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Effects of substrate potential and geometry on the thermodynamics of physisorbed, low-

density, submonolayer helium films are investigated using a tight-binding formalism, a quantum

virial expansion, and a lattice version of potential scattering theory. Calculations for a two-

parameter triangular-lattice model are presented which exhibit systematic trends in the specific
heat that are in qualitative agreement with presently available experimental data.

The thermodynamics of submonolayer helium
films has been a subject of much experimental and
theoretical interest' since the early work of Bretz and
Dash. ' Recent experimental work in this field has
dealt with the role of the substrate, which, though
essentially passive, can strikingly modify the behavior
of the overlayer. Low-density (about —, monolayer)
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specific-heat measurements of He on Ar-plated
Grafoil, for example, have revealed peaks at twice
the "condensation" temperature of 4He on bare
Grafoil, that are larger by an order of magnitude. In
effect, different substrates lead to "new" quantum
systems with dramatically different phase-transition
properties and possibly new types of critical
behavior. Compared to Grafoil, the substrates of
current interest'4 are often highly textured. For ex-
ample, the lateral potential variation over Ar-plated
Grafoil~ is -50 K (Grafoil, -20 K). Physically, this
results in localization of the He wave functions at the
absorption sites, and hence alters the competition
between single-particle properties and interactions to
an extent which depends on the geometry and poten-
tial of the substrate.

Such textured substrates are naturally treated with
a general tight-binding formalism; which is the ap-
proach adopted here. We present results for a two-
parameter model which, for the first time, accounts
for the variation in behavior observed for 4He on
several rare-gas substrates. 3 4 Our calculations are
based on a quantum virial expansion, ' carried to first
order in the coverage. We derive and evaluate a new
generalization of the formula for the second virial
coefficient in terms of bound states and "lattice phase
shifts. " The theory is simpler in some respects than
that for ideally flat substrates9; for example, only a
finite number of lattice phase shifts are involved
(e.g. , two for 4He on a triangular lattice). Analytical
expressions for these phase shifts are obtained by a

novel application of the recursion method of Haydock
et al '0

The present article describes the first fully
quantum-mechanical treatment of the low-density
thermodynamics of He on textured substrates, albeit
for a simple model. Nevertheless, many refinements
are possible, and we believe that the general approach
folio~ed here will be of value in more detailed calcu-
lations; in understanding similar substrate effects in
more complex systems; and, perhaps in designing
new quantum systems with specific desired charac-
teristics.

To begin, let us consider a system of interacting
bosons (or fermions) confined, for simplicity, to a
regular, two-dimensional Bravais net with periodic
substrate potential V(r). We assume that the sys-
tem can be described adequately by the tight-binding
Hamiltonian"

H = X (T-a- — a-+ —U. -n- -n-)I+i I 2 i I+1

where a-,. t (a-., ) is a Wannier-state creation (annihila-
tion) operator at site i, and n-, is the number operator.
The substrate potential appears implicitly in this
model in the hopping matrix elements,

T-, = &a-,. ) +. V—(r) lao);
—A V2

these may be determined by fitting the known
single-particle energy bands, '" and lead to
substrate-dependent effective masses. Since we are
interested in low-temperature properties, we concen-
trate on the lowest band and suppress band indices.
Substrate geometry and potential both influence the
interaction parameters U-, = (aoa-., ~ U~aoa-;), where
U is the two-body potential. In writing Eq. (I) we
have neglected motion perpendicular to the substrate
and any indirect interaction via the substrate that can
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not be lumped into U-,

To describe the low coverage' thermodynamics, it
suffices to use a virial expansion' in powers of the
areal density n = N/A. We need only the second viri-
al coefficient,

becomes

B2(T) =820+
, K, p,

t dE 85(K;E) aE+ (6)

B2(T) =- (z, --z, ) =B, —— (z, -z, ) .0. A 0

Z1 2 Z2

Here, Z~ = „tdE gN(E) e P is the N-particle partition
function, gN(E) is the density of levels, and quanti-
ties with a superscript zero are calculated in the ab-
sence of interactions. It is easy to show with sym-
metrized plane waves that g2 (E) = +—g~(TE),

1 1

where the upper and lower signs refer to Bose and
Fermi statistics, respectively.

Due to the invariance of the Hamiltonian (1)
under crystal translations, the calculation of Z2 can
be reduced to a one-particle problem. For example,
the eigenstates W(i, j) may be factored into center of
mass and relative wave functions,

9'(i, ~) =exp[i K (i+~)/2]g(i —~)

where @(i) satisfies

X2TTcos(—K j )$(i+j ) + U~(i) =Ep(t )

(3)

Equation (3) represents a potential scattering prob-
lem on a lattice and is soluble in terms of the lattice
Green's functions, '4

BZ I k-(i —j )
G-,'-, (K;E) = —$A/

k E —(ea, +ma, „)+io+"+2" " 2"

where ~k is the single-particle energy. The formalism
we use is based on a lattice version of Fredholm
theory. "With the separability of %(i,j), the differ-
ence between the two-particle density of states is then
given by

While Eq. (6) is exact, it is not easy to evaluate nu-
merically.

To simplify the calculations we make two approxi-
mations. First we assume that the two-particle ener-
gy eigenvalues can also be separated into center of
mass and relative contributions, as in the uniform
substrate model. The error in this approximation is
negligible for small k or K, which is the range that
dominates the low-temperature behavior. Second,
since the substrates of interest are highly textured
and the He-He interaction short ranged, we retain in
Eq. (1) only the nearest-neighbor terms, designated
by t (hop—ping) and —u (interaction); hard-core
repulsion is introduced by setting Uo=+~. The
competition between single-particle motion and in-
teractions is then governed by the dimensionless ratio
u/t. Also we treat only the case of a triangular lat-
tice. This choice is mandated by several physica1 and
technical considerations, though the actual lattice of
He adsorption sites on rare-gas substrates is usually a
honeycomb: (i) He-He hard-core repulsion precludes
nearest-neighbor occupation on the honeycomb; (ii)
the lowest band on the honeycomb can be simulated
by "bonding" %annier functions on a triangular lat-
tice; and (iii) the non-Bravais character of the honey-
comb considerably complicates the analysis. Thus,
the triangular lattice simulates both the single-particle
states and the geometry of the short-range interac-
tions on the substrates of interest.

With these simplifications the Green s function (4)
has sixfold rotational symmetry and depends on K
only via an energy shift ~

—=E —2e-„&2. Consequently,
Z2 = ZgZg. The relative motion problem is iso-
morphic to potential scattering on a triangular lattice
[Eq. (3) with hopping matrix element —2t]; the
center of mass motion is that of an independent par-
ticle of a triangular net of lattice constant

2 a, ~hence

g2(E) —g2 (E)

Indet 5-, —;
—G-7(K;E) U-„]

K 8E

Zc=2 J~dEg)(E/2)e aE .

By symmetry, the 7 x 7 matrix 5,.=,=- 6—, , U-„. can be
diagonalized' using irreducible representations of the
C6„point group, e.g., with the states ~0) and

6

( m) (l/61/2) X j J) ei2wirw/6

i-&
The zeros of det (g-,. —,. —G-., —, U-, ) correspond to
bound states E~( K ), while its argument defines a
phase shift 8(K;E). Consequently Eq. (2) for 82(T)

m =0, ...., S, mod6

Here j lables in counterclockwise (ccw) order the six
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We used r =8/9, where 8( =—4'K for Ar, ' Kr, and'2

Xe) is the lowest single-particle bandwidth. We ap-
proximated —u as the Lennard-Jones interaction
(a =10.2'K, o =2.556 A)' at the observed first (al-
lowed) nearest-neighbor distances3: u (a) = 2.5 'K
(3.8 A), 1.9'K (4.0 A), and 1.0'K (4.5 A) for Ar,
Kr, and Xe, respectively. Since the Wannier func-
tions have a finite spread, these values are probably
underestimates. While the contribution from higher
bands is not negligible even at 2'K, and while a
better choice of parameters may be possible, this wi11

not change the trends in Fig. 1. These results are
consistent with the available 4He experimental
data, in which the Kr data lies intermediate
between that for Ar and Xe, and data for Xe is

roughly comparable to that on bare Grafoil. Similar
calculations for 3He are in progress.
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