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y-ray emission from symmetric ordered nuclear spin structures at low temperatures
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The temperature dependence of y-ray emission patterns from symmetric ordered nuclear-spin
systems is discussed with particular reference to planar spin con6gurations. In particular, explicit
expressions for "average statistical tensors" pq~(I) are derived, for nuclear-spin structures with

two-, three-, four-, and six-fold axes of symmetry. Several interesting identities are derived,
which are useful aids in the analysis of a given nuclear orientation experiment. For example, if
the nuclear structure possesses either a twofold or an eII'ective twofold axis of symmetry, then
the temperature isotherms for p2 vs pJ statistical-tensor diagrams are simply parallel straight

lines.

I. INTRODUCTION

The problem of y-ray emission from simple nu-
clear ferromagnets or antiferromagnets at low tem-
peratures has recently been reviewed by Steffen and
Alder. ' In particular, these authors have shown that
the angular distribution of y rays may be character-
ized in terms of statistical tensors p,"(I,), which
describe the orientation of the nuclear ensemble. Ex-
plicit expressions for the special case of a nuclear as-
sembly with axial symmetry have already been given,
and the reader is referred to Steffen and Alder for
more details.

In this paper we are concerned with the calculation
of average statistical tensors p~~(1) for symmetric
nuclear-spin structures, other than simple ferromag-
nets or paramagnets. For simplicity, only spin struc-
tures which are essentially two dimensional in nature

are considered, although the extension to more com-
plicated spin structures are straightforward. Explicit
expressions are derived for spin structures which pos-
sess either a two-, three-, four-, or six-fold axis of
symmetry and the case of a helical spin structure is
also examined. Special emphasis is placed on those
assemblies which possess off-diagonal statistical ten-
sors, q &0.

II. BASIC EQUATIONS

AND TRANSFORMATION TABLES

Following Steffen and Alder, ' the angular distribu-
tion of y rays from a point-source nuclear ensemble
may be written

8'(9, @) = ",
/, X X(21/+&)'" (2&+l) '"A).(V)ps(II) Ykq

"(S.4» ~

m'n
X q

even

where (i) I, is the spin of the initial nuclear state; (ii)
)t is the order of the multipole emission (for most
practical purposes h. 2 and 4 only); (iii) A &(y) is a
nuclear parameter which depends, in part, on the
mixing ratio 5 for Ml and E2; (iv) ps (I,) is a statisti-
cal tensor or state multipole (F'ano2') which
describes the orientation of the nuclear ensemble;
and (v) Y„,(8, Q) is a spherical harmonic rank of h..

The statistical tensors are calculated via the formu-

where (I, —m I, m'~ iraq) is a Clebsch —Gordan
coefficient and p is the density matrix for the nuclear
ensemble in question. For example, if the nuclear
ensemble is in thermal equilibrium we have

g=e s~/Tr(e p") (3)

On making use of the Hermitian nature of the den-
sity matrix g, together with the symmetry properties
of the Clebsch —Gordan coefficient, it can be sho~n
that

x (I,m ( g ( I) m') (2)

pq(A) '=(-)'p "q(A) .

Consequently, Eq. (1) may be rewritten
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W(8, $) =-, X (2I;+1)'~2(2h. +1) '~ A„(y) pg(Ii) Yi,0(8, $)
2 1T

even

+ X [p,"(I)[Y,(8, 4t)) '+(—)'[p",(I)) '[Y —,(8, 4)) '}
q)0

which reveals that the angular distribution function
may be characterized in terms of statistical tensors

pq (Ii) with it ~~0.
In many instances, however, the Hamiltonian

describing the nuclear ensemble is such that statistical

s

tensors with odd q are identically equal to zero. This
is the situation, for example, if the magnetic
hyperfine Geld at the nucleus coincides with one of
the axes of the electric-quadrupole interaction. For
many purposes therefore we may write

W(8, qh) =(SQ/4m) (1+A2(y)(21i+1) [po
&

(3cos'8 —1) +p2(2)'~'(1 —cos'8)cos2$]

+A4(y) [po —,(35 cos'8 —30cos'8+3) + p2 2 (-, )' '(1 —cos'8) (7 cos'8 —1) cos2$

+ p44
4 ( 2') '~'(1 —cos'8)'cos4&] } (6)

p"'= X&" (~ P. y) p' (7)

The I) "„(a,P, y) are the well-known rotation ma-

trices (e.g. , Edmonds )

where the series has been terminated at ) =4 and

p,'(Ii) has been replaced by the abbreviation p,".
The usefulness of the statistical-tensor formulation

of the y-ray problem lies in their transformation
properties under spatial rotations. Following a rota-
tion of the coordinate system through the Euler an-
gles a, P, y, the new statistical tensors p~~', referred to
the new primed axes, are related to those referred to
the old axes, via the matrix equation

III. TWOFOLD SYMMETRIC NUCLEAR-SPIN
CONFIGURATIONS

As an introduction, consider the simple two-spin
arrangement shown in Fig. 1(a). In this example two

nuclear spins, confined to the x-y plane, make an an-

gle of +P with respect to the x axis. Moreover, since
the angular distribution y rays from nuclei with an-

gles m +P and P are identical, we may focus our at-
tention on determining the y-ray emission pattern for
the twofold symmetric spin configuration of Fig. 1(b).

Next we assert that the Hamiltonian for each nu-
cleus can be written in the simple form

H„=AI U„+P[I,2 —,1(l+1)],—

(~ P y) &im adk, (P)'&imp (g)

and explicit expressions for d' (P) and d (P) may
be seen in Tables I and II respecively, together with a
brief resume of their symmetry properties.

where A and P are the magnetic and quadrupole
hyperfine parameters, respectively, and U„ is a unit
vector in the direction of the internal magnetic
hyperfine Geld. In general, of course, the nuclear

TABLE II. Rotation matrices d~~ (p).

TABLE I. Rotation matrices d~ ~{p).

d2+2(P) =
4 (1+cosP)1

d2+1 {P)= 2 s1nP(1 + cosP)
1

d2 (p) =—(—) sin2p
2 2

d~2(p = — cos2p —1)
1

Symmetry properties

d &.(p) =(-)'-.d". .(p)
(p) ( ) Itt —Ntd A. , (p)

d4+4(P) =
16 (1+cosP)1

d4+3 (p) = sinp(1 + cosp)
4(2) 1/2

(7)1/2

d4+2 (P) =
8

sin P(1+cosP)

d4+1(p) = —(—)'/ sin p(1+cosp)
1 7

d40(p) —(—) sin p8 2

d2+2{p)= 4 (1 + cosp) (7 cos p + 7cosp+ 1)
1

d2+1 (p) = sinp(1 + cosp) (14cos2p + 7cosp —1)
1

4(2) 1/2

d (p) = —(—) / {1—cos p)(7cos p —1)

doo{p) =
8 (35cos p —30cos p+3).1
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Hamiltonian may be more complicated than that of
Eq. (9). However, provided P is nonzero, H„will
give rise to off-diagonal statistical tensors p„so Eq.
(9) is a suitable introduction to the more general
case.

To make further progress it is advantageous to
adopt a new frame of reference, where the new z axis
coincides with the direction of the magnetic field U„,
as shown in Fig. 1(c). With respect to this co-
ordinate system

H„=AI, +P {—,' [I,' —,'1(1+—I)[+-,' (I' +I')}
(10)

where we have z = (z",z'") for nuclei a and b, respec-
tively. Statistical tensors p, for this Hamiltonian
have been tabulated in the previous paper by Bowden
et a/. , ' for all values of 3 and P, and 1 ~ I ~ 8.
Consequently, the problem has been reduced to one
of relating the individual sets of statistical tensors, as-
sociated with each nucleus (a, b), to a common frame
of reference.

This is most easily achieved using the transforma-
tion properties of statistical tensors under spatial rota-
tions of the co-ordinate system. Specifically, the rota-
tion matrices required, for rotations of +p about the
x' axis of Fig. 1(c), are obtained by setting the Euler
angles n = y =

z
m and p =+p in Eq. (8), and Tables

I and II, respectively. With respect to the (x',y', z')
frame of reference we have

-x '-x"-x "'
j s

y
((

Y

g ~~
y

((I

z II(
( I

z z(l

(c)

FIQ. 1. Twofold symmetric nuclear-spin structure.

p2

pi
21

po
2' .p-i
2'

p —2, ~

d,', (p)
—

diaz (p)

doz (P)
—d'&z (p)
d-'»(p)

—d2') (p)

—doi (P)
d-'« (P)

—d zi(p)

—di'o (P)

dw(p)

d'20(p)

—dz -i (P)
dj' )(p)

-do-i(p)
d', , (p)

dz -z (p) p,'
—d)' z(P) 0

do z(P) -po
-d', , (p)
d'Q —g (p)

where use has been made of the identities

(p2). = (p-'». = pz

(p)'). =(p', ),=0

(12)

(13)

p2 = p2= pz(I ——
—, sin'p) —

po 2
(z)' 'sin'p, (16)

p2 p2 0

and

and po = pz(2)'~ sinzp+ p02
z

(3coszp —1) (18)

(po). = po ~

for the Hamiltonian defined by Eq. (10).
A similar matrix equation can be derived for nu-

-clear moment number 2, with p replaced by —p.
Consequently, on defining an average statistical ten-

sor

p,' = —,
'

[(p,').'+ (p,')b'},

we find

per nucleus. These ~ould be the actual values of p2
and p 0 determined from a nuclear-orientation experi-
ment, using the angular-distribution function
W. (8, @) of Eq. (6).

As an example, we show in Fig. 2, a family of p2
vs poz curves for various angles p between the two
nuclear spins. In preparing this diagram, we have
made use of the tabulated statistical tensors p2 and
po, for the special case of I =3 and x =0.5, where

[((4)) =—0 for integer I and 4 for half-integer I}
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-0.) 0.2 0.3
1

O. I
I

2'
Po

%=80
8 Qo

x =O.S

(3/2) 1/2

e= 90'

FIG. 2. Statistical tensor plot of p 2 vs po for a twofold symmetric nuclear-spin structure with p =0', 30', 45', 60', and 90 .
(x =0.5, mixed magnetic and quadrupole. )

x A 2~
1 —x I' I2 ((')) (19)

71/2
p2' (p2)„12 =— sin2p(1+cos2p) p44

' 1/2

+ — sin Ppo
1 35 . 4 4 (21)

(Bowden et al. '). Also included in the diagram are
lines of constant W, where 8'is essentially the
strength of the nuclear Hamiltonian divided by kT.
[For the special case of x -1.0, W = (2 /2I) lkT]
Note that the temperature isotherms ( W cL 1/T) are
simply parallel straight lines of slope 1/6'/'. The
slope is independent of both the canting angle P and
the particular values of the statistical tensors po and

~p2. This, at first, rather surprising result is easily
verified on forming the derivative

Bp2/Bpo =(Bp2/8|3)/(Bpo/8p)

1» 2 Po) sinP cosP 1
61/2

) 2+(3 )1/2 2) sjnPcos|3 61/2
2

(20)
Such diagrams could be used, for example, to deter-
mine the angle P between the nuclear spins, if the
temperature T and the nuclear hyperfine parameters
A and P are known.

Turning now to statistical tensors of rank 4, we
find using the transformation matrices defined
a = y=

2
2r and p, that

p4 =. (p4)„12= —(1+6cos'p+cos'p) p4

71/2
sin2p(1+cos'p) p2

4

+—(7 cos4p 6cos2p—+1)p2
1

2
1/2

(1 —cos P)(7cos P —1)po
1'S

2 2 4

4 2

(22)

1/2

po = (po) -1,2
= — »n /3p4

4 2

———(1 —cos p) (7cos'p —1)p,'1 5

+ —(35 cos'P 30 coPs—2+ 3)p04

(23)

Diagrams for these statistical tensors as a function of
P are best presented in the form of two 2-dimen-
sional plots p2 vs po and p4 vs po, as shown in
Figs. 3(a) and 3(b), respectively. Once again use has
been made of the tabulated statistical-tensor tables of
So%den et a/. ', for the special case of I =3 and
x =O.S. Note that the temperature isotherms, in
both diagrams, are strongly curved, in r.sparked con-
trast to those of p2 vs po. In Sec. IV, however, we
show that the isotherms for statistical tensors of rank
4 are parallel straight lines, if the nuclear-spin struc-
ture possesses a fourfold symmetric axis.
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0.04 0.08 0.12 0.% 0.20 0.24
I I I I I, I

which leads to the result

r f/r o'= (—', )—'" (27)

-0.04—

-0.08-

-0.12

-0.16

0.16

0,12

W=20 i

%'=10 ~ ~ 30'

0 24 I[w=so
gl

P4
0.20

3Q' W"-80

1=3.0
x =0.5

r r 1/2

+ (sin p+cos p)po
1 35 ~ 4 4 4 (28)

A plot of pq' vs p f is therefore a straight line of
slope —( z

)'r'. This result is formally equivalent to

that of a pure quadrupole interaction directed along
the x' axis of Fig. 4(a) or (b). However, it shouid be
possible, in practice, to distinguish between these two
rather different physical situations, by virtue of their
temperature dependence. For example, in the high-
temperature limit po ~1/T (1/T~) for a pure quadru-

pole (magnetic) interaction.
For ) =4 we have

pq = (8+sin'p+cos'p) pq
4 1

71/2
(1+2sin pcos p) pq

0.08

0.04 W=

I I

~45'

o

goo

I I

0 0.04 0.08 0.12 0.16 0.20 0.24
~ 4I
po

FIG. 3. Statistical-tensor diagrams of p2 vs po and p4
vs po for a twofold symmetric nuclear-spin structure with

P =0', 30', 45', 60', and 90'. (x =0.5, mixed magnetic and

quadrupole. )

and

1/2

p q' =— (1 + 2 sin' pcos'p) p4
8

+ —[7(sin~ p +cos'p) —4] pq

t 1/2

[6 —7 (sin~P +cos'P)] po (29)
8 2

' 1/2

po=—4& 1 35 ~ 4 4 4

8 2
(sin p+cos p) p4

' 1/2

[6 —7(sin p+cos p)] pq~

4 2

IV. FOURFOLD SYMMETRIC SPIN CONFIGURATION

+ [35(sin'p+ cos p) —24] po
16

(30)

An example of a four-fold symmetric nuclear-spin
configuration may be seen in Fig. 4. Note that for
equal numbers of nuclei, the y-ray emission pattern
from the nuclear-spin arrangements of Figs. 4(a)
and (b) are identical.

The appropriate average statistical tensor for four-
fold symmetry is given by

p,' = —,
'

[p,"(p) + p,"(—p) + p,"(~+p) + p,"(—~ —p) ] .
(24)

Thus for A. =2 we have

(25)
zl

-x'

I
y

I

zl

-x'

yl

and

p2' ( )1/2 2+ 2 (26)
(a) (b)

FIG. 4. Fourfold symmetric nuclear-spin structure.
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These equations reveal that we have

rip 4/~p o = (dpi'/&P)/(&po/9P) = 1/70' '

and

(31)

r r ]/2

tip 24/t) p 04 = (Bp 24/BP) (t)p p'/llP) = — . (32)
5

Consequently, for nuclear-spin arrangements possess-

ing fourfold rotational symmetry, temperature isoth-
erms in p4 vs pp and p 2 vs pp diagrams, are simply
parallel straight lines, as illustrated in Figs. 5 and 6
for x =-1.0 and 0.5, respectively. Also included in
Figs. 6(a) and (b), for comparison purposes, are the
straight lines P2~/po4 =—10' 2/3 and p44/po =-

3
(35/2) '

which corresponds to the pure quadrupole interaction
x =0.0.

x= 1.0
~ P~&e magnetic)

I = 3.0

--0.06

2 W= 80

I - l

w 0/2 ~0.64 0.06 0.08 0.10

0 0)r

0.14 0.16
p4,

.-o.o4
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-0.10
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x= 1.0
p4' I)

4
00

-0.08 -0.06 -0.04 -0.02 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

-- -0.02

FIG. 5. Statistical tensor diagrams of p 2 vs pp and p4 vs pp for a fourfold symmetric nuclear-spin structure with P =0',
15', 30', and 45', . (x =1.0, pure magnetic. )
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V. THREEFOLD, HEXAGONAL, AND SPIRAL
NUCELAR-SPIN CONFIGURATIONS

The average statistical tensor for the threefold sym-
metric nuclear-spin configuration is given by

p," = —(p,"(P=0) + p,"(P=60') +p,"(P=—60')]

(33)
For X=2 we have

(34)
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t I I I
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FIG. 6. Statistical tensor diagram of p2 Ys pp and p4 vs p p for a fourfold symmetric nuclear-spin structure with P =0',
15', 30', and 45 . (x =0.5, mixed magnetic and quadrupole. )
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VI. DISCUSSION

In the past, nuclear-orientation experiments have
traditionally been used to extract information con-
cerning nuclear hyperfine fields at solute atoms, using
either brute force methods or strong. magnetic
hyperfine fields in ferromagnet hosts. However
nuclear-orientation methods can also be used to
study pheriomena such as (i) spin-flop transitions in

antiferromagnetic compounds, ' (ii) spin reorienta-
tions, (iii) field-induced spiral-fan-ferromagnetic tran-

sitions, etc. Moreover with the increasing availability

of single-crystal rare-earth metal and intermetallic
compounds, a wide variety of spin structures is now

available for study. In general, of course, magnetic
spin configurations are best examined using neutron

t

scattering techniques. However, it is anticipated that
nuclear-orientation experiments will play an impor-

tant role in the investigation of (i) compounds which

possess very low ordering temperatures; (ii) spin

directions at dilute impurity atoms in magnetically or-
dered hosts; and (iii) compounds which possess
atoms with high neutron-absorption cross sections.
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