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Using the variational method proposed by Lowy and Woo, we calculate the ground-state ener-
gies of the %- and %-coverage superlattices of “He physisorbed on graphite. The properly sym-

metrized single-particle factors in the trial wave function are constructed from expansions in an
orthogonal basis set whose elements are the eigenfunctions of a Hamiltonian with a laterally
averaged substrate potential. Calculation of the energy of the 4He monolayer in the liquid phase
is performed in a manner consistent with the superlattice calculation. The %-coverage superlat-

tice is found to be stable, while the %-coverage monolayer chooses to remain in the liquid phase.

I. INTRODUCTION

The monolayer of “He physically adsorbed on a
graphite surface has been a fascinating subject of
study, particularly in view of recent interest in two-
dimensional ordering. As the areal density changes,
the monolayer can in principle be found in phases of
two-dimensional liquid, lattice gas, and two-
dimensional solid. At % and % coverages, the mono-

layer can exist in either liquid or superlattice phase.
Experimentally,’-? it has been observed that at -;—

coverage and near zero temperature, the adsorbed
“He atoms form a registered lattice gas. There is still
some uncertainty about the phase of a monolayer at
% coverage. A theoretical calculation was carried out

by Novaco® comparing the ground-state energy of
each superlattice with that of the liquid phase*® at
the same density. But the ground-state energies of
the two phases were not calculated by the same
method, rendering the comparison somewhat unreli-
able, since in some cases the energies lie very close
to each other. We present here a variational calcula-
tion of the ground-state energies which treats the two
phases consistently, and discuss in those terms the
stability of the superlattice.

The method used was proposed by Lowy and
Wo0.5 It was first applied to the solidification of bulk
quantum systems and then to the solidification of
“He monolayers adsorbed on graphite surfaces.” Sub-
strate effects were not included in the latter. In the
present calculation we include static substrate effects
and bring the theory one step closer to reality. In
Sec. II we first describe the system to be studied. We
then motivate our choice of wave function and
present the method of calculation, pointing out pre-
cisely where approximations are made. The results
are given in Sec. III.

II. METHOD OF CALCULATION

We consider N helium atoms adsorbed on a gra-
phite su~rface of area 4. The areal density is then
n=N/A. The Hamiltonian of the system is given by

N, & Nooo
H=27V,+ 2 v(r,-/)+2U(r,) . (1)

i=1 2 i>j=1 =1

It includes three terms. The first term represents the
kinetic energy of motion in directions both lateral and
normal with respect to the substrate surface. The
second term describes helium-helium interaction, r;
denoting the distance between the ith and jth ada-
toms.  The third term describes helium-substrate in-
teraction. T; denotes the position vector of the ith
adatom, the z =0 plane being defined at the substrate
surface with the substrate occupying the z <0 half
space, and the (x,y) measured from-a coordinate sys-
tem attached to the substrate lattice where the origin
is at one adsorption site.

v(r) =4el(a/r)2=(a/r)] , )

with €=10.22°K, 0 =2.556 A. U(T) is taken to be
the sum of pairwise contributions from all helium-
carbon interactions. Again a Lennard-Jones potential
is assumed

U@ =3 v(r-ReD ,
k

12
= - ro ro
V(‘?—Rk|)=€ [ = ] —2[ R
|I'—Rkl lr_Rkl

where fik denotes the position of the kth carbon
atom in the substrate. We take

§=15.55°K and ry=3.09 A .

. Q)
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The origin of these values will be discussed in the
Appendix. :

The variational wave function ¥ is taken as the
product of the single adatom wave functions ¢(7})

.. (ry )12
and a Feenberg-Jastrow variational factor e
—_ = — N - N u(rjk)/Z
Y(1, ..., T =[] 6(F) II e . “)
im=1 J>k=1

Since the adatom is bound in the z direction and ex-
periences a periodic potential provided by the sub-
strate, the single adatom wave function is chosen to
be the product of two expandable factors

& (T) =e'P2x(z) . (5)
We write the exponent of the first factor as
1(F) =3 15’07, (6)
" G=0

where p stands for the two-dimensional position vec-
tor p=(x,y) and (G} represents a set of two-
dimensional reciprocal-lattice vectors that corresponds
to the superlattice structure assumed. By expanding
t(p) in this way, the single adatom wave function
becomes properly symmetrized on the substrate sur-
face. The coefficients {t z} will then be determined

— )

as variational parameters. A liquid phase of the
monolayer corresponds to a constant surface part of
the single adatom wave function, thus {tz}=0. In
contrast, when the monolayer finds itself in registry
with the substrate surface, at least one member of
the set {¢z} has to be finite. It is in this sense that
our calculation of the ground-state energies is con-
sistent for the two phases.

The second factor in ¢(T) is written as

x(z) =3 C,M, @) Q)

where M,(z) denotes the vth bound-state wave func-
tion of the adatom in a laterally averaged substrate
potential. Details of calculating M, (z) are given in
the Appendix. {C,} will be determined variationally.
We normalize X(z) by the condition

j; X} (2)dz=1 . €]
Finally, in ¥, we take
u(r)y=—(ao/r)®,

where a represents yet one more variational parameter.
The expectation value of the ground-state energy E
can be expressed in the exact form

- £ |1 - 0’ I
E= me(r]) [—m l?V%pt(Pl) +-527 lnX(zl)] +U(T)|dT
2
+5 fP‘”(a,?z) [—f’;v%u(r,z) +v(r12)] dTydT; , ®

where PO(T}) and PP (T}, T3 are the one- and two-particle distribution functions, respectively, the general defi-

nition of the n-particle distribution function being

- = - N! - - -
P<")(l'1,l'2, e ,l‘,,) =m fdr,,ﬂdr,,”-“der‘I'lZ 5 (10)
where
z=fda---d?,v|w|2 . an

In solving for P(F}) and P@ (T, Ty), we start from the generalized Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) integral equations. These equations are obtained by taking the gradients of P’(T}) and P? (T}, T

with respect to T;. From Ref. 6,

VPO(E) = POF) Vi ng (7) + [ dBPO(F,7) Viu () (12)
and
V1 PO(F,,Ty) = PO(F, T [V, Ing(F) + Vyu (r)] + f AT PO (7,7, T Viu () 13)

Before proceeding further, we shall introduce some reasonably reliable® approximations on the adatom-adatom
correlations in order to reduce mathematical complexities. Since the adatoms are very well localized in a plane
parallel to the surface, we assume correlations between the adatoms in the z direction negligible compared to
correlations in the lateral directions. So, instead of being functions of T, the interaction v and the correlating fac-
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tor u become functions of p only. Correspondingly, we can write

PO(F) =P® (5)X(z)
and

P(z)(ﬂ,?z) =P;2) (p1. 92 X2(21) Xz(lz) ,

(14)

(15)

where PV (5)) and P? (), 5,) are now the one- and two-particle distribution functions on a plane, defined by
) )

- g LT ARR.ATP
dPn+1--d py He H €

J<k=l ]

- = - N!
P (B Py - - Pn) = N —m!

N o e
dpy--dpn|[Te ™ II e

] . (16)

J<k=l

The distribution function in the z direction reduces to the square of the wave function in that direction, as shown.
Equations (12) and (13) take on the two-dimensional form

VP& (5) =P (5) V1,t (5) +fP,§2)(ﬁl,ﬁz)vlpu(pu)dﬁ; . an
and

VP2 (515D = PP (51, 5D [V 1,0 (B) + Vy,u(p)] + f d 53PS (51,52, 59 Vi (p13) (18)
where )

=[98 9
?loax’ dy

Guided by previous work,® we write

PP (5.7) =P (3PN (e (51,5

and apply Kirkwood’s superposition approximation to P> (5, 52, 53)

P;” (31, 52, 53) = P;l) (ﬁ])P;n (ﬁz)P;” (7)‘3)3('52,'-53)8(31, 53)8 (ﬁl, 52)

Equations (17) and (18) then reduce to coupled equations for P"’(5) and g(51, 52

Vi, InPV (5) =Vt (B + fP;n (8)8(51, 92D V1,4 (p1)d b, 19)
and
Vi,Ing (51,82 = Vi,u (pi) + f dpsPL (58 (51,59 8 (52, 53) —11V,,upyy) . (20)
| g

These two equations should be solved simultane-
ously. A complete iterative procedure begins with
guessing a P (3) in Eq. (20). One solves for
g(p1, p2) by iteration, and then substitutes it into Eq.
(19) to obtain a new P, which is in turn substitut-
ed into Eq. (20) for the determination of a new
g(P1,P2). These steps are to be repeated until con-
vergence. In practice, we shall solve each equation
only once. The first guess for P (53) is n =N/A4,
the mean number density, so that Eq. (20) reduces to
the BBGKY equation for a two-dimensional liquid.’

g (1, p2) reduces to g(p1y), the radial distribution
function for the uniform liquid. In close-packed lat-
tice one expects weak directional dependences of
g(p1,p). '

In solving the first BBGKY equation (19), we fol-
low the method described in Ref. 7. It will be out-
lined briefly here for completeness.

We expand PV (), first in the series

P (F)=nexp| 3 baeia'W] @y
G=0
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and then in the series

PO (F)=n 3 ageT7 . 2)
G=0

By definition, the first relation between the coeffi-
cients a g and b i is established

-

e_xp[_z b 6.e"6"7"]'e"'0'?d ., (3)
£

=1
46 A Vel

where A is the area of the unit cell of the superlattice
structure. -‘The integration is performed over the unit
cell.

Substituting these two expansions into Eq. (19), we
find a second relation between a z and b i for each
given choice of the trial wave function

bg =t +nacF(G) , (24)

where

F&)==2 ["e(u'p)phiep)dp. G =0 ,
(25)

F(G=0)=—n [ g(u'(pidp , 26)

and in Eq. (25) J,(x) is a Bessei function of order 1.
Substituting Eq. (24) into Eq. (23), we obtain

1
4= A Vel exp

Sltg +na (—;«F(G')]e’a"'_"'
a’r

x "SP4y . oX))

{a 3} can then be solved from Eq. (27) by iteration.
The energy expression, in terms of the variational
function u (p), t(5), and x(z), now appears as

E ﬁ 1 iG B, 3
N 8m § +G§o;§a gC.Cy fceuf M(Z‘)M’(zl)u(rl)dpldz
tnm 3 a gagf () v(p)—-—vzu(p) pJo(Gp) dp —-———-——fP“)(pl)xz(zl)—lnx(zl)dpldzl ,
G=0
(28)

where Jo(G p) is a Bessel function of order zero. The last term is the kinetic energy that corresponds to motion
of the adatom in the z direction. It can be reduced to a simpler form by means of the normalization relation

JPO Gy am=N

used in conjunction with results shown in the Appendix. The final expression for the energy per adatom is given

by

E_#
N 8m §

G=ovv

(o) = =20 (p)
VT VPP

+nm 3, aaaaj; g(p

G=0

Specifically, the variational parameters {C,} are deter-
mined by minimizing the energy with respect to {C,}
under the condition that Ev C2 =1. We solve on the
computer the set of equations

d(E/N)

= 3
aC, +1C,=0 , 30)

where X is a Lagrange multiplier.

III. RESULTS

The lateral pair distribution functions at densities
corresponding to -l— and l coverages are shown in
Flg 1. The areal densmes are 0.0641 and 0.0481
A2 , respectively. In both cases the value of the
parameter a which minimized the energy is 1.18.

24 2 Ea-C C, L f"f TP PIMLGOM, (Zl)U(I‘l)dPlel

pIo(GpPdp+ 3 C2EL ~ 3,C,Cy [ MM T () dr .

29)
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FIG. 1. Lateral pair distribution functions as calculated
1
for % and 3 coverages.
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FIG. 2. Ground-state energies for the %-coverage and

1 . .
3 -coverage monolayers as functions of the variational
parameter 7.

As mentioned in Sec. 11, if the absolute minimum
in the energy is obtained only when the set {t 5}
equals the null set, we conclude that no periodic
structure is stable with respect to the liquid confi-
guration. Alternatively, if there is some nonzero set
{tz} such that the energy of the corresponding
periodic configuration is less than the liquid (at the
same density) energy, this particular superlattice
structure will be stable with respect to the liquid.

We vary the first nontrivial #,, where G, stands

for the first vector in the reciprocal-lattice space, in
order to obtain the energy minimum. We denote this
l, by T and set the rest of the elements of the set
{tz) temporarily to zero. Furthermore, in calculating
the one-particle distribution we use the values of the
coefficients a g, b g, and F(G), for |G | out to the
tenth nearest-neighbor distance in the reciprocal-
lattice space. This means retaining 73 terms in the
Fourier series sum. The energy expectation value as
a function of T is shown in Fig. 2.

In the 71‘- coverage case, the energy increases

FIG. 3. P;” (p): lateral distribution of adatoms in the

1
3 -coverage monolayer.

monotonically with 7. No minimum exists at finite
T. The minimum that occurs at T =0 establishes a
stable liquid phase with energy of —135.0 K per parti-
cle. There is no sign of a registered superlattice.

For the % coverage, however, there is a minimum
at finite 7. The stable phase is a registered superlat-
tice. The ground-state energy is —135.2 K per parti-
cle and the corresponding 7 =1.1. Figure 3 shows
PV () and the extent of localization.

To ascertain these findings, we fix T at the value
that minimizes the energy, and vary the energy with
respect to t; 2 where Gz is the second-nearest-

neighbor vector in the reciprocal-lattice space. We
find the minimum occurring at lG, =0.

We also consider the phase of a "slightoly structured
liquid" with the mean density of 0.0641 A~?
(corresponding to % coverage) and small fluctuations
of the density commensurate with the periodicity of
the substrate. Our calculations show that the "slightly
structured liquid" seems to be slightly more stable
than the uniform liquid. But the difference between

. . . . 1 1
TABLE 1. Variational parameters as determined in calculations for vy and 3 coverages.

Parameter Value for -;— coverage Value for % coverage
a 1.18 1.18
T 1.1 0.0 .
G —0.999 1.000
&) —3.94 x 1072 —3.06 x1073
Cs v —-1.59 x 1072 5.10 x 1074
Cy —8.21x1073 —2.58 x 1074
Cs _ 4.34 1073 —1.46 x 10~

Cs —2.23 x1073

8.74 x 10~5
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the two energies is small compared to our numerical
uncertainty; the result is thus not decisive. What is
certain is that the superlattice phase is significantly
more stable than either of the two liquid phases, the
energy difference being about 1 K.

Table I lists the variational parameters determined
for both cases. We observe C, is much larger than
the rest of the elements of the set {C,}. This fact
justifies the assumption of neglecting the correlation
between helium-helium atoms in the z direction.
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APPENDIX

The basis set {M,(z)} whose elements represent an
orthonormal basis of discrete states is obtained by
solving the one-dimensional Schrodinger equation for
a single adatom

B ¥M, ()

P +U(z)=EM, (2) . (A1)

The potential U (z) is the lateral average of the
adatom-substrate potential U(T) [Eq. (3)]. Explicitly
it is given by the expression

=1 .
U(z)—Afce"de(p,z)

12 6
ro ro
0.1

. —-0.5
(z +nd)'® (z + nd)*

»

4E <
A5

200 3.0
x 0(2)
O M(2)
O My(2)
. 1007 & M3(Z) +15
£ 8
P
- Q
< z
= [o] — =]
£ 00 2
£ W
o a
o =
-100+ L5
-200. t } + t -3.0
o 2 4 6 8 10

z (b

FIG. 4. Laterally averaged 4He-substrate potential U(z)
and the three lowest bound states M,(z), M,(z), and
M(z) in the normal direction.

where A4 1°s the area of the substrate unit cell, and
d =3.37 A is the layer spacing.

Now given a choice of the pair (§,rq) the
Schrodinger equation (A1) can be solved numerically.
To make a specific choice of (&,ry) we follow the
method of Carlos and Cole’: We choose the values
of € and rq that give a good fit between this calculat-
ed energy eigenvalue spectrum and the surface-
bound-state spectrum obtained from measurements
of “He scattering by graphite.! This approach gives
the optimal Lennard-Jongs potential parameters
€=15.5K and ry=3.09 A. In Fig. 4 we present a
plot of U(2) and the wave functions corresponding to
the three lowest bound states.
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