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We investigate the motion of a slow electron in a simple classical fluid in the context of low-field mobility

measurements of excess electrons in liquid argon, reported by Jahnke, Meyer, and Rice (JMR). The

electron is described in terms of an effective Hamiltonian which is a generalization of the effective-mass

Hamiltonian of an electron in a crystal, It is proposed that the primary source of electron scattering is a
deformation potential produced by long-wavelength fluctuations of the fluid density. A semiphenomenological

theory of the mobility is constructed on this basis. The dependence of the leading deformation-potential

coefficient on the fluid density is obtained by fitting the data of JMR to the theory. A calculation of this

coefficient based on a previous analysis by Jahnke, Holzworth, and Rice agrees well with that emerging
from the data fitting.

I. INTRODUCTION

For ten years there have been intermittent ex-
perimental and theoretical investigations of the
motion of excess electrons injected into simple
insulating liquids such as argon, krypton, etc.
which attempt to elucidate the nature of electronic
states in fluids. One quantity of interest is the
zero-field mobility of excess electrons in these
fluids, where the mobility is defined as p, , =lim(V~/
E) as E-O, where V~ is the electron drift velocity
in a steady applied electric field E. Jahnke,

. Meyer, and Rice' (hereafter called JMR) have
published extensive data on p, , from measurements
carried out in liquid argon over a wide range of
pressure and density. These data are summarized
in their Fig. 11, reproduced here as Fig. 1. The
mobility exhibits a maximum at a number density
of fluid atoms n, n, of approximately 0.012 A 3

(0.81g cm ') for five different isobars ranging from
50 to 70 atmospheres. In this paper we propose
an explanation for these mobility maxima, starting
from a specific model for the description of elec-
tron scattering in the liquid.

A few years prior to the publication of the JMR
data, Lekner' had advanced a theory of the motion
of electrons in liquid argon. Lekner postulated
that the electrons scatter off an effective potential
built up of a superposition of screened-electron-
single-argon-atom potentials, as in the muffin-tin
approximation. 3 It was essentially a single scat-
tering approximation and gave a good accounting
of the experimental data4 on the field dependence
of the electron drift velocity at the triple point of
argon, 85 K. To explain the observed mobility
maxima, Lekner subsequently proposed' that the
average effective scattering length for an electron
in the fluid, called (a), was a function of n and
passed through zero at n . The environmental
fluctuations in (a) were suggested as the mechan-

ism responsible for keeping the mobility finite
when (a) was zero. Using a semiempirical expres-
sion for the mobility derived by Lekner, JMR then
showed that the zero scattering length model did
describe correctly their mobility data, but only
for densities greater than 0.014 A 3.

In order to verify the behavior proposed by Lek-
ner for the scattering length, Jahnke, Holzwarth,
and Rice6 (JHR) calculated (a) as a function of n

from Lekner's theory and compared their result
with the experimental scattering length a,„„,as
given by the Lorentz-Lekner mobility relation
[see Eq. (1) of JHR]. They found that the calcu-
lated scattering length, besides being nonzero
at all densities of interest around n, disagreed
with a,„„in both magnitude and slope with respect
to n. These authors thus were led to conclude that
Lekner's single-center effective-potential model
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FIG. 1. Summarized data of JMR (Ref. 1) on zero-
field electron mobilities as a function of number density
in fluid argon.
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.does not give even a qualitatively correct under-
standing of the variation of the mobility with
density.

The principal reason for the failure of Lekner's
theory appears to be its neglect of the effects of
multiple scattering processes. Consider an excess
electron in thermal equilibrium in the otherwise
empty conduction band of a simple insulating
liquid. Assuming an effective mass of the order
of unity for an electron within the liquid, its
thermal de Broglie wavelength X~ will be of the
order of 100 molecular separations. The electron
wave function must, therefore, be strongly in-
fluenced by multiple scattering from the molecules
of the liquid, which are arranged without long-
range order and are in motion. However, the
mobility data, when interpreted in terms of the
simplest version of kinetic theory, yield mean
free paths (l) substantially larger than Xr for the
case of argon and other simple liquids. Apparent-
ly, the electron propagates almost freely in the
material. These two contradictory observations,
about strong interaction with the medium and yet
a free-particle-like behavior, can be reconciled
by introducing the concept of an effective Hamil-
tonian

K,~~
=P2/2m* + Vo .

This Hamiltonian was first introduced by one of
the present authors and his coworkers' in analogy
with its counterpart in the effective-mass theory
for electron motion in crystals. Here p is the
electronic quasimomentum, m~ is its effective
mass, and Vois the energy at the bottom of the conduc-
tionband. It was suggested (Ref. 7) that V, consists
of two parts. One, the kinetic energy &, associated
with the exclusion of the electron from the interi-.
ors of the molecules, can be estimated in the
Wigner-Seitz approximation, which includes mul-
tiple scattering effects in a simple way. The other
is the attractive polarization potential U, exper-
ienced by the electron between the atoms, which
Lekner' estimated in a self-consistent manner.

It is useful at this point to classify and separate
the effects of the different scattering processes
on the electronic wave function. The wave func-
tion should be nearly as smooth as is possible
under 'the constraints imposed by the presence of
the atoms. These introduce large amplitude
Fourier components on the scale of the inverse
interatomic separation. Propagation of the elec-
tron through the material with occasional scatter-
ing introduces large amplitude Fourier components
on the scale of the thermal wave number. Since
these two regions of wave-number space are
widely separated, it is possible to introduce a
partition between them in a region where the amp-

litude of the Foxier coefficients of the wave func-
tion is small. Thus if q, denotes a cutoff to the
long-wavelength part of Fourier space, it should
have a, value in the range 2w/A r «q, «2v/2r„
where r, is the radius of the Wigner-Seitz' sphere
of a f luid atom. However, the exact value of q,
is not expected to be a sensitive parameter in the
theory.

The effective Hamiltonian given by Eg. (I) de-
pends upon the local environment of the electron.
The effective mass m~ and the kinetic energy
term &, in V, are both determined by the scatter-
ing of the electron from the Quid atoms in its
vicinity. Only the wave vector k (where p =hk) is
the exception, since it characterizes the slowly
varying pseudo-wave-function of the electron. The
molecular configuration is a function of position
within the fluid, and so is each of the above
parameters in H,«. However, because of the
smallness of P (for an electron with energy within
ksT of the bottom of the conduction band), any
term in H,«with joint position and momentum
dependence can be ignored. m~ thus can be put
equal to its average value within the fluid, and the
position dependence of H,«restricted to that of
V,. Thus we get

K,„(r) =P'/2m+ + V, (r ),
which is a straightforward generalization of Eq.
(I)

It is now easy to identify the physical origin of
the scattering mechanism that determines the
mobility of the electron in the fluid. Fluctuations
of the local fluid density, n(r), either inherent or
temperature induced, will produce changes in the
local environment of the electron, and thus in the
potential V,(r ) seen by it. It is thus fluctuating
potential which scatters the electron, just as lat-
tice deformation-ipotentials from acoustic phonons
scatter carriers in semiconductors. The scatter-
ing potential is obtained by expanding V,(r) about

its mean value V, in powers of the density fluctua-
tions

4n(r) =n(r) -n,
where n is the average density of the Quid. Thus
we arrive at the following expression for the
electron scattering potential:

4V (r) =V,(r) —V,

= V',4n(r ) + 2 V,"[An(r )]2

+6&V,"' [dn( )]'+... ,

where V,', V,", etc. are derivatives of V, with
respect to n and are themselves functions of n.
These derivatives are analogous to deformation-
potential coefficients, coupling the density Quctua-
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tions to potential fluctuations.
The preceding discussion provides us with the

basis for the construction of the theory of the
mobility, which we shall do in Sec. II. We shall
treat the electron scattering in the Born approxi-
mation, which is valid as long as X~« l. In Sec.
III we shall describe the results of fitting the data
of JMR to the theory of Sec. II. In Sec. IV we
examine the validity of neglecting the higher-order
terms in the Born series for the electron scatter-
ing cross section. Two model calculations of the
density dependence of the quantity V,' are described
in Sec. V, where use is made of the results pre-
viously obtained by JHR. There have been mea-
surements of the electron mobility in other liquids,
yielding results which lend support to the physical
picture emerging from this work. In Sec. VI,
mention will be made of these experiments, which
suggest the interesting possibility of a Ramsauer
effect in fluids.

II. THEORY OF ELECTRON MOBILITY

Consider a small number of electrons injected
into a simple insulating liquid such as argon,
where they populate the low-energy states in the
conduction band. From the discussions of the last
section and the form of the effective Hamiltonian
given by Eq. (2), these electrons can be regarded
as essentially free, each having an energy E~
=8 k2/2m~ measured from the conduction band
minimum V,. Solving the Boltzmann transport
equation for such an electron in the presence of a
dc electric field E and under the assumptions of

(i) elastic scattering and (ii) a small perturbation
of the electron distribution proportional to the field
E, one arrives at the following expression for the
zero-field mobility:

jl q
= (28/Stn+ksT)(T»E»&0 l

where e is the electronic charge, k~ is the Boltz-
mann constant, ( )0 denotes average with respect
to the Maxwellian energy distribution of thermal-
ized excess electrons inside the liquid at the
temperature T, and v'~ is the relaxation time de-
fined by

(6)

In Eq. (6), Wf&, is the transition probability per
unit time for scattering between plane-wave elec-
tronic states k and k', given by

iV»f = (2v/~)
I if' I'6 «» -E» ) (f)

where t „»„-, is the t matrix for the scattering and
the 6 function ensures that energy is conserved in
the process.

One can evaluate If„-„-,I' from its usual definition,
using the scattering potential AV, (r) of Eq. (4).
In doing this, it is possible to neglect the time
dependence of AV, (r), since a scattering event
takes place on a time scale much smaller than
that on which the density fluctuations change. The
expression for S"„-„-, that follows then consists
of a series of terms, arising out of two different
expansions: The expansion of AV, (r) in powers of
«(r ) as given by Eq. (4), and the Born series
for the perturbation expansion of t „-„-,, given by

(kI n VO I k"&(k" I n VO I K'& ~ (kI n Vo I k")(k" I n
VO I k

"&'$'" I &Vo I k')
E» —E»,. +i0 ~ (E»-E»„+i0)(E», —E„„,+i0)gll /Ill

(6)

We present here a simple version of the theory
that incorporates the essential physics without
being mathematically cumbersome. To this end,
we retain only the first term in the t-matrix ex-
pansion and truncate the resulting series for
8'„-„,, keeping terms involving the product of up to
four «(r) s. The first simplification is justified
if the scattering potential is weak. We shall check
this requirement later. by examining the contri-
butions of the higher-order terms in the t-matrix
series. The truncation in 4n was necessary be-
cause higher-order density-. density correlations
cannot be evaluated exactly. Hence, besides the
two terms for which exact expressions are avail-
able, only the first two of these terms that had to
be approximately calculated have been included
in W»»-, . From Eqs. (4), (7), and (8) and the fore-
going discussion, one has

W,-„, =(2~/g)6(E» —E». )[T,(k, k')+T, (k, k')

+ TB(k,k') +T4(k, k')],
where

T. = V"&kl «(r) lk'&&k'I «(r') I»
T, = V,' V,"Re(k

I
«(r )

I

k') (k'
I
[«(r ')]'

I @,

T, =-'V,"'&kl[«(r)]' lk')&k' l[«(r')]'lk),
T, =-.' V,'V,"'

Re&kl «(r ) lk'&&k'
I
[«(r')]'lk&,

and Re indicates the real part of an expression.
As shown below T„..., T4 depend on k and k' only
through q =k —k', which is the momentum trans-
fer in the scattering. In relating W„-„-, to an ex-
perimentally measured quantity such as the mobi-
lity, one has to take the thermodynamic averages
of the terms defined by Eqs. (10) over all possible
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amplitudes of the density fluctuations. This can
be conveniently done by reexpressing these terms
in terms of p&'s, the Fourier components of
&n(r), given by

4n(r ) = —Q e'&""
p~, , (ll)0 )~, 1&,

where 0 is the volume of the system and q, is the
cutoff introduced in Sec. I. This cutoff is neces-
sary since the local density has meaning only for
distances greater than the interatomic separation,
and because the effects of scattering occurring on
an atomic scale have already largely been inclu-
ded in the effective mass and V, entering Eq. (2).
assuming that the plane-wave electronic states
~k) are normalized in the volume 0, we have
from the first of Eqs. (10) and Eq. (11)

(&T,(q)» =(V."/fl')(&p, p„»
= (VO2/Q)nS, (q), (12)

where X ~ is the isothermal compressibility of the
fluid.

The next term in Eqs. (10) is
P'I P'II

((T (q)»= g
' «g ((p;, pg -g, p-g»

4
where the cutoff q, in the q-space sum has been
omitted and will be implied from now on. The
average of the product of three q-space density
amplitudes can be exactly evaluated only in the
q-0 limit; the result is'

((T,(0)))= lim ((T,(q) &)

where (( )) represents the thermodynamic aver-
age, n is the average particle density of the sys-
tem, and S,(q) its static structure factor." The
momentum transfer q has a magnitude of the
order of the. thermal wave number of the elec-
trons, for which S,(q) is essentially the same as
S,(0)." This justifies our earlier ansatz that the
electronic mobility is determined by scattering
from the long-wavelength density fluctuations.
We shall eventually make use of this by taking the
limit q-0 in evaluating the terms in Eqs. (10).
Using the well known result S,(0) =nksTy r, we
then have from Eq. (12) in the limit of q-0:

«T, (0)»=1. «T,(.)»=v; "'„'",

Using the fact that

((».(~)) „„(».(s))

and transforming the discrete sum in q space into
and integral, Eq. (14) can be written as

((T2(0))) = VOVO (n'kaTgr/Q)n,

where

1 $'(:, ss q
o( =, dqq' S,(q) +n

(15)

(16)

Equations (13) and (15) represent the only two
terms in the series for 8"„-„-, for which one has
exact expressions. The next two terms each
involve a product of four &n(r)'s and can only be
approximately evaluated, even in the q-0 limit.
From Eqs. (10), they are

P'II 2

«T.(q)»=4„'. g «p~, p; -, p&, p «,&&,
41g 42

Using now the definition"

&(p&, p&,» =n~IS.(q, )5I,.&„.,

one has from Eqs. (17) and (18)

«T.(q)»= 2 ga g S2(ql)s. (~q-q, ~),
~1

x«g (&p,p, p, p~ «&&. (1V)
le 2

To evaluate these, we have adopted the Gaussian
approximation, according to which the free energy
of the system containing a given set of Fourier
amplitudes p& is a sum over q of terms propor-
tional to

~ p& ~

only. The probability distribution
for any p& is then a Gaussian, and the average of
a product of four p&'s can be broken up into all
possible combinations of products of averages of two
p&'s. For example

(

=«pl, p«, »«p&, p;;,»
+«pg, pg, »((pg g, p g g,»
+((p&, p; &,»«p; &, p&,». (18)

=v, v," —,g s', (o)s, (q, )
41

es, (q, ) l~
B gp

where P is the pressure.

(14)

«T,(q)» = v,'v,"'
&,s, (0) g s,(q,),

~1

(
where use has been made of the fact that q c 0 in
the expression for ((T,(q))). In the long-wavelength
limit q-0, these equations can be written in the

. form
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((T,(0)&) =lim «T,(q)» = V',"(n'/0') p,
&(T4(0)» = lim «T, (q )»

= V' V"'(n2/02) nksTIt rX,
where

r ac
p =

2 . de e'5.(q),kl Np

(20)

x (V,"ksTy r+ VOVoksTy~

+ Vomp+ Vo'Vo"nkBTyry) . (22)

In calculating ~,' using Eqs. (6) and (22), it is
necessary to sum over k' states of a given spin
only, since the scattering does not flip the elec-
tron spin. The final expression for the mobility,
obtained from Eq. (5), is rewritten in a form con-
venient for comparison with the experimental
data'

3~2 mu-1n-2T-1/2 e e B
2eh 27l rn, ~

& (VO2ksTX r+ VOV,"ksTy r n

+ V,"'P + VOVO"nkvd Tx ry),
where m, is the mass of the free electron.

(23)

Collecting together the relevant results from
Eqs. (9) through (21), one arrives at the following
expression for the thermodynamically averaged
transition probability

«IV;;» = (2 /@)5(E, -E, )( '/Il)

eter A varied to obtain a best fit to the data. To
be consistent with the assumptions made in intro-
ducing q„ the optimum value of 4 should be sig-
nificantly smaller than m.

The factor involving m+/m was ignored in the
data fitting. As calculated by JHR, this quantity
decreases monotonically with increasing n by a
factor of 1.6 over the range of densities involved
in the fit and so does not affect the results in any
significant. manner.

The left-hand side of Eq (23. ) conta. ins the ex-
perimentally measured mobility p, p as well as the
fluid state variables n and T, while the right-hand
side contains all the phenomenological parameters
besides n, T, X~. The aim of the fitting procedure
was to find an empirical analytic form for V,' as a
function of n which, together with its derivatives
V,"(n) and V,"'(n), when substituted in Eq. (23) would
match the two sides of it for all densities covered
by the data. The goodness of the fit was judged by
the value of y', calculated from the 5%%uo uncertainty
in the p, values and the 1 /0 uncertainty of the
thermodynamic data quoted by JMR.

Several polynomial forms in n were tried as the
desired representation for V,' (n), progressing
from a linear dependence of V,' on n, through
quadratic to cubic. The goodness of the fit in-
creased less rapidly as the degree of the poly-
nomial used for V,'(n) increased. After examining
the behavior of the individual terms on the right-
hand side of Eq. (23) as the form used for Vo was
varied, it was decided to use the following empiri-
cal function to represent Vo(n) for fitting the data:

V,'(n) =a+b tanh[c(n -n,)j, (24)
HI. COMPARISON WITH EXPERIMENTAL DATA

Equation (23) expresses the implicit dependence
of the electronic mobility on the Quid density n,
through both the thermodynamic variables T and
y ~ and the phenomenological deformation-poten-
tial coefficients V,'(n), V,"(n), and V,"'(n). We have
extracted the density dependence of the latter co-
efficients required to fit the data of JMR to Eq.
(23), using the thermodynamic data provided by
them. The integrals contained in a, P, and y
w'ere performed numerically using the closed
form expression for S~(q) given by Ashcroft and
Lekner, "with the hard-sphere diameter of the
fluid argon atom taken as 3.44 A." The upper limit
q, in these integrals was also a phenomenological
parameter whose value was adjusted for best fit
to the data. As mentioned before, q, was intro-
duced to eliminate density fluctuations of wave-
length smaller than the mean interatomic spacing
2r„where v, is the Wigner-Seitz radius' defined
through 4nr,'/3 =1/n. Thus q, was put equal to
A/r, in the integra. ls in n, P, and y and the param-

where a, b, c., and n, are the variable parameters
in the fit. It should be remarked that the detailed
density dependence of V,'(n) emerging from the
data-fitting should not be taken seriously since it
depends on the empirical form given by Eq. (24),
which w'as chosen only for convenience. The im-
portant things to observe in this empirical V,'
are its order of magnitude and the density at
which it changes sign, which can be compared with
similar features of the V,'(n) emerging from model
calculations.

The mobility data at 70 atm pressure were fitted
to Eq. (23) in three stages: (i) first, only those
two terms on the right-hand side which involve
V,"and V,"' were used in the fit; (ii) then the term
involving the product VpVp was added to the first
two, and (iii) finally the fourth term involving
Vp Vp was included. The best-f it forms for Vp
as a function of n in these three cases are shown
in Fig. 2. The smooth curves in Figs. 3(a)-3(c)
show the actual fit of the right-hand side of Eq.
(23) to its left-hand side, represented in these
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figures by the points with experimental error bars
assigned to them. Good fits to the data at other
pressures (viz. P =50, 55, 60, and 65 atm) were
obtained with essentially the same V,'(n).

Figure 2 shows that Vo(n) changes appreciably.
not in magnitude but in slope in going from case
(i) to case (iii). At the same time, the quality
of the fit to Eq. (23) deteriorates, as shown in
Figs. 3(a)-3(c). The possible conclusion emerging
from these observations is that the first two terms
on the right-hand side of Eq. (23) are sufficient to
reproduce the essential features of the mobility
data, such as the order of magnitude of p, and the
maximum in p, at the intermediate density. The
inclusion of more terms on the right-hand side of
Eq. (23), done for the sake of making the theory
more rigorous, points to the inadequacy of such a
simple empirical form for V,'(n) as given by Eq. (24).

The best-fit values of the parameter A, are 3.2,
2.8, and 2.2 in cases (i), (ii), and (iii), respec-
tively. The first value corresponds very nearly
to a cutoff of rr/r, in the q-space integrals, thus
effectively eliminating density fluctuations. of
wavelength smaller than the mean interatomic
spacing 2r,. With the inclusion of more terms on
the right-hand side of Eq. (23), this cutoff sys-
tematically shifts to longer wavelengths, which
is the right direction with respect to the consis-
tency criterion q, «tr/x, mentioned earlier.

The following observations hold for all the three
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term dominating near the mobility maximum and
with all other terms being of similar magnitudes
elsewhere.

Although the data fitting ha. s been carried out
over the entire range of densities covered by the
mobility data, Figs. 3(a)-3(c) show the results
only down to about n =0.0100 A 3. Below this
density the quality of the fit becomes considerably
worse than that shown in these figures. The rea-
son why the fit goes bad is probably not the inad-
equacy of the theory as it stands, but the use of
erroneous information on the structure factor of a
fluid. The structure factor of a hard-sphere fluid,
as evaluated from the closed form expression
given by Ashcroft and Lekner, "ha, s a, very small
constant value for a considerable range of q from
0 to about 0.5 A ' at all densities. However, as
the data of Mikolaj and Pings" and others on the
scattering of x rays from fluid argon show, at low
densities the structure factor increases with de-
creasing q near q =0. This maximum in S,(q) at
small q is quite pronounced at densities close to
the critical point in the liquid-gas phase diagram
of argon, and is caused by strong density fluctua-
tions that become increasingly prominent as the
critical point is approached. The use of the Ash-
croft and Lekner solution for the structure factor
has thus led to estimates of n, P, and y, which
are quite far removed from what they actually
are for liquid argon. It is our belief that the fit
goes bad at low densities because of these wrong
estimates for n, p, and y. That the fit should be
good at higher densities is also consistent with
this argument. The data of Mikolaj and Pings"
show that the low scattering-angle peak in S,(q)
becomes less prominent as the density gets higher,
thus making the hard-sphere model estimates of
a, P, and y close to what they should actually be
for liquid argon.

We have tried to incorporate the correct experi-
mental information on the structure factor into the
data-fitting scheme. The experimental data" "
on S2(q) exist only at a few densities and pres-

I

sures. We have made rough interpolations and
extrapolations of this data to obtain S,(q) at all
the pressures and densities at which the mobility
measurements were made. When the mobility
data was fitted to Eq. (23) with the same empiri-
cal form for V,'(n) a,s given by Eq. (24), and with
this new input on the structure factor, a fit as
good as that shown in Figs. 3(a)-3(c) was not
found. Obviously, the empirical form for V,'(n)
was inadequate, and it was not considered worth
looking for another suitable form for V,'(n) due to
the approximate 'nature of the information on S,(q).
However, one thing did emerge from this new
effort on fitting the data. It is that the best-fit
value of the parameter A. was further reduced to
0.8, which lends good support to the basic assump-
tion of scattering of electrons by long-wavelength
density fluctuations.

In summarizing this section, 'it is thus possible
to state that the order of magnitude of the mobili-
ty and its maximum around n =0.0120 A ' are well
represented by Eq. (23) with the empirical V,'(n)
shown in Fig. 2. The mobility data at densities
lower than 0.0100 A ' may also be reproduced when
accurate information on the structure factor of
the fluid becomes available. A slightly different
V,'(n) would be required.

IV. CONVERGENCE OF THE BORN APPROXIMA-
TION FOR H k k.

In this section we examine the effect of neglecting
all terms except the first in the Born series for
f », , a,s has been done in writing down Eq. (9) for
S'„-~,. For reasons already cited preceding that
equation, we again confine our attention to only
those terms in the series for S'„-„-, which involve
the product of up to four &n's but this time include
also the contributions of the second- and third-
order terms in the Born series for t„-~, shown in
Eq. (8). The complete series for the averaged
8'„-„-,, truncated at the order mentioned, then
stands as follows:

P'l2 P'/ Pl/
((lV„-,»=

&
5(E -E.) &', ((p&P &»+ &,

' Re g ((P&P&, P &;))
'VII ' Pl P/Il

+4&, &(P&p&pz &p& &&)+ ',' Re g «p&P&p&P& g, &»
l~ 2 1& 2

2V," g «PaPa, P-.- -z,» V."V,"
R g &&Pa, P~, Pr ~xP e-a,&&-03» E„-, -Eq@ +iO 04

~ ~ Eg, -Eg, ~ +iO
~1 I

+ 4 Re ((PaP&z Prz P r-Ci -rz» +((-P&Pei Cz Pb P S-Cz»--
n4 Eg, -Eg, - +zO

+Qy

+ q ReZ2 V04 ((P~P~, -.;P~. P--. -~,&&

0'
~ ~ (E~ Ep - +z0)(E;, --Z„-,

~ +z0)

+Va R, ~ (&p~zp~zp C~zpc-a-&& (25)
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It is seen that the Born approximation result
for W~~, as given by Eq. (9), is reproduced here
in the first four terms of Eq. (25). We shall exam-
ine in the following the magnitudes of two repre-
sentative terms from the rest of the present series

for 8"„-~ relative to the ones already used in con-
structing the theory in Sec. II. In doing this, we
will use for V,', V,", and V,'" the values obtained
for the best fit of the JMR data to Eq. (23), as
explained in Sec. III. Consider the term

«T ( )»= 0 ~ Ep -Ep~ +i0
1 1

2Vp3 2m, 0 pl
@'

(2 ), Re e, q', ((Pgpg, p g gq&)
dp. x 2g

2k'qadi,

—qx +$0

2Vp3 2m, 1 1 q) —2k= 0: I'4.. ~ '«, - -,)),k„,', ,2k

2m, V,"x
+2@2 VI/

p
(26)

We have examined this ratio for values of Vp Vp',

and 4 which best fit the data of JMR to Eq. (23),
as given by curve (c) in Fig. 2. R, is negative
for all densities and its magnitude, starting at
0.003 at a density of 0.0094 A~, increases steadily
(i.e., it is 0.094 at n =0.0127 A ') to reach the
value 1.40 at the highest density, i.e. , at 0.0211
A '. Consider next the term,

'The quantity ((p& p~ p & & )) can be taken out of the
integral over p. in the approximation that either q
or q, is small. The integral above cannot be
exactly evaluated, since ((p& p&, p & &,» is unknown.
To make an order of magnitude estimate, we
broke up the interval of integration into two parts:
one from zero to q, over which ((p&p& p & & )) can
be approximately replacedby ((p&p,p &I&, and the
other from q, to q, over which the ln term can be
approximated by -4k'/q, . For the purpose of esti-
mation let us take q, =4k,„=4k', where k,„is the
wave number corresponding to the thermal de
Broglie wavelength of the electron. Then for the
q-0 limit we get, making use of Eq. (14),

((T,(0)))= -(2m, V,"/v'lt )(n'/Q)ksTyra,

where

eS, &

z =q, S2(0) + lim n

+ j dq s, (q)+ —(. ') +m(

The ratio of the contributions to the right-hand
side of Eq. (23) of this term, had it been incor-.
porated in Eq. (9) for W„-„-,, and the similar term
«T.(0)» is

l

before and in the q-0 limit, is

„2m, n' ~ [S2(q,)]'
((T6(0)))= 2VO Vo gQ g2 ~ ki2 ~k + ~2+ '0

Converting the q, sum into an integral and break-
ing up the interval of integration into two parts as
before, we arrive at the approximate result

((T,(0)&) = (2~,/~%') V,"V,"(n'/n) ~,
where

$ =q.[S.(o)]'+ de [S.(a)]'.
Cp

We have examined the ratio of the contributions
of this term and ((T,(0))) to Eq. (23), which is

R, = (27)

This ratio varies from 0.003 at n=0.0094 A '
through 0.111 at n =0.0127 A 3 to 2.186 at n =0.0211
0
A 3, and is always negative.

The contributions of the other terms of Eq. (25)
to Eq. (23) can be similarly calculated and com-
pared with those already included in the latter
equation; all such contributions are of the same
order of magnitude. Thus, the higher Born ap-
proximation corrections appear unimportant at
low densities, where T, and T, are important,
and are comparable to or larger than T, and T,
at densities at which the latter are small com-
pared to T,. We conclude that the Born series for
t„-„-, is not rapidly convergent; however, the cor-
rections introduced into Eq. (23) on this account
will not be significant.

V. MODEL CALCULATIONS OF V0(n) and Vo(n)

In this section we have estimated, using two dif-
ferent models, the energy V,(n) of the conduction
band minimum for an excess electron in liquid
argon for several values of the density n. Fromwhich, in the Gaussian approximation described

(&T (q)» 0 0 Re Q ((PC/ PI PC 21j P r-a,»-
Eg, -Ep ) +i0

X~ 2 +2
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V, (n) = (k'/2m, )4vn(a) + U, , (28)

where both (a) and U, are functions of the fluid
density n. Using the values of U, and (a) given by
JHR, we have calculated k, t Eo and Vp in this
model at a number of densities and displayed them
in Table L From Eq. (28) we can write

Vo(n) = (fl /2m, )4v(a) + (k2/2m, )4vn(a)' + Uo,

(29)

where primes denote derivatives with respect to
n. It should be pointed out that had we set the
scattering potential 4V, equal to V,'4n in Eq. (4)
and neglected the terms involving (a)' and U,'(n)
intheexpressionfor V,'(n) givenby Eq. (29), wewould

these estimates the quantity V,'(n) is obtained as a
function of n and compared with the V,'(n) emerging
from the data fitting.

As mentioned earlier, V, consists of two parts.
Qne of these is the background- potential U„which
includes' the effects of (i) the screening of the
polarization part of the electron-argon-atom
interaction by the surrounding atoms, and (ii) the

overlapping of neighboring atomic fields. JMR
have evaluated U, for liquid argon at several den-
sities extending over the range of fluid states
covered by their experiments. The other is the
kinetic energy term &„ this we shall estimate
in two different models, each of which represents
the liquid only approximately.

First, as in Lekner's theory, ' we consider the
liquid as a collection of atoms which scatter weak-
ly and singly; the kinetic energy term can then be
written as c, =k'k'„,/2m„where k„,=(4vn(a))' '
in the single-scattering, optical-model, "approxi-
mation. This gives for the conduction band mini-
mum

have arrived at the same expression for the mobility
as that obtained by Lekner. 2 To show qualitatively
what is wrong with this procedure, we have used the
results of Table I to estimate V,' numerically as a func-
tion of density as obtained by (i) neglecting the density
dependences of (a) and U, and (ii) including such
density dependences. The results are shown in
Fig. 4. It is seen that curve (a), which represents
the single term k'4v(a)/2m„ increases slowly and
monotonically over the experimental range of
densities, thereby ruling out any chance of leading
to the mobility maxima in the framework of Lek-
ner's theory. 2 However, curve (b), representing
the full expression for V,

' in Eq. (29), does show
a minimum, albeit very flat, around a density of

0
0.012 A~. This result can, in principle, repro-
duce the observed maxima in the density depen-
dence of the mobility. But the exact shapes of
the mobility curves and the magnitudes of the mo-
bilities so obtained do not compare well with ex-
periment. Thus, the foregoing analysis only has
value in pointing out that a successful interpreta-
tion of the mobility data requires incorporating
into the theory the nontrivial density dependence of
the average potential U, and the effective scatter-
ing length Q).

The optical-model" approximation used above is
good only in the limit of a low density of scatter-
ers. In the range of higher densities pertaining
to real liquids, strong multiple scattering of
the excess electron from neighboring fluid atoms
becomes the predominant factor which sets the
energy scale of- the electron. We incorporate
this into our analysis most simply by replacing

yt with k'0 in evaluating 60 wher e 0, is deter-
mined via the signer-Seitz approximation from
the relation tank, (r, —(a)) =kor, . The values of
k, and V, calculated in this model are also dis-

TABLE I. Conduction-band minimum energy of an excess electron in liquid argon {Vp).

F t.u id

density
n ik-'}

Calculated
scattering

length
(a& (A}

Maximum
average
potential
—Pp {Ry.)

k, t= (4mnm&}'~ energy
-Vp {By.)

Optical-model approximation
Cond. -band
minimum hk 0o=

2m

(By.)
kp

(A-'}
energy

-Vp {By.)

Wigner-Seitz approximation
Cond. -band

minimum

0.004 22
0,008 08
0.011 76
0.014 82
0.016 82
0.01903
0.021 13

0.601 b

0.652
0.677
0.693
0.706
0,720
0.772

0 047c
0.070
0.087
0.099
0.109
0,121
0.1 57

0.178"
0,257
0.316
0.359
0.386
0.414
0.452

0.009
0.018
0,028
0.036
0,042
0.048
0.057

0.038
0.052
0.059
0.063
0.067
0,073
0.100

0.208"
0.319
0.410
0.482
0.529
0.584
0.667

0.012
0.029
0.047
0.065
0.078
0.095
0.125

0.035
0.041
0.040
0.034
0.031
0.026
0.032

~ See Sec. V of text.
"See Reference 6.

See Reference 1.
Our value differs somevrhat from that calculated in Ref. 6, especially at the higher densities.
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FIG. 4. Curve (a) represents TAO (~) obtained using the
optical-model approximation, as given by Eq. (29);
curve (b) represents only the first term on the right-hand
side of Kq. (29).

played in Table I and are used to estimate numer-
ically the corresponding V,'(n). The curve (d) in
Fig. 2 is a plot of this V,' against the density, which
is reasonably close in magnitude and shape to the
curve (c) for the empirical form of V,' in the range
of densities between 0.010 A ' and 0.016 A~. That
the Wigner-Seitz model estimate of V,' then devi-
ates considerably from the empirical V,' is, we
believe, due to erroneous estimates by JMR of
(a) and U, at high densities. It will be observed
from Table I that at the higher densities V, is a
small difference between two large contributions,
e, (repulsive) and U, (attractive). Any small
errors in these contributions are likely to be mag-
nified in V,.

In closing, we remark that these two models for
V, (and V,') are both approximate and represent, at
best, two opposite extremes of the true physical
picture of a liquid. The optical model approxima-
tion can be exprected to be good only for dilute
gases, while the-Wigner-Seitz approximation can
really be applied with confidence only to close
packed solids. However, of the two, the latter
seems to us to be a more plausible approximation
because of the importance of the multiple scatter-
ing effect in liquids, which the Wigner-Seitz ap-
proximation represents well.

VI. DISCUSSION

In this paper we have proposed a theory for the
mobility of excess electrons in a simple insulating
liquid based on the scattering of such electrons
from long-wavelength density fluctuations. The
electronic motion couples to these fluctuations
through a deformation-potential Vo which is a
function of the density of the liquid. As Fig. 2
shows, the V,' which gives a best fit of the data to
this theory goes through zero at a density close to

that at which the maxima in the mobility occur.
This is one of the important results suggested by
our work, namely that the maximum in the mobi-
lity is caused by the vanishing of the leading de-
formation potential coefficient. A similar idea
was proposed by Lekner, ' who claimed that the
effective scattering length (a) vanishes at the den-
sity of the maxima. However, the calculations of
JHR clea, rly showed that (a) did not show the right
density dependence for this purpose, at least
within the context of Lekner's theory of an effective
scattering potential. Qn the other hand Vo(n), as
obtained from the two model calculations shown in
this paper, exhibits very strong density dependence
and in one case passes through zero at almost

' the same density at which does the empirical Vo(n).
It thus appears that Lekner's idea of a Ramsauer
minimum" in the scattering of electrons in liquid
argon may indeed be true, provided the scattering
is described in terms of a deformation-potential
appropriate for fluids.

There is evidence for this type of generalized
Ramsauer effect occurring in other Quids. Hol-
royd and Cipollini" have reported maxima in the
excess electron mobility in liquid neopentane and
TMS at densities where the conduction band energy
V, shows a minimum in these liquids. The authors
have suggested that around the minimum of Vo,
the potential fluctuations caused by density Quctua-
tions will be minimal, causing a minimum in the
electron scattering and a maximum in the mobility.
This is a physical statement of the interesting re-
sult mentioned in the last paragraph. Such cor-
respondence between the maxima in the excess
electron mobility and the minimum in Vo have also
been suggested" in the case of fluid hydrocarbons
such as methane and ethane.

Although there is qualitative agreement between
the results of Secs. ID and V, there is a number
of ways in which the work described here can be
improved. The term q, has been evaluated using
two simplified models, none of which really ap-
plies to a liquid. The short-wavelength multiple
scattering of an electron from its neighbors is
important in a liquid, but the molecular packing is
not necessarily dense or regular enough to warrant
the use of the Wigner-Seitz approximation. This
method assumes the electron to be in the field of a
Quid atom which is at the center of the Wigner-
Seitz sphere formed by its close-packed neighbors.
Disorder in the packing geometry of atoms in a
liquid can cause (i) deviation in the shape of the
volume enclosed by nearest neighbors from a
sphere and (ii) displacement of the central atom
from the geometrical center of the enclosed vol-
ume. In order to arrive at reliable quantitative re-
sults in the present case, one therefore requires a
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more detailed analysis of the multiple scattering
problem than use of the signer-Seitz approxima-
tion.

Another direction of improvement of the theory
lies in the construction of the potential underlying
the calculation of U, and of (a). The calculations
of JMR were done following the prescriptions of
Lekner for screening and for averaging the poten-
tial of the surrounding atoms. Both of these are
simplified, but. as yet we have nothing better.
Any errors originating here may be magnified
by the fact that the contributions of U, and &, to
V, are of opposite sign. Finally, the convergence
of the series for AV, (r ) and t„-„-,, though satis-
factory, is not excellent. Any effort to improve
this by reformulating the problem will certainly
help place the present theory on firmer grounds.

In conclusion, it appears that our model of an
electron residing in a quasi-free-state in the
conduction band of a liquid and getting occasionally
scattered by density fluctuations represents quite

accurately the motion of an excess electron in a
simple liquid. The deformation-potential coeffi-
cients show density dependence strong enough to
produce the observed structure in the mobility
curves, thereby removing the need for any further
manipulation of the scattering length (a), which
has been shown' to have a density dependence
which is much too weak for this problem. The
present work needs refinement, however, in the
way of a more careful evaluation of V,. At the
same time, this work gives rise to the interesting
notion of a generalized Ramsauer effect" in con-
densed media.
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