'"'(r~, r3, . . . , r„) =
(

' „„dr„+~ d r„+3 d r~)V)', (10)

Z= ~ drt drat)V)J

In solving for Pt'~(r~) and Pt3~(r~, r3), we start from the generalized Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) integral equations. These equations are obtained by taking the gradients of Pt'~(r~) and Pt3~(r~, rz)
with respect to r~. From Ref. 6,

and

VtP ' (r~) =P ' (r~) %~in/ (r~) +„tdr3P ' (r~, r3) V~u(r, z)

V~P (r~, r3) -P (rt, rz) [V~ Inch'(r~) + V~u(r~z)]+ JI 1r3P (r~, rz, r3) Vtu(f/3) (13)

Before proceeding further, we shall introduce some reasonably reliable approximations on the adatom-adatom
correlations in order to reduce mathematical complexities. Since the adatoms are very well localized in a plane
parallel to the surface, we assume correlations between. the adatoms in the z direction negligible compared to
correlations in the lateral directions. So, instead of being functions of r, the interaction u and the correlating fac-
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tor u become functions of p only. Correspondingly, we can write

P"'(r ) = P"' ( p )x'(z )

and

P '( ri, r2) = Pe" (p, . p,)X'(z,)X'(z,)

(i4)

(15)

(16)

where P~~'3 ( pi) and P~123 ( pi, p2) are now the one- and two-particle distribution functions on a plane, defined by

P~+1" PW j.e
(„) . W! i I J&k 1

i 1 J&k~1

The distribution function in the z direction reduces to the square of the wave function in that direction, as shown.
Equations (12) and (13) take on the two-dimensional form

and

ViePe' (Pi) =Pz' (Pi)71et(P1) + J Pe (Pi, P2)'71&u(P12)d P;

V'iiPt', "(pi, p2) =Pi',"(pit p2) ['7 et(p ) +'7,,u(p 2)]+J d p3Pt', "( pi, p, , p3)'Fit, u(pi3) (is)

Guided by previous work, we write

P,"'(pi, p2) =—P,"'(pi)P,"'(p2)g(pi, p2),

and apply Kirkwood's superposition approximation to Pe ( pi, p2, p3)

Pe (pi, p2, p3) =Pe' (pi)PiI' (p2)PtI' (p3)g(p2, 'p3)g(pi, p3)g(pi, p2)

Equations (17) and (18) then reduce to coupled equations for P ' ( p) and g ( pi, p2)

and

'71~1nPe' (pi) ='Piet(pi) + J Pt, ' (p2)g(pi p2)adieu(P12)d p2

71 lng ( pl p2) 71 u (P12) + JI d P3P,"' ( p3) g ( Pl P3) (g ( P2 p3) I j 71 u (pl3) (20)

These two equations should be solved simultane-
ously. A complete iterative procedure begins with
guessing a P»' (p3) in Eq. (20). One solves for
g(pi, p2) by iteration, and then substitutes it into Eq.
(19) to obtain a new P~"', which is in turn substitut-
ed into Eq. (20) for the determination of a new

g(pi, p2). These steps are to be repeated until con-
vergence. In practice, we shall solve each equation
only once. The first guess for Pet ( p3) is n =N/A,
the mean number density, so that Eq. (20) reduces to
the BBGKY equation for a two-dimensional liquid. 5

(21)

g( pi, p2) reduces to g(p12), the radial distribution
function for the uniform liquid. In close-packed lat-
tice one expects weak directional dependences of
g (Pi. P2)

In solving the first BBGKY equation (19), we fol-
low the method described in Ref. 7. It will be out-
lined briefly here for completeness.

We expand P~t'3 ( pi), first in the series

Pe"'(p) =n exp X boe'o e

G&0
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and then in the series

Pq' (p) =n X a oe'
G&0

(22)

where

F(G) = ——

Jl g(p)u'(p)pJ, (gp)dp, G W0,

By definition, the first relation between the coeffi-
cients a G and b G is established F(G =0) = —m„~ g(p)u'(p)p'dp, (26)

bG =tG+naGF(G) (24)

aa — exp Xbo,e'o 'e e ' 't'd p, (23)4 cell G'
r

where A is the area of the unit cell of the superlattice
structure. The integration is performed over the unit
cell.

Substituting these two expansions into Eq. (19), we
find a second relation between a G and b G for each
given choice of the trial wave function

Xe-iG dp (27)

(a o } can then be solved from Eq. (27) by iteration.
The energy expression, in terms of the variational

function u(p), t( p), and X(z), now appears as

and in Eq. (25) Jt(x) is a Bessel function of order 1.
Substituting Eq. (24) into Eq. (23), we obtain

r r

aG =—Jt exp X (to, + na o.F(G')]e'o ''r
cell

X a ~to G + X XaoC„C„—Jl J) e M„(zt)M (zt) U(r~) d p~dz
E

f11 G&0 GQ 0 V. V g cell 0

f+ OO

+nn g a ~ao J g(p) v(p) — Veu(p) pJp(Gp) dp — Pe' (pt)Xz(zt)
z

InX(zt) d ptdzt

(2g)

where Jo(G p) is a Bessel function of order zero. The last term is the kinetic energy that corresponds to motion
of the adatom in the z direction. It can be reduced to a simpler form by means of the normalization relation

Pet'~ (p)) d pt =N

used in conjunction with results shown in the Appendix. The final expression for the energy per adatom is given
by

A2

X a o to Gz+ X ga o C„C„—J J e 'M„(zt)M„(zt) U(rt)d ptdzt
+~0 G~0v, v

r r

goo Qoo

+nn X a oa o g(p) u(p) —— '7~u(p) pJO(Gp)dp+ XC„E'„—X C„C„
G&0 V, V

M„(z)M„(z)U(z) dz

(29)

Specifically, the variational parameters (C„}are deter-
mined by minimizing the energy with respect to (C„}
under the condition that Q„C2 =1. We solve on the

computer the set of equations

l-5

l.2--

"E'~) +XC =0+XC„=O,

~here A. is a Lagrange multiplier.

III. RESULTS

(30)
z 0.9-.
0
6)
KI- 0 6--
CO

a

The lateral pair distribution functions at densities
1 1

corresponding to —, and 4 coverages are shown in

Fig. 1. The areal densities are 0.0641 and 0.0481
A ', respectively. In both cases the value of the
parameter a which minimized the energy is 1.18.

0.0 l
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iNTERATOMIC DISTANCE (A)
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FIG. 1. Lateral pair distribution functions as calculated
1 1

for 4 and 3 coverages.
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Parameter Value for —cooverage Value for —coVa 4 coverage

a
T

Ci
C2
C3
C4
C5
C,

1.18
1.1

—0.999
—3.94x10 '
-1.59 x 10
-8.21 x 10

4.34 x 10-3
—2.23 x10 3

1.18
0.0
1.000

—3.06 x 10
5.10 x 10~

—2.58 x10 4

—1.46 x 10~
8.74 x10 5
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the two energies is small compared to our numerical
uncertainty; the result is thus not decisive. What is
certain is that the superlattice phase is significantly
more stable than either of the two liquid phases, the
energy difference being about 1 K.

Table I lists the variational parameters determined
for both cases. We observe C1 is much larger than

the rest of the elements of the set {C„).This fact
justifies the assumption of neglecting the correlation
between helium-helium atoms in the z direction.
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APPENDIX

FIG. 4. Laterally averaged He-substrate potential U(z)
and the three lowest bound states M1(z), M2{z), and

M3 (z ) in the normal direction.

BzM z
+U(z) =Z„M„(z) .

Z2
(Al)

The potential U(z) is the lateral average of the
adatom-substrate potential U(r) [Eq. (3)]. Explicitly
it is given by the expression

U(z) =—Jl d p U(p, z)

oo 12 6
4776 ~ 0 1

fP
0 5

fP

(z+nd)" (z+nd)'

The basis set {M„(z)) whose elements represent an
orthonormal basis of discrete states is obtained by

solving the one-dimensional Schrodinger equation for
a single adatom

~here A is the area of the substrate unit cell, and
0

d =3.37 A is the layer spacing.
Now given a choice of the pair (a, ro) the

Schrodinger equation (A l) can be solved numerically.
To make a specific choice of (e, ro) we follow the
method of Carlos and Cole: We choose the values
of 8 and fp that give a good fit between this calculat-
ed energy eigenvalue spectrum and the surface-
bound-state spectrum obtained from measurements
of He scattering by graphite. ' This approach gives
the optimal Lennard-Jones potential parameters

O

a=15.5 K and rp=3.09 A. In Fig. 4 we present a
plot of U(z) and the wave functions corresponding to
the three lowest bound states.
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