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Entropy of formation of a Frenkel defect in CaF2. A Green-function calculation
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The results on the dynamics associated with an anion interstitial and with a vacancy at an an-

ion site, discussed in our earlier work, are employed in this paper to compute the entropy of
formation of a Frenkel defect in CaF2. The interstitial and the vacancy are assumed to be far

apart and hence each case is discussed separately. The symmetry coordinates of the-Fi„
representation for the interstitial and of the F2 representation for the vacancy are chosen so as

to decouple the degrees of freedom of this defect from the defect space. Then both the

methods of Govindarajan et al. and of Mahanty and Sachdev are applied to these two defect
systems to calculate the entropy of formation of an isolated interstitital and of an isolated vacan-

cy. The entropy of formation of anion Frenkel defect in CaF2 computed from both methods

agrees well with recent experimental results.

I. INTRODUCTION

Considerable work on the defect properties of CaF2
has been-carried out in the past few years and the de-
tails are dealt with in an article by Lidiard. ' Recently
Corish et al. ' have also reviewed the situation with
respect to defect studies on ionic crystals. From
these reviews one finds that theory and experiment
give the same range of values for the formation and
migration energies of defects whereas the agreement
for the corresponding entropies is far less satisfactory.
This disagreement may be partly due to the fact that
the entropies are deduced from experimental data on
conductivity and diffusion rather indirectly, while on
the theoretical side the results depend on the princi-
ple and method of calculation. However, good defect
models have been developed recently and this fact,
alo'ng with a computer-controlled data analysis, can
lead to fairly reliable experimentally deduced values
for the defect entropies. Entropy calculations were
first tried by a method due to Theimer', his approach
was followed by other workers with minor modifica-
tions. An Einstein model has also been employed in
some calculations. Recently Govindarajan et al. 4 5

have computed the entropy of formation due to sub-
stitutional and Schottky defects in KC1 using a
Green-function approach which, in fact, is a gen-
eralization of the pseudomolecule procedure due to

Mahanty and Sachdev. 6 In their paper Govindarajan
et al. have briefly reviewed the earlier methods of
calculation.

It has been established that the Frenkel disorder is
the major defect responsible for the transport prop-
erties of CaF2. The entropy of formation of a Frenk-
el defect was recently calculated by Varotsos using
the bulk properties such as the bulk modulus and its
temperature dependence. But he neglects the tem-
perature dependence of the lattice constant entirely.
His values of the entropy of formation of a Frenkel
defect is around 12k which is much larger than the
more recent experimental result of 5.4k obtained by
Jacobs and Ong. Therefore we decided to compute
the.entropy of formation of Frenkel defects in CaF2
using the Green-function formulation of Govin-
darajan et al. and the results are presented in this pa-
per. In Sec. II we shall outline the general theory
and in Sec. III apply that to an interstitial and a va-
.cancy at the anion site in CaF2. Section IV deals with
our results followed by a discussion and possible con-
clusions.

II. OUTLINE OF THE THEORY

Govindarajan et al. ' have shown that if we take
the defect and the near neighbors of the host lattice
that are directly affected by this defect to constitute
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a pseudomolecule, the method of Mahanty and
Sachdev reduces to finding the determinant
(I g—SI) in the zero-frequency limit, where g
represents the lattice Green function of the host crys-
tal in the defect space and 51 is the corresponding
perturbation matrix which incorporates mass changes
and force-constant changes that result from the intro-
duction of the defect. The entropy of defect forma-
tion sq is then given by

msq= ——k lim ln, ~I gS—I~ +
m

2

~here m and m
' are diagonal mass matrices of the

unperturbed and perturbed system, respectively, and
the dots represent the correction term arising from
the loss or gain of degrees of freedom when we have
a vacancy or interstitial. The vacancy situation was
handled by Govindarajan et al. in their calculations
on KCl by truncating the g and 5/ matrices suitably to
account for the loss of degrees of freedom due to the
vacancy.

In the case of a Frenkel defect, we shall assume
that the vacancy and interstitial are far apart such
that their interaction is not important. This assump-
tion is made to make the calculations tractable, so
that we can take the case of an isolated interstitial
and then an isolated vacancy separately. The two
results are then added to give the entropy of forma-
tion of Frenkel defect. We should admit that in so
doing we are over simplifying the interactions that
may exist between the interstitial and vacancy, but
the neglect of defect interactions is a good starting
point from which to deduce the entropy of formation.
The result should be valid at temperatures up to at
least 1000 K.

III. INTERSTITIAL IN CaF2

The dynamics of an isolated interstitial have been
discussed in detail in an earlier paper9 (hereafter re-
ferred to as Paper I). There it has also been men-
tioned how the method of Brice' would give singu-
larities in the zero-frequency limit for ~I —g SI ~. On
the other hand the method of Maradudin et al. " re-
rnoves this difficulty by switching over the Green
function of the interstitial into the Sl part of the ma-
trix and also, at the same time, expressing the cou-
pling of the interstitial with the host through the cou-
pling matrix a, as defined in Paper I. The singularity
in the Green function at co =0 is removed here, since
the Green function of the interstitial y(03) is
mq '(032 —0312) ', where 03' is the frequency of the in-
terstitial in the otherwise frozen lattice, whereas in
Brice's definition it is 1/ml03 . Therefore we shall
adopt the method of Maradudin et al. in the evalua-
tion of the entropy of formation due to an interstitial.

We found that except for the F~„representation,
the results are identical in Brice's and Maradudin's
formalisms. In those calculations for the F~„repre-
sentation, we had taken such a set of symmetry coor-
dinates as to make the translational motion apparent
in the 51 matrix. Ho~ever, in the present case, it
should be more advantageous to obtain another set of
symmetry coordinates for the F~„representation by
taking linear combinations such that the degrees of
freedom of the interstitial can be isolated from the
rest of the host lattice. This helps us to evaluate
LI gSI-~ for the F~„represent ati on for the affected
host lattice, by isolating the interstitial, but at the
same time including the effects of the interstitial in
the host lattice. The following symmetry coordinates
are employed for this purpose. The atom numbers
are given in Paper I.

(2) (x2+x3+x4+x5+x9+xt0+X, 3+x32) —'
Js '

(3) (x, +x,3) ~,
(4) (x]4 +x/5 +X7 +xg)—1

( (y2 2 y3 3+y4+Z4 y5 +Z5+y9
1

Z9 y10 zl0 +yt~ +z~~ —y~2+z~z)

The remaining coordinates from [(6) to (l5)] can be
obtained from (l) to (5) by cyclic permutation of the
corresponding (x,y, z) components. The block diago-
nalized form of Sl in the notation of I for the Fi„
representation is given below.

0 0 0 0 0
0 Y) Y2 Y3 Y4

0 Y2 Y5 Y6 Y7

0 Y3 Y6 Y8 Y9

0 Y4 Y7 Y9 YiP

where

832
Yi =—Ai+

4A )A2
Y2 —— +252, ,

I

Y3 =4J2 +242b A 2,D

Y4= E2B3+Sv2 + J2—I3B2,
D

2A
Y5 =—A'2+ —4532,
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1

Y7 4v 2 -242582,8)A2
D

48g2
Ys -—~2+

DI

88)82Yg=—
I

1682
Y)o =—~) —B) + + AB2 —2h

Dg

—268) -3532,
where

D, =[M, (o7' —re,')] ' .

%e note that in this block-diagonalized form, the
translational motion is masked, unlike in Paper I, but
we now know from the present symmetry coordinates
that the first row and column correspond to the inter-
stitial. The truncation of this row and column of Sl
in evaluating

~
I ggl

~
is—automatically achieved by

the fact that the first row and column of the block di-

agonalized g is identically zero. Thus the deter-
minant ~I —ggl] = h~, excluding the interstitial in the

F)„representation, is obtained from the matrices g
and Sl by excluding the first row and column in each
of them. The results of hf are computed for At, to
F2„using the formulas of the block diagonalization in

Paper I. Finally a term 3k is added to account for
the additional degree of freedom of the interstitial.
Thus the entropy of formation of the interstitial is

for the block diagonalization to A, E, F), F2, and F2
representations. F2 is one of the isolated modes
from the 6 & 6 F2 block leaving the remaining F2
block as 5 x 5 in which one corresponds to the mo-
tion of the vacancy. For the F2 block in Paper II we
had used such an orthonormal set of symmetry coor-
dinates as to make the translational metiea apparent
in Sl in the zero-frequency limit. But in the present
case we are interested in isolating the row and
column corresponding to the vacancy motion. Ac-
cordingly, as in the interstitial case, we shall use
another set of symmetry coordinates for the F2
representation (which are in fact linear combinations
of the set in Paper II) such that the row and column
corresponding to the vacancy motion will become ap-
parent in g and 8/. The following are the new set of
symmetry coordinates for the F2 representation (the
same atom numbers as in Paper II are used):

F2 (1) x) (vacancy),

(2) (x6 +x9) ~ ,

(3) (X7+Xe+Xto+X)))
2

1

(4) (x2+X3+X4+X3)—,',
(y2 + Z2 +@3—Z3 —J 4 +Z4 —JS Z3)—1

The others from [(6) to (15)] can be obtained from
(1) through (5) by cyclic permutations of the
corresponding (x,y, z) components. The block diago-
nalized Sl is

Sq = lim ——k Xf, Ink f(e7) +3k, (2)
stl~ 0

where s represents the various irreducible representa-
tions and f, their dimensionality. The mass factors
in the entropy expression cancel.

A. Vacancy in CaF2

Dt v2hA2 2582

J25A2 EG) 0

2582 0 LLH)

26A 7 v 2hC) 26C)
WSEB( -25D7 0

2hW)

J2iL Ct

26C)
as)

—J$58~
2AD)

0
—J25F~

hE) + LLF)

The dynamics of an isolated vacancy is discussed in
an earlier paper" (hereafter referred to as Paper II).
There again we have used the symmetry coordinates

The first row and column in both g and 5I here
correspond clearly to the vacancy motion and these
are deleted in computing 4) arising from the F2
representation. The remaining 4) for other irreduci-

TABLE I. b, g) for interstitial in CaF2, '

Model h, f for:

1.374, 2.508
1.225 2.307
1.383 2.589

F)g

0.644
0.704
0.727

0.965
0.987
1.265

1.034
1.264
1.312

F2u

0.561
0.531
0,629

F2g

0.381
0.491
0.638

F)u

3,281
3,106
3.109

's~ [from Eq. (2)] =3.10k [model (i)j; =2.67k [model (ii)]; 1.64k [model (iii) j. In model (i),
both the long-range and the short-range part of the force-constarit changes are taken into ac-
count. In model (ii), only the short-range part is taken into account.
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ble representations A, E, F~, and F2 are calculated
using the block-diagonalized form of g and Sl given
in Paper II. The entropy of formation of the vacancy
can then be written

TABLE II. b,
&

for the anion vacancy in CaF2.'

.Model h~ for:

sg=lim —k gf In'f
ru-0

E Fi F2 F2

Unlike the case of the interstitial we do not have to
remove again another 3k from sq" since the vacancy
degree of freedom is already eliminated from the cal-
culation. Again the mass factors in the entropy ex-
pression cancel.

IV. RESULTS

The parameters accounting for the force-constant
changes, and how they are determined, are discussed
in Papers I and II. The method of evaluating the
Green functions has also been discussed there. Us-
ing these data the hf for ao 0 are evaluated for the
interstitial case and vacancy case as discussed in Sec.
III. The results obtained for interstitials are given in
the Table I for the various irreducible representa-
tions. The 5f calculated for the various irreducible
representations for the vacancy are given in Table II.
For the set (3) the determinant for F2 became neg-
ative and hence that set was not used in the estima-
tion of entropy of formation. sq" calculated from set
(I) in Eq. (3) gives a value of 2.31k whereas from
set (2) it is 1.95k. The values of sz were 3.20k from
set (1), 2.78k from set (2), and 1.75k from set (3).

Since the models (i) and (ii) and'sets (1) and (2)
correspond, the entropy of formation and anion
Frenkel defect calculated from these data is 5.41k for
model (i) and 4.62k for model (ii).

V. DISCUSSION

The result computed can be compared with the ex-
perimentaHy deduced value of 5.4k for the entropy of
formation of a Frenkel defect (Jacobs and Ongs).
The earlier experimental work of Ure' on the con-
ductivity in CaF2 had given a value for the entropy of
formation of the Frenkel defect of 13.5k but the later
value is to be preferred. ' The calculation of Varotsos'
using bulk properties, however, give a much higher
value than ours, comparable with Ure's, but he did
not take the temperature dependence of the lattice
parameter into account in his calculations. The h~

given in Tables I and II at ao =0 for the irreducible

1

2
3

1.283
1.269
0.928

0.482
0.541
0.537

0.614
0.730
0.740

1.222
1.222
1.024

0.428
0.423

—0.039

's&" [from Eq. (3)] =2.31k [model (i)]; =1.95k [model (ii)].
In model (i), for the force-constant changes among first-
neighbor host atoms, both the long-range and short-range
contributions are takeri. In model (ii), only the short-range
contributions are retained.
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representations agree very well with the asymptotic
limits' of hf at co 0 computed in Papers I and II for
all representations except for F~„, in the case of in-
terstitial, and for F2 in the case of vacancy, where we
have eliminated the defect degrees of freedom in the
present calculations. In order to cross check our
computed results we have employed the 45 x 45 g
and Sl matrices given in Paper I and the 33 & 33 ma-
trices given in Paper II without block diagonalization
to compute the corresponding entropies of formation
using the Mahanty and Sachdev procedure as used
by Govindarajan et al. for their vacancy calculation
in KC1. These results, as is to be expected, are in
striking agreement with the values reported above.
Thus our present computed results are consistent in
the two equivalent formulations. To our knowledge
no calculation on the entropy of formation of an in-
terstitial has been carried out for a similar system but
for the vacancy, Nardelli and Terzi' have estimated
the entropy of formation in an argon crystal allowing
for elastic relaxations around the vacancy. They ob-
tained a result of 2.74k. Our values reported here are
also in the same range. However, one should bear in
mind that in the argon crystal, anharmonicity for the
zero-point motion plays a considerable role in deter-
mining these thermodynamic properties.

'Permanent address: School of Phys. , Madurai Univ. , Ma-
durai, India.

A. B. Lidiard, in Crystals with Flourite-Structures, edited by
W. Hayes (Clarendon, Oxford, 1974).

2J. Corish, P. %. M. Jacobs, and S. Radhakrishna, in Surface
and Defect Properties of Solids, edited by J. M. Thomas and
M. W. Roberts (Chemical Soc., London, 1977), Vol. VI,
Chap. V.



ENTROPY OF FORMATION OF A FRENKEL DEFECT IN CaF2.'. . . 3485.

~O. Theimer, Phys. Rev, 112, 1857 (1958).
4J. Govindarajan, P. W. M. Jacobs, and M. A. Nerenberg, J.

Phys. C 9, 3911 (1976).
J ~ Govindarajan, P. W. M. Jacobs, and M. A. Nerenberg, J.

Phys. C 10, 1809 (1977).
6J. Mahanty and M. Sachdev, J. Phys. C 3, 773 (1970).
7P. Varotsos, Phys. Rev. 13, 938 (1976).
P. W. M. Jacobs and H. Ong, J. Phys. (Paris) 38, C7-331

(1976).
T. M. Haridasan, J. Govindarajan, M. A. Nerenberg, and P.

W. M. Jacobs, Phys. Rev. B 20, 3462 (1979) (second

preceding paper; Paper I).
' D. K. Brice, Phys. Rev. 140, A1211 (1965),
"A. A. Maradudin, E, W. Montroll, G. H. Weiss, - and I. P.

Ipatova, Theory of Lattice Dynamics in the Harmonic Approx-
imation, 2nd ed. (Academic, New York, 1971).

'2T. M. Haridasan, J. Govindarajan, M. A. Nerenberg, and
P. W. M. Jacobs, Phys. Rev. B 20, 3474 {1979){preceding
paper; Paper II).

' R. W. Ure, J. Chem. Phys. 26, 1363 (1957).
~4G. F. Nardelli and N. Terzi, J. Phys. Chem. Solids 25, 815

{1964).


