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Optimal and nearly optimal distribution functions for 4He
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The properties of the Euler-Lagrange equation obtained by minimizing the hypernetted-chain

energy of a boson fluid are studied. We consider the asymptotic form of the resulting two-body

distribution function, g(r), and show that g(r) —1 is proportional to r~ for short-ranged po-

tentials. The stability condition for g(r) is expressed as an eigenvalue problem, and the relation

to the adiabatic compressibility is established. Previous numerical results for liquid 4He are
shown to describe an energy minimum. The existence of low-lying eigenvalues for all I and the

nature of the related nonspherically symmetric eigenfunctions suggest the existence of addition-

al "crystalline" solutions of the Euler-Lagrange equations.

I. INTRODUCTION

Treatments of the many-body problem of infinite
matter invariably involve compromise between the
desire to invoke only general principles and the need
to produce numbers which may be compared with ex-
periment. Consider first the exact wave function.
Feynman's elegant arguments provide a very useful
relationship between the compressibility and the
liquid-structure function at small momenta. ' De-
tailed calculations at this level, involving the equally
elegant Monte Carlo solution of the Schrodinger
equation for a finite number of particles, 2 provide
useful numbers but are short on analytic results. At
a second level, one may consider variational calcula-
tions using correlated pair (i.e., Jastrow) wave func-
tions. For this problem, Krotscheck has made some
interesting analytic arguments, Monte Carlo calcula-
tions provide numerical results, but neither approach
provides both. Our discussion will be at a still lower
level, that of a correlated-pair wave function within
the hypernetted-chain (HNC) approximation. Within
this framework, we are able to obtain both useful
analytic properties and respectable numerical results.
In fact, the interplay between numerical and analyti-
cal methods has had a substantial effect in directing
our work. Our studies indicate that this level may be
particularly rich because the important numerical and
analytic features of the many-body problem which
must appear separately at higher levels of discussion
are seen to be rendered rather faithfully within the
HNC framework.

We have previously constructed Euler-Lagrange
equations to find the two-body distribution function,
g (r), which minimizes the energy of boson matter as
calculated in the HNC approximation and have of-
fered a numerically convenient method for its solu-
tion. 5 Solutions of the Euler-Lagrange equation are
the same as solutions obtained with the pair-phonon
analysisa in the HNC approximation. ' " In the

present work we have used the Euler-Lagrange equa-
tion formalism to investigate the behavior of the en-
ergy functional in the neighborhood of stationary
points and hence to address some interesting and
closely related problems arising in this region. In
Sec. II we shall demonstrate by a specific example an
inadequacy of the Jackson-Feenberg energy function-
al. Specifically, the expectation value of the kinetic
energy operator is not necessarily positive, and the
binding energy of boson matter may be made arbi-
trarily large, provided only that the volume integral
of the two-body potential is finite. This pathology is
similar to but less serious than difficulties previously
noted for the Pandharipande-Bethe energy function-
al." As a consequence, it becomes important to
verify that solutions to the Euler-Lagrange equation
are truly local energy minima.

In Sec. III we shall construct formal tests for the
stability of these solutions in terms of the positivity
of the eigenvalues of the linearized kernel which was
previously introduced to facilitate numerical solution
of the Euler-Lagrange equation. This provides con-
siderable support for the numerical strategy previous-
ly adopted. We shall illustrate this point by demon-
strating the stability of the numerical solutions found
earlier for 4He.

In Sec. IV we shall consider a number of points re-
lated to the asymptotic behavior of g(r) and the re-
lated liquid-structure function, S(k), obtained from
the Euler-Lagrange equation. We stress that our
analysis is based solely on the Euler-Lagrange equa-
tion and makes no reliance on arguments like
Feynman's. For potentials falling to zero faster than
r '0, we shall demonstrate that if S(k) ~ k" for small
k, then v is necessarily 1. This demonstrates the
long-range nature of the optimum g(r) [i.e., that
g(r) —I is proportional to r ' for large r]. Short-
ranged solutions can exist only if S(0) A 0. In this
case we shall show that. if the corresponding eigen-
value spectrum is positive, then the compressibility
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must be negative. As a consequence, short-ranged
solutions to the Euler-Lagrange equation can exist
but, if they do, they are of little physical interest.
The asymptotic behavior of g(r) is also determined
for potentials of longer range.

Finally, in Sec. V we shall return to the question of
stability and consider the eigenvalues for nonspheri-
cally symmetric eigenfunctions of the linearized ker-
nel. Both the spectrum of eigenvalues and the quali-
tative features of the eigenfunctions are of interest.
We shall also discuss the role that these nonspherical-
ly symmetric functions might play in generating crys-
talline states of boson matter.

II. AN INSTRUCTIVE EXAMPLE

We have previously shown that attempts to solve
the Euler-Lagrange (EL) equation using the
Pandharipande-Bethe form of the kinetic energy are
not successful. ' Specifically in this form the expecta-
tion value of the kinetic energy operator is not
guaranteed to be positive. Starting from reasonable
initial guesses for g(r) we were led smoothly to phy-
sically useless g(r) yielding an arbitrarily large and
negative value for the kinetic energy. This was not
the case when the Jackson-Feenberg (JF) form of the

kinetic energy operator' was used. We wish to note,
by means of an example, that the JF kinetic energy is
not entirely free of problems. To show this, let us
write the HNC energy of boson matter, using the JF
kinetic energy functional, as

+~pJ gVd3r

in units where g2/m is equal to 1. Of course this
functional is only approximate because the HNC
equation has been used to eliminate the correlation
function in favor of g(r). Here, the first two terms
may be identified with the kinetic energy, while the
last term is the potential energy. The liquid-structure
function, S(k), is simply 1+p &(g —1), where 5'(f)
denotes the Fourier transform of f. Let us evaluate
FqF using the following short-ranged choice for g (r):

-bl'g(r) —1 =ae ~'

and
t 3/2

—k 4'S(k) —1 =pa — e "~ ~,
b

where a and b are constants to be determined. Cast-
ing the integrals in Eq. (1) in dimensionless form,
one finds

2 3/2 -2x2
d +—' d' (1+ -")V()

, (1+ac ")[1+pa(m/b) ~2e "
], ,

(3)

Let us consider potentials with a finite volume in-
tegral such that the potential energy term in Eq. (3)
is less than z p(1+ a) times the volume integral of
the potential. (Here, a is assumed positive. ) The
numerator term in the kinetic-energy integral varies
from 1 pa2(n/b—)3~2 for small x to +1 for large x.
We consider the case a && 1 and b « p. In this
case the term in large parentheses can be made neg-
ative (and approximately —1) until well beyond the

4 -2@2
peak in x"e " so that the kinetic energy is negative
and proportional to a . Thus, EJF may be made arbi-
trarily negative by choosing a to be suitably large.
The feature of the trial g which causes this instability
is its large overshoot of 1. The particular form used
above was chosen for simplicity so that g and S would
both have simple analytic forms and the unbounded-
ness from below of the energy functional could be
easily demonstrated. More physically appealing g's
could do the same trick.

The above example demonstrates the worst kind of
runaway: small changes in the distribution function
cause linear decreases in the energy. A solution of
the EL equation is an improvement because it at least
guarantees a stationary point of the energy function-

al. However, smooth variations of g still may lead,
albeit quadratically, into a region of runaway. If in
addition the solution corresponds to a local
minimum, infinitesimal variations of the distribution
function can only increase the energy and it will take
at least a finite variation in g to reach a region where
runaway can occur. We shall insist that solutions be
local minima before granting them physical signifi-
cance. This will not guarantee the validity of the
HNC approximation, but it certainly rules out those
distribution functions which most openly take advan-
tage of weakness in the HNC approximation.

Note that the problem with the Pandharipande-
Bethe energy functional is worse than with the
present Jackson-Feenberg functional, since solutions
of the corresponding EL equation have not been
found. Finally, distribution functions may give ap-
parent local minima when constrained by some
parametric form. In the complete function space
these generally do not correspond to extremals or
even saddle points; hence, distribution functions ob-
tained this way depend crucially on the constraint im-
posed by the parametrization. A true solution to the
Euler-Lagrange equation has no such external con-

. straint.
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III. STABILITY CONDITIONS AND
THE COMPRESSIBILITY

—'7~g'/2+ (V+ W)g'/ =0 (4)

where S'is defined in terms of its Fourier transform

%e have previously constructed the EL equation
designed to find choices of g(r) which yield extrema
for the energy of Eq. (1).5 6 This assumes the form

EJF, This is most easily accomplished by adding to
the solution g' an almost arbitrary' function, Sg'
and finding the conditions such that contributions to
FIF of order (Sg'/')~ are positive for all choices of
Sgt/'. Since g'/' is a solution of Eqs. (4) and (5), we

expect linear contributions to EJF to vanish automati-
cally. %e start by rewriting Eq. (1) as

I

E =-p„g'/2 —'72+ V+5 g'/ d
P

-k2(2S +1)(S—1)2

4pSt
(5)

%e now wish to find ways to verify that a solution to
Eqs. (4) and (5) corresponds to a local minimum of

I

and expanding through second order in Sg'~2. This
yields

E (g' +Sg' ') =E + p gg' ' —V'+ V+I g' 'dr +-p gS Zgg) dr+SE2
—k2(S —1)' —k2(S2 —1)

JF JF 4 S 4S2p

SE2 = —P Sg' —V + V+ 5 5g' dy
—k2(S —1)2

2 2 4pS

where we note that

ag 2gl/2gg1/2 + (ggl/2)2

Changing orders of integration we find that
I

EJF(g +Sg ) EJF + 5E, +-p J gg '
Iy gg / dr +p Jt QgI/2( —p~+ V + lV)gI/2 d'rI/2 IP I I/2

—k2(S —1)~(S + 1)
4PS2

(10)

aIld

~,(k) ~ k2(S3 —1)
S3

(13)

Here, the symbol ~ denotes a convolution integral.
Note that the linear terms in Sg' have vanished
from Eq. (11) as expected. The condition that
EIF(g'/2) be a minimum is equivalent to the condi-
tion that the second term in Eq. (11) be positive for
all choices of Sg' . This will be the case if a11 eigen-
values, A.„,of K defined by

+3'n = ~n3'n

are positive. '4

(14)

Ustng Eq. (4), the last term in Eq. (10) vanishes and

we find

(gI/2 + ggl/2) g (g I/2) + gg I/2'' gg I/2 d

(11)
where the kernel, E, is defined by

Ey =(—V + V+ fV)y —g'/ 't lV' (g'/y) dv

(12)

Equation (14) is a linear integrodifferential eigen-
value equation. Lest the reader find this unduly for-
midable, we hasten to emphasize that Eqs. (12)—(14)
form a practical test and fit neatly into the iterative
scheme previously advocated for the numerical solu-
tion of the EL equation. Specifically, given an nth-

order approximation, g„', we find the inhomogene-
ous equation

(g I/2 g I/2) (P 2 V 1V)g I/2 (15)

where E is again given by Eqs. (11) and (13). Ap-
proximating the integral in Eq. (15) by a sum over a
suitable mesh of points and replacing V' by finite
differences, Eq. (15) becomes a set of inhomogene-
ous linear equations. The iterations of this Newton-
Raphson scheme converge rapidly. Similar numerical
approximations convert Eq. (14) to a matrix eigen-
value equation. The positivity of all eigenvalues of
this matrix then ensures that g'~2 will represent an
energy minimum. This test is thus elementary (i.e.,
linear) and easily performed.

As a numerical example, we sha11 consider liquid
4He using the Lennard-Jones potential of Ref. 15. In
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Table I we show the lowest eigenvalue of Eq. (14) at
each density for spherically symmetric Sg' . The en-
ergies in this density range have been reported previ-
ously in Ref. 7. All calculations were performed in a
box of radius at least 48 A. Although this is roughly
20 times the range of the force, smaller box sizes
have noticeable effects on both eigenfunctions and
consistency of solution. For all densities greater than
the calculated equilibrium density (about 0.017 A ),
the lowest eigenvalue is positive and the calculated
energy corresponds to a local minimum. e shall
postpone a more detailed discussion of these eigen-
functions and their eigenvalues to Sec. V.

The kernel of Eqs. (12) and (13) plays yet another
role. The density derivative of the optimum distribu-
tion function is readily determined from the inhomo-
geneous equatioa.

„,~ k'($ —I)'($+2)
4 2S3 (16)

TABLE I. Lowest I =0 eigenvalue as a function of densi-

ty. Note that. l A =12.12'K.

This density derivative is particularly useful in

evaluating the compressibility'

dE I ~ d3k k~(S —I)~(S+2) dS

dp 2 " (2n)' 4S' dp

(17)
Equation (17) may be recast in terms of E by first
multiplying Eq. (16}by dg'~~/d p and integrating to
obtain

dg1/2 dg1/2E dv

I " dk k(S —I) (S+2) dg

(2~)3 4p2$3 dp

(18)
Recalling the definition of S(k} we note

dS S —1 + ~ dg

dp p
' "

dp

so that the integral of Eq. (18) is seen to play a role
in the compressibility expression of Eq. (17). With

the aid of the EL equation we may rewrite Eq. (I)
as

d k k3(S+1)(S—1) k~

(2n) gpS 8S

dE 1 dk 'k(S —I)
dp 2 " (2m)' 4pS'

Inserting Eqs. (18)—(21) into Eq. (17), we find

d k k (S —1) (S+I)
(2m)' 4pS'

(20)

(21)

dg ~ dg d
k

p
dp dp 4S

(22)

Equation (22) is not particularly useful numerically.
Ho~ever, a result of some importance may be
derived from it. Consider the case when $(0) WO.
Working from Eq. (16) and the trivial equation

1

pp~
—k~($3 —1)(S —I)

pS3

one quickly arrives at the expression

(23)

sc g + sag~/~= —gw .
dp 2p p

Assuming that E exists (i.e., that no eigenvalues
are zero), one obtains an alternate form for Eq. (18)

dg &l& dg &/&

E dr= —Jt (g' 'W)E '(g'~ W) dr
dp dp p~

(24)

(25)

d3k k~(S —I) (S+I)
(2~)', 4&4$'

g'/'sc
dg1/2

p dp

g Eg dT
4p2

Using Eqs. (16) and (23), we obtain

d. = JI (g'~'w)z '(g'~'w) d. -
dp dp

p(A ')

0.0165
0.018
0.021
0.024
0.027
0.030

Z (A-')

2.51
2.46
2.32
2.16
2.00
1.83

Comparison with Eq. (22) yields a very simple ex-
pression for the compressibility valid when S(0) &0

C = —p J~ (g''8')E '(g' 'W) dr (27)

Equation (27) allows us to make a reasonably
strong statement when S(0) A 0. If any of the eigen-
values of E are negative, the solution under con-
sideration does not represent an energy minimum
and is not of interest. If all eigenvalues of Rare po-
sitive, the solution represents an energy minimum
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but, according to Eq. (27), the compressibility is neg-
ative. The solution is thus unstable with respect to
small perturbations of the density. (We can make no
statement in the case when one or more of the eigen-
values of E is precisely zero. ) Thus, while the EL
equation may have solutions with S(0)WO, they are
of no physical interest. We shall show in Sec. IV that
(for potentials going to zero faster than r '0) if there
are solutions with S(0) & 0, they are necessarily of
short range so that g(r) —1 approaches zero faster
than any power of r for large r. Thus, we are well on
the way towards showing that Eqs. (4) and (5) pos-
sess no short-range solutions of physical interest.

IV. ASYMPTOTIC PROPERTIES OF
THE DISTRIBUTION FUNCTION

We wish to study the structure of the EL equation
for large r in order to determine constraints on g (r)
for large r and, simultaneously, S(k) for small k. To
facilitate these considerations we shall employ some
properties of asymptotic Fourier transforms. ' In
particular, if $(Z) is proportional to k" for small k,
Z(r) is proportional to r " ' for large r unless v is an
even integer greater than or equal to zero. In this
case, Z(r) vanishes faster than any power of r (for
large r), and nonleading contributions to $(Z(r))
determine the asymptotic form of Z(r).

Let us rearrange the EL equation slightly as

( ) ~
k~(S~ —1)

4pS2
(29)

The point of this rearrangement is that if g = 1+5g,
the first term in Eq. (28) is of order (Sg)'/r'.

One immediate result of this equation follows if we
divide by g' ' and integrate over all space. This gives

J
~g ~g '

J d
4

(30)

Since the two terms on the right are non-negative,
the volume integral of the potential must be non-
negative for the EL equation to have a solution.
Furthermore, if the volume integral of the potential
is zero, then from Eq. (30), g must be one. The EL
equation then implies that the potential is zero. In
summary, the only system with a nonpositive volume
integral of the potential which has a solution to the
EL equation is the noninteracting boson gas. Hence
the EL equation correctly signals the well-known col-
lapse of matter for systems with potentials whose

——( 7 g) + —. +g ~ co(r) + Vg'~~=0t 2 1 —g 1 (Vg)
2 g 1/2 4' g3/2

(28)

where

volume integral is negative. "
We shall next consider the interesting case in

which S(0) =0. The case S(0) WO was essentially
dismissed in Sec. III. For the moment, we shall con-
sider the case of particular interest to nuclear physics
in which V(r) vanishes faster than any power of r for
large r. The large r behavior of Eq. (28) is thus
governed by the first two terms. In the following we
assume that S(k) is proportional to k" with v & 0 in
the small k limit. [This is consistent with the in-
teresting case S(0) =0.] If v is not equal to 2, 5g
vanishes at least as rapidly as r " ' and the first term
in Eq. (28) vanishes at least as rapidly as r
Since co(k) is proportional to k~ ~", if v is not equal
to 1 or 2, the second term in Eq. (28) is proportional
to r + ". There is no v )0 such that these ex-
ponents are equal, and thus the leading terms cannot
cancel. As a consequence, the EL equation can pos-
sess solutions of the form S(k) ~ k" only if v =1 or 2.
The case v =2 will now be eliminated.

If v = 2, the asymptotic behavior of Sg is deter-
mined by nonleading terms in S(k). If
S(k) ~ k~(1+pk"), with p, & 0 and not an even in-
teger, g is proportional to r ' ". The first term in Eq.
(28) is proportional to r " 'v. The leading terms in
cu(k) show that the second term is proportional to
1/r. There is no p, & 0 which will satisfy the EL
equation to leading order, and the case v =2 is ex-
cluded.

Finally, if v = I, the first term in Eq. (28) is pro-
portional to r ' . The second term is determined by
nonleading terms and is proportional to r ". In this
case an acceptable solution may be found with p, =7.
The coefficients of these terms with equal exponents
can be made to vanish by a suitable choice of p.
Thus, solutions of the EL equation of the form
S(k) ~ k" with v & 0 must have v =1. Additional
odd powers of k may be added to S(k) without
changing the present results. The leading even term
in S(k) must be k8. In this case g —1 is proportional
to r 4 for large r. It is satisfying to note that this is
the asymptotic behavior expected for the true (as op-
posed to the present HNC) distribution function.

By arguments completely parallel to those above,
we can show that, if S(0) is nonzero, no solution to
the EL equation exists unless S(k) is an even func-
tion of k and, hence, g —1 is of short range. Note
that, as elsewhere in this section, this represents a
necessary condition for solutions. -We have not
proved the existence of these solutions. We recall
from Sec. III that solutions with S(0) W 0 either have
negative compressibility or do not represent local en-
ergy minima. We now see they are also short ranged.
Thus, we believe that the EL equation does not have
physically interesting short-ranged solutions.

We have nonetheless constructed specific analytic
potentials which have analytic short-ranged solutions
of the EL equation. Further discussion of these
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FIG. 1. Solid line shows the distribution function g(r);
the broken line shows r~(g —I). The density is 0.0165 A. 3.

cases is not warranted in view of the above remarks.
It is amusing to note that solutions with S(0) WO are
the only ones of physical interest in the HNC calcula-
tions of classical statistical mechanics; the long-
ranged solutions with S(k) proportional to k
correspond to systems with infinite isothermal
compressibility.

The present arguments must be modified slightly
when V(r) falls off less rapidly than r 's for large r.
In this case the leading terms, which must be made
to cancel if a solution is to exist, come from the
second and third terms in Eq. (28). Let us restrict
our attention to potentials with asymptotic behavior
r "where n is a positive integer. If $(k) is propor-
tional to k, the asymptotic behavior of cog' ' is deter-
mined by nonleading terms and solutions can exist
for n =4, 6, 8, and 10. In this case the leading even
term in S(k) is k" '. For S(k) proportional to k"
with v )0 and v &1, leading terms in ~g'~' come
from leading terms in S(k). Thus, the sign of this
term is uniquely determined as well as the exponent.
Long-ranged solutions with v =2, —,, and —, can thus

be found for n = 1 (repulsive), n =2 (attractive), and
n =4 (attractive), respectively. The first case v =2,

FIG. 3. Curves of Fig. 1 are shown at a density of 0,030

n = 1 (repulsive) corresponds to the expected result
for the Coulomb gas. Long-ranged solutions of the
type considered here are thus excluded for attractive
I/r potentials and for potentials with n =3, 5, 7, and 9.

These arguments do not exclude short-ranged solu-
tions with S(0) AO. Neither have we excluded
long-ranged solutions with S(k) proportional to
k"(lnk)" with u )0. These solutions should be stu-
died for completeness. By a similar study of the lead-
ing terms in Eq. (2II) at large r, it is possible to rule
out the possibility that $(k), or any of its deriva-
tives, has a discontinuity along the real k axis. As a
consequence, we can conclude that the oscillations in

g —1, which are characteristic of solutions of the EL
equation for the Lennard-Jones potential, must &amp
out exponentially revealing the simple power-law
behavior discussed above. However, the distances at
which this asymptotic behavior sets in are remarkably
large. This is illustrated in Figs. 1—3. At low densi-
ties (e.g. , 0.0165 A ), the compressibility is small
and the oscillations die quickly while the asymptotic
behavior is achieved very slowly. At much higher
densities (e.g. , 0.030 A ) the ringing persists to
much large distances although the zero point of the
oscillations attains its asymptotic value more rapidly.
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The full asymptotic form is reached most quickly for
intermediate densities. From these and similar calcu-
lations we may extract the slope of S at k =0 as

S'(0) = —pm' lim (r'(g —I)]
f ~oo

The slope of Sat k =0 is shown in Fig. 4 as a func-
tion of density. The plot suggests that S'(0) becomes
infinite at a density of approximately 0.015 A where
the calculated compressibility goes to zero.
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V. NONSPHERICALLY SYMMETRIC
EIGEN FUNCTIONS

Let us return to the stability conditions discussed
in Sec. III. As shown in Eq. (11), a solution of the
EL equation will represent an energy minimum if all

eigenvalues of Eq. (14) are positive. In Table I we

showed that all spherically symmetric eigenvalues for
the liquid 4He system are positive for densities
greater than 0.0165 A '. For the sake of thorough-
ness; however, we should verify the positivity of all

eigenvalues of this kernel for all angular momenta.
In the absence of the final (nonlocal) term in Eq.
(12) one would anticipate that no surprises lurk in

the higher l values. This is not the case. To see this
simply let us consider Eqs. (12)—(14) in the limit of
large l. If l is sufficiently large, the centrifugal barrier
will force y to zero at short distances where the local

terms, V+ W, are of importance and where g is sig-

nificantly different from 1. In this limit, one may
write the Fourier transform of the eigenvalue equa-
tion as

k2 S3-1
k2&(yt) 5(yt) kt $(y (31)

It is clear from Eq. (31) that, in this approximation,
the eigenfunctions y„'(r) look like spherical Bessel
functions jt(k„r) with X„given as k„/S (k„). In
principle, these eigenvalues form a continuum. In
practice, placing the system in a large box to facilitate
numerical solution will sample the continuum spec-
trum at those values of k for which y '(kr) vanishes
at the walls.

In Fig. 5 we show k'/S'(k) for liquid 'He for den-

sities from 0.0165 to 0.024 A '. A number of in-

teresting features emerge. Since S(k) vanishes
linearly with k, the eigenvalue grows like 1/k for
small k. For large k, S(k) approaches 1 so that the
eigenvalue grows like k2. Thus, these continuum
eigenvalues are at least doubly degenerate.
(Although this rigorous degeneracy will be broken
when the system is placed in a box, evidence. for this
twofold degeneracy is found in our numerical studies
of the eigenvalue spectrum for all /. ) The continuum
spectrum begins at the minimum value of k'/S'(k)
independent of l with an eigenfunction which is
characteristic of the momentum for which the

I

2
I I

I

k rizi]

FIG. 5. Function k /S (k) is shown as a function of k.
The solid, dashed, dash-dot, and dotted curves correspond
to the densities 0.0165, 0.018, 0.021, and 0.024 A 3, respec-
tively.
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r [io sK s]

FIG. 6. Lowest eigenvalue, A.o, for each value of l up to
I =12 are shown along with the estimated min(k /S ) as a
function of density.

15 18 21

minimum is found. These observations are support-
ed by the numerical solution of Eqs. (12)—(14) for l

up to l =12 as indicated in Fig. 6.
Before discussing the possibility of a discrete spec-

trum of eigenvalues lying below this continuum, we
note that the present arguments help explain the cal-
culated instability in liquid 4He at a density of ap-
proximately 0.015 A '. In Fig. 5 we see that for p
=0.018 A a high second minimum has developed
in k'/S'(k) as the slope of S at k =0 begins to grow.
%'hen the density is reduced to p =0.0165 A, this
new minimum has dropped appreciably and, in a box
of radius 48 A, is responsible for the seventeenth
l =0 eigenvalue. This eigenvalue is very close to the
value of k'/S'(k) at the new minimum. The
corresponding eigenfunction, shown in Fig. 7, has
gross structure associated with the small k charac-
teristic of the new minimum modulated by admix-
tures of essentially degenerate eigenfunctions with
the large k characteristic of the old minimum. This
new minimum grows deeper rapidly as the density
decreases and soon passes the conventional
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p =0.02IO: 2&6: k"- 2.II42

p =0.02IO: J ~ 4: X & 2.2778

p=O. OI65: 2=0: %=5.6326

0 24 32 40 48

r [Aj

FIG. 7. First I =0=0 eigenvector with an appreciable com-
ponent with the k corresponding to the new minimum in
k / at a density of 0.0165 A. . The associated eigenvalue
is A..

8 I6

~ ~

minimum. Numerical calculations in this region have
not been attempted since a step in k of appreciably
less than 0.003 A ' must be used making the calcula-
tions prohibitively time consuming. It is tempting to
associate the instability noted in Sec. III and in Ref. 7
(which is due to the presence of a negative I =0
eigenvalue) with the fact the S'(0) approaches infini-

ty, as shown in Fig. 4, so that the lower bound on
the continuum eigenvalue spectrum approaches zero.
This expectation is seen to be consistent with the
familiar Feynman argument' which suggests that

S(k) & tk/2mc

where S(k) is the true structure function and e is the
velocity of sound by recognizing that c and the
compressibility should both vanish at this instability.

Since the approximate eigenfunctions of Eq. (31)
are plane waves, it is possible to rewrite the eigen-
value Eqs. (12)—(14) in the form of a Lippmann-
Schwinger equation with a suitable nonlocal potential
with the obvious change that the energy of the state
k is k'/S'(k) instead of k'. For solutions with ener-

gy greater than the minimum value of k'/S (k) we

expect eigenfunctions which, asymptotically, are
linear combinations of the two "plane waves" having
the same energy. In a large box, the low-lying states
all have wave numbers roughly equal to k(). Thus,
the actual low-lying eigenfunctions for large I should
look like jt(kor) times a slowly varying envelo e.
(For liquid 4He, ko is approximately 2 A '.) If we ap-
proximate k~/S3(k) in the vicinity of the minimum

by a parabola and place the system in a spherical box,
the envelope will look like the standard solutions for
a particle in a box. In the lower part of Fig. 8 we
show that this simple expectation is verified numeri-
cally, in this case for 1=4.

Formally recasting Eqs. (12)—'(l4) as a modified
Lippmann-Schwinger equation also makes it plausible
that, for suitable V+ 8', there may be a discrete
spectrum of eigenvalues with A. less than the
minimum of k2/S3(k) and with eigenfunctions which

p=0.02IO: 2=4: 1,=2.3I78

p = 0.02IO: 2 =4:X*2.3962
I I

0 8 l6 24 32 40 48

[&1

FIG. 8. To curvp urve shows the eigenvector associated with
the discrete t =6 eigenvalue at a density of 0.021 A . The
bottom three curves show the behavior of the three lowest
I = states using a box size of 48 A. Each curve is labeled
by its eigenvalue, P.

decay with an exponentially damped envelope. For
or up4He we have studied the eigenvalue spectrum for I u

to I =12. For densities greater than 0.021 A ' we
have found three such states with l = 5, 6, and 7,
respectively. Except for the lowest densities, the
I =6 state represents the lowest eigenvalue found for
any I at each density as shown in Fig. 6. The related

dam
eigenfunctions have the expected exponentiallia y

of Fi .
amped envelope. An example is shown t th ta cop

o ig. 8. These eigenvalues are also insensitive to
box size, since the box size exceeds the range of the
envelope. [There is still a contribution to the lowest

A whi
continuum eigenvalues from box size in a b f 50ox 0

w hach may be seen in Fig. 8 as the difference
between the calculated lowest eigenvalues and the
minimum value of k'/S'(k). ] Numerically, we
would expect I =6 to be the most likely channel in
which to find a discrete eigenvalue since the first
maximum of j6(kor) happens to coincide with the
first maximum in g(r) for all densities considered.
At each density considered, this nonspherically sym-
metric state represents the softest possible deforma-
tion which can be made of the stable spherical solu-
tion to the Euler-Lagrange equation.

Earlier in this section we explained the appearance
and form of a low-lying eigenvalue near the spinodal
point of liquid helium. We now wish to present evi-
dence associating the discrete eigenvalues and their
associated eigenfunctions with clustering very similar
to what one would find in a close-packed solid lattice.
The I =6 eigenvector is the only definitely discrete
one which contributes to an fcc lattice, while the
I=5 6
hc

, and '7 eigenvectors could all contribute to an
cp structure (which lacks inversion symmetry). The

following discussion is based on an fcc lattice because



OPTIMAL AND NEARLY OPTIMAL DISTRIBUTION FUNCTIONS. . .

in this case there is unambiguous identification of the
eigenfunction's radial and angular factors.

For each l value, the eigenvalue and radial eigen-
function is independent of m, and the choice of the
angular function could be any combination of the
YI 's. The additional requirement of invariance
under cubic point group operations restricts the angu-
lar function to one particular combination of the YI

for l & 12. In particular, there is only one angular
function permissible for l =6. Since the radial form
of the eigenvector is uniquely determined from the
kernel, there is exactly one l =6 discrete eigenfunc-
tion invariant under the cubic point group operations.
This eigenfunction enhances the probability of find-
ing-a particle in some places and lowers the probabili-
ty in others. Table II shows what this function does
at the nearest-neighbor sites in an fcc lattice whose
spacing is determined solely by the density. The
overall sign is the product of the signs of the angular
and radial factors. This angular function has extrema
in the directions of the first, second, fourth, and
sixth nearest neighbors and, as shown in the table,
the product of these is positive at each of these sites,
even though the angul'ar function is negative in two
of the directions. Further, the extrema in the radial
part of the function occur at roughly the neighbor
distances.

The l =6 eigenvector is also significant because it
is the lowest value of l which can describe the direc-
tions of the twelve nearest neighbors. The lowest
I =12 eigenfunction may be discrete is well. (There
are signs, but not definite ones, of a damped envelope
in the numerical results). This could describe the 24
third nearest neighbors in an fcc lattice rather well
since its first extremum is very close to the third-
nearest-neighbor distance shown in the table.

A corresponding analysis for an hcp structure (the
real structure for solid helium) would be less clear
cut, since the eigenfunctions with different l values

could come in with different and rather arbitrary
weights. In spite of their very different properties
under rotations and reflections, the two structures
have the same packing fraction and the same number
of nearest neighbors. It is unlikely at this level of so-
phistication that one will see significant differences
between the structures.

While building up small amounts of this short-
range order costs a little bit of energy, it is not neces-
sarily the case that crystallization would be expensive.
For example, extrapolation of the lowest l =6 eigen-
value as a function of density indicates that it will

0
pass through zero at about p =0.048 A 3. [The nu-
merical calculations become very difficult beyond the
largest density used here because there is nontrivial
long-range structure in g (r) and a prohibitively large
box must be used. ] If this eigenvalue did go through
zero, there would no longer be a local minimum in
the energy surface and some anisotropic state ~ould
always be at a lower energy. Even at lower densi-
ties, however, it is quite plausible that a noninfini-
tesimal change in the distributiori function could
lower the energy.

So far we have not considered the possibility of
secondary, and possibly nonspherically symmetric,
solutions to the EL equation. In this connection we
note that Eqs. (4) and (5) were derived making no
assumptions regarding spherical symmetry of the
solution. Also Jastrow functions (or extended Jas-
trow functions) have been used previously to
describe crystals. "'9 Even if we were willing to con-
front the formidable problem of solving Eq. (15) for
nonspherically symmetric distribution functions, it
would be hard to decide on a suitable initial guess for
g. The present spherically symmetric solutions would
not be acceptable since they represent genuine energy
minima as we have takeri pains to demonstrate. One
way to move away from our stable solutions is
through a sharply constrained study of the energy,

TABLE II. Location of the peaks in the lowest I =6 eigenfunction is compared with the nearest-
neighbor distance for a fcc lattice. The sign of the radial eigenfunction and the sign of the product
of the radial eigenfunction with the crystal averaged I =6 eigenfunction are also shown. The densi-
ty is 0.027 A 3.

. Nearest
neighbor

No.
nearest

neighbors

Neighbor
distance

{A)

Peak
location

{A)
Sign of
~~& 1/2

Sign of
r Sg6' times

angular function

1

2
3
4
5
6

12
6

24
12
24

8

3.7
5.3
6.5
7.5
8.4
9.2

3.5
5.5

7.1

8.7
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Eq. (6), as a function of g. Motivated by the notion
that the easiest way to find the next valley is to go
over the lowest hill, Eq. (11) suggests a trial g' 2

made by adding a multiple of that eigenfunction of
Eq. (14) having the lowest eigenvalue to the previous
solution of the EL equation. In the present case, this
would correspond to the discrete I =6 eigenfunction.
The energy surface could then be explored as a func-
tion of the mixing parameter to reveal a possible
secondary minimum which would be a suitable start-

ing point for a second solution of the EL equation.
Of course, the short-ranged discrete eigenfunctions

considered here do not yield long-range order. They
may, however, be successful in describing those
properties of the crystal (e.g. , the binding energy of a
non-ionic crystal) which do not depend sensitively on

distant neighbors. There are certainly simpler ways

to describe crystals than with the use of Jastrow wave

functions. The point here is that it appears likely that
"crystalline" states will emerge from a calculation
which is demonstrably successful at describing prop-
erties of the liquid. It is thus tempting to speculate
that further study of this problem will yield some in-

sight into liquid-solid phase transitions and may yield

more reliable criteria for the existence of a solid

phase than those conventionally employed. Work
continues on this problem.
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