Low-temperature heat capacities of orthorhombic and cubic PbF₂

D. P. Dandekar Army Materials and Mechanics Research Center, Watertown, Massachusetts 02172

J. J. Tsou and J. C. Ho

Physics Department, Wichita State University, Wichita, Kansas 67208 (Received 29 May 1979)

Heat capacities of orthorhombic (α) and cubic (β) lead fluoride (PbF₂) have been measured between 3 and 22 K. For both structures the data can be well fitted to the sum of a Debye term and an Einstein term with exponential temperature dependence. The latter may be attributed to the existence of low-lying vibrational modes in the paraelectric compound. The observed Einstein frequency of 35 cm⁻¹ for the orthorhombic structure agrees with that of a Raman-active mode in PbCl₂ and PbBr₂ of the same structure, which involves the movement of Pb atoms only.

Low-temperature heat capacities of cubic lead fluoride (PbF₂) have been reported by Lawless.¹ Apart from the Debye-type lattice contribution expected for crystalline materials, an Einstein-type term has to be included in fitting the experimental data. The anomalous behavior is attributed to the presence of low-lying vibrational modes in the paraelectric compound. Even though no such modes have been identified by other techniques in cubic PbF₂, good agreement has indeed been obtained in this respect between the calorimetric and the optical or neutron experiments in various compounds, e.g., LiNbO3 and TlBr.¹ Since low-lying vibrational modes are intimately related to such fundamentally important phenomena as ferroelectricity and superconductivity,² we have done further calorimetric work on PbF₂ in its orthorhombic (α) and cubic (β) structures as a comparative study. While both structures can be easily retained, their relative stability at ambient and lower temperatures is not yet clearly established.^{3,4} Furthermore, their different temperature dependence of dielectric constants⁵ suggests different lattice dynamics.

Heat-capacity measurements between 3 and 22 K were made, using the standard adiabatic heat-pulse method and germanium thermometry, on an orthorhombic polycrystal (27.8550 g) and a cubic single-crystal (6.6200 g) sample. The polycrystal sample was prepared by consolidating α -PbF₂ powder under hydrostatic pressure of 0.2 GPa, with argon as pressure medium. It has a specific density of 7.08, compared to the single-crystal value of 8.48. As confirmed by x-ray diffraction, the lower density is due to porosity rather than structural inhomogeneity (i.e., the polycrystalline sample is composed of α -PbF₂ only).

The heat-capacity (C) data are analyzed as follows: For each sample the constant C/T^3 at temperatures below 3.5 K in Fig. 1 indicates that the Debye model is valid in this lower temperature region. Based on the Debye temperature (Θ_D) thus determined and a tabulated Debye function, ⁶ the Debye-type contribution to the heat capacity (C_D) is calculated for the whole temperature range of the measurements. This contribution alone, however, cannot account for the observed C/T^3 peaks with maxima at about 11 and

FIG. 1. Temperature dependence of C/T^3 of PbF₂.

<u>20</u>

3523

FIG. 2. Semilog fit of $C-C_D$ of PbF₂ vs 1/T, based on the Einstein model.

13 K for the orthorhombic and cubic structures, respectively. Instead, the difference $C-C_D$ can be well fitted to an exponential term, which is the lowtemperature limit of an Einstein-type heat capacity (C_E) ,

$$C - C_D = C_E$$

= $3rRn\left(\frac{h\nu_E}{kT}\right)^2 \exp\left(-\frac{h\nu_E}{kT}\right)$
= $3rRn\left(\frac{\Theta_E}{T}\right)^2 \exp\left(-\frac{\Theta_E}{T}\right)$,

where r is the number of atoms per molecule (r = 3 for PbF₂), R is the gas constant, n is the fraction of vibrational modes contributing to the Einstein-type heat capacity, v_E is the Einstein frequency, and Θ_E is the Einstein temperature. This can be clearly seen in Fig. 2, a semilog plot, where $T^2(C-C_D)/9R$ has a linear dependence on 1/T over several orders of magnitude. Consequently, the values of v_E , Θ_E , and n can be determined. It should be noted that such a relatively simple scheme for data analysis is justified here mainly because (i) the C_E contribution happens to be negligible (<0.6% of C for orthorhombic and <0.07% of C for cubic PbF₂) below 3.5 K, where C_D is proportional to $(T/\Theta_D)^3$, and (ii) the low-temperature limit of the Einstein model also happens

TABLE I. Calorimetric parameters of PbF₂.

	Orthorhombic	Cubic	
		This work	Ref. 1
Θ_D (K)	188	237	225
Θ_E (K)	50.8	66.2	63.0
v_E (cm ⁻¹)	35.2	45.9	43.8
n	0.030	0.087	0.072ª

^aThis is a corrected value by taking into consideration r = 3 for PbF₂. In the original paper by Lawless (Ref. 1), *n* is listed as 0.217.

to hold well for the temperature range of interest. Otherwise, a more complicated fitting procedure involving the full expressions of C_D and C_E has to be used.¹

Table I lists various parameters for comparison. The two sets of results on cubic PbF₂ are in reasonable agreement, considering the magnitude of experimental uncertainties ($<\pm 2\%$ in this work and $<\pm 5\%$ in the work of Lawless¹). The Θ_D values also agree well with that of 221 \pm 3 K calculated from roomtemperature elastic-constant data.^{7,8} Similarly, the calorimetrically determined Θ_D value for the orthorhombic structure falls inside the range of 185 ± 5 K, ⁹ which we obtained recently through roomtemperature sound-speed measurements on seven orthorhombic samples with specific density between 6.92 and 7.38.

There are no available optical or neutron data for direct comparison with the ν_E values in Table I. But it is of interest to note that both orthorhombic PbCl₂ (Refs. 10 and 11) and PbBr₂ (Refs. 11 and 12) have a Raman-active mode of close to 35 cm⁻¹. As pointed out by Ozin,¹⁰ these modes involve mainly lead atom movement. Accordingly, the low-lying frequency should be approximately invariant on passing from PbCl₂ to PbBr₂ to PbF₂. Finally, with four molecules per unit cell and therefore a total of 36 vibrational normal modes in orthorhombic PbF₂, one Raman mode would correspond to about 3%. In Table I the *n* value is indeed of this magnitude.

Note added in proof. In an inelastic neutron scattering study on cubic PbF₂ at 10 K, M. H. Dickens and M. T. Hutchings [J. Phys. C <u>11</u>, 461 (1978)] observed a strong peak at 7 ± 0.5 meV (56 ± 4 cm⁻¹) corresponding to the zone-boundary transverse acoustic modes. This is close to the calorimetrically determined ν_E of 45.9 cm⁻¹ in Table I.

ACKNOWLEDGMENT

One of us (J.C.H.) was partly supported by the Wichita State University Research Committee.

- ¹W. N. Lawless, Phys. Rev. B <u>14</u>, 134 (1976); Phys. Rev. B <u>17</u>, 1458 (1978).
- ²See, e.g., Proc. Int. Conf. on Low-Lying Lattice Vibrational Modes and their Relationship to Superconductivity and Ferroelectricity, 1975 [Ferroelectrics <u>16</u> (1977)].
- ³J. H. Kennedy, R. Miles, and J. Hunter, J. Electrochem. Soc. <u>120</u>, 1441 (1973).
- ⁴D. P. Dandekar and R. M. Lamothe, in *High-Pressure Science and Technology*, edited by K. D. Timmerhaus and M. S. Barber (Plenum, New York, 1979), Vol. I, p. 63.
- ⁵G. A. Samara, Phys. Rev. B <u>13</u>, 4529 (1976).
- ⁶See, e.g., E. S. R. Gopal, *Specific Heat at Low Temperatures* (Plenum, New York, 1966).
- ⁷J. H. Wasilik and M. L. Wheat, J. Appl. Phys. <u>36</u>, 791 (1965).
- ⁸S. Hart, Rev. Phys. Appl. <u>3</u>, 430 (1970).
- ⁹D. P. Dandekar (unpublished).
- ¹⁰G. A. Ozin, Can. J. Chem. <u>48</u>, 2931 (1970).
- ¹¹B. Willemsen, J. Inorg. Nucl. Chem. <u>33</u>, 3963 (1971).
- ¹²L. A. Isupova and E. V. Sobolev, Zh. Strukt. Khim. <u>9</u>, 324 (1968).