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Second-order Raman scattering in II—VI semiconductors:
Relative intensities and trends

R. L. Schmidt, ' K. Kunc, t M. Cardona, and H. Bilz
Max-Planck-Institut fur Festkorperforschung,

Heisenbergstrasse 1, 7000 Stuttgart 80, Federal Republic of Germany

(Received 9 April 1979)

The second-order Raman spectra of ZnS, ZnSe, and ZnTe are calculated using an anharmonic

overlap shell model for their lattice dynamics. These calculations are fitted to the experiments
and the corresponding nonlinear polarizabilities of Zn, S, Se, and Te are derived. The systemat-

ics of these parameters are discussed. . As a by-product the measured relative strengths of the
first-order scattering by TO.phonons are interpreted with a microscopic-deformation-potential
model.

I. INTRODUCTION

During'the past few years the study of the Raman
scattering of zinc-blende-type semiconductors has re-
ceived considerable attention. ' ' While the first-
order spectrum yields accurate values for the energies
of the LO and TO phonons at k =0 (I' point) the
second-order spectrum, when interpreted with the
help of lattice-dynamical models, yields the ener-
gies of a number of critical points rhostly at the edge
of the Brillouin zone.

Not only the location of structure in the Raman
spectra but also the intensity of these structures, and
with it the mechanism of the scattering process, has
received interest. ' ' The aim of this type of work
is usually to obtain information about the first- and
second-order"" electron-phonon interactions. Two
approaches can be followed; (i) microscopic ones,
based on the electron energy bands and the deforma-
tion potentials for the electron-phonon interaction '
and (ii) macroscopic ones, often based on lattice-
dynamical shell models with anharmonic spring con-
stants. ' "'~ The band-structure approaches are par-
ticularly suited for treating resonance phenomena
when the laser frequency lies near that of a strong
energy gap.

In this work we discuss the second-order Raman
scattering by phonons in ZnS, ZnSe, and ZnTe. The
reported independent-symmetry-component spectra
are basically the same as those of Ref. 5 except that
care was taken to determine the relative strengths of
one material compared with the others. Away from
resonance the spectra are described in terms of a
nonlinear shell model first proposed by Bruce and
Cowley' using the harmonic parameters of the over-
lap shell model'5 determined by Kunc and Bilz for
these materials. '0 A reasonable fit of the three in-
dependent components of the second-order spectra of
each compound and their relative intensities is possi-
ble using only two nonlinear ion-shell spring con-

stants for each material (one for each of the consti-
tuent ions). The systematics of the values obtained
for these parameters is discussed in the light of previ-
ous ideas concerning the polarizability of chalcogen
ions. As a by-product, the relative intensities of
first-order scattering by TO phonons are discussed in
terms of deformation-potential theory.

II. EXPERIMENTS

The experiments were performed in the back-
scattering geometry on (110) and (100) surfaces us-
ing commercially available gas (Ar+, Kr+, N2) and
jet-stream dye lasers. The spectra were measured in
the geometry that gives the symmetry combinations
I ~ + I ~2+ I ~5, I I +4I ~2, and I ~5. By digitally corn-
bining the spectra, the individual symmetry com-
ponents, I ~, I ~5, and I ~2, could be obtained. As has
been observed in all tetrahedral semiconductors, ' '
the I"

~ comporient appears most strongly while the
I t5 is some~hat ~eaker. The I ~2 is the weakest com-
ponent of the spectra: its intensity lies below the ex-
perimental noise.

The lasers used for the determination of the rela-
tive intensities of the II—VI materials were chosen
such that their wavelengths were equal to 80% (+4%)
of the band gap coo in all three materials
(ru/alp —0.8).5 The resonance effects, already quite
small, should thus be equal in all three samples.
From Ref. 5 we estimate the resonance enhancement
at co/cop =0.8 to be about a factor of 2.

The intensities of the spectra were corrected for the
absorption of the laser and the scattered radiation. "
Absorption measurements on 50- and 100-p,m-thick
slabs, cut from the same crystals from which the Ra-
man spectra were measured, provided an accurate
means of determining the absorption coefficient for
each material. Further intensity corrections due to
the spectrometer and photomultiplier responsivity
were performed by measuring the intensity of the
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component of the second-order Raman spectrum of ZnS measured at room temperature. Also (histogram) fit
based on the anharmonic shell model described in the text with the parameters H&(Zn) and H~(S) given in Table I.

320-cm ' phonon line of CaF2 as a function of laser
frequency. CaF2 has a band gap of about 10 eV and,
except for the well-known cu factor, ' does not show
any resonance effects in our region of interest. Thus
our data correctly represent the relative scattering in-
tensities of the three materials measured divided by
co . They are normalized so as to make the height of
the TO phonon of ZnTe in the allowed I'~5 configura-
tion equal to unity.
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III. RESULTS AND DISCUSSION

A. Second-order scattering

Figures 1 —3 show the I ~ spectra of ZnS, ZnSe, and
ZnTe measured at room temperature. The
corresponding FI5 components of ZnSe and ZnTe are
displayed in Figs. 4 and 5 (that of ZnS has already
been presented in Ref. 10). The 1'12 components are
negligible as already mentioned, a fact that is also
reproduced by the calculations to be discussed below.
The I ~ components are composed mostly of TO and
TA overtones with some contribution of TA +TO
combinations, 5 The weak I ~5 components contain
mainly TA +TO combinations and some 2TA over-
tones.

The histograms of Figs. 1—5 were obtained with
the nonlinear shell-model approach. " The harmonic
parameters of the valence overlap shell model' were
taken from the literature (Ref. 6 for ZnS and ZnTe,
Ref. 10 for ZnSe). They consist of ten adjustable
parameters including five short-range interionic force
constants, a shell charge Y„, and a shell restoring
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FIG. 2. I
~ component of the second-order Raman spec-

trum of ZnSe measured at room temperature. Also (histo-
gram) fit based on the anharmonic shell model described in

the text with the parameters H~(Zn) and 0~(Se) given in

Table I.
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FIG, 4. I &5 component of the second-order Raman spec-
trum of ZnSe measured at room temperature, The histo-
gram was obtained with the theory described in the text and
the same anharmonicity parameters H&(Zn) and H&(Se)
used to fit Fig. 2.
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&

component of the second-order Raman spec-
trum of ZnTe measured at room temperature. Also (histo-
gram) fit based on the anharmonic shell model described in

the text with the parameters H&{Zn) and H~(Te) given in

Table I. (P = —' gk„Xw'(l~)
l~ a

(2)

the cores at the site I~. The proportionality coeffi-
cient H~(~) is the local nonlinear electron-ion cou-
pling constant and the summation extends over all

lattice sites and the three coordinates x,y, z. This
nonlinear "spring" is superimposed on thc linear

spring constant k„, binding each shell to its own core
and giving the self-energy contribution

force k„ for each ion and an ionic charge Z. Note
that the cation shell charge, Y~, is positive in this
model. The nonlinear interaction is defined by the
potential

g "= $H( (~) X w' (IK) wa (IK)
l~ aP

Here w (IK) are the shell displacements relative to

to the total shell-model potential.
The potential of Eq. (I) is ascribed to individual

lattice sites, and not to bonds. Hence this approach
is a local one and gives risc to the second-order dif-
ferential polarizability (Raman tensor)
P a(q j~, —q j2) [see, e.g. , Ref. 16, Eq. (49.5) j in

terms of a contribution from each of the two sublat-
tices:

2tie' ' c(x)'
(q ji.—q j» = — X H~(~) X (I +2~ )f (&I q ji)f&(KI —q j»3 "~+ -& (q ji)(qi2)

P.s(qi i. —qi2) = — X W(~) [f.(KI qii)fa(KI —q J2) +fa(~l qii)f. (KI —qi2) j,2'' ' c(x)'
».& .-i [co( q jt) ~(q j2) I'~'

f (S+ YCY) '(T++ YCZ)(M ' u) (4)

(see, e.g. , Ref. 17 for the established shell-model no-

where ~ =1,2 labels the two sublattices, co(q j) is the
eigenfrequency of the phonon mode (q j), and
f (q j) stands for the shell-displacement amplitude
corresponding to the core-displacement eigenvector
~(KI q j)

tation) and
2

C(&) = x Y„S '(KK ~q=0)

Nv, represents the volume of the crystal.
We thus obtain the Raman tensor as the sum of

two contributions, one proportional to H, (II) and
another proportional to H~(VI), where II and VI
represent the cation and the anion, respectively. The
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FIG. 5. I ~5 component of the second-order Raman spec-
trum of ZnTe measured at room temperature. The histo-
gram was obtained with the theory described in the text and
the same anharrnonicity parameters H&(Zn) and H~(Te)
used to fit Fig. 3.

scattering efficiency can thus be written
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s = [H)(II)Ru+H)(VI)Rvt]
=H) (II)Rir+Hi (VI)Rv) +2H)(II)H)(VI)RuRvt

(6)
~here R are appropriate combinations of differential
polarizabilities [Eq. (3)] and Bose-Einstein factors,
summed over all two-phonon states. We show in
Figs. 6 and 7 the calculated spectral dependences of
Rii, Rvi, and RiiRvi for ZnS and ZnTe in arbitrary
units (the same, however, in all cases and including
phonon occupation numbers at room temperature).
These uriits have been chosen so as to make the
fitted value of H&(s) (see below) equal to unity.

0.1—

I

Ql
CL

0

Q

0.05-
0.025-

0

)00

100

200

200

300

300

400 cm&

' 400cm&

0.02-

0.01-

200 300

Rm
2

600 700

FIG. 7. Three constituent components of the calculated
I'~ second-order Raman scattering spectra of ZnTe. The his-
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properly weighted with the anharmonicity coefficients
H~(Te) and H~{Zn) as shown in Eq. (6).
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FIG. 6. Three constituent components of the calculated
I

&
second-order Raman spectra of ZnS. The histogram of

Fig. 1 is obtained by adding these components properly
weighted with the anharmonicity coefficients Hi(S) and
H~(Zn) as shown in Eq. (6).

The histograms of Figs. 1—3 were obtained as the
best overall fits to the experimental data with the Ri'~,

Rv2i, and RIiRvi of Figs. 6 and 7 and similar data for
ZnSe, by varying the anharmonic coupling constants
H)(II) and H)(VI).

The parameters H~ needed for the, fits are listed in
Table I. They seem to vary in a systematic way
throughout the series of materials. Particularly obvi-
ous is the strong decrease in H~(II) in going from
ZnS to ZnTe. This decrease finds its counterpart in a
strong increase of Rii, i.e., the highest values of R~~

for ZnTe are one order of magnitude larger than for
ZnS while those of Rvi are much closer, with
Rs & RT,. This fact is to be understood as a peculiar-
ity of the lattice-dynamical model used. We note that
the products H~(II)Ru change by much less
throughout the sequence ZnS ZnTe. We may
therefore look for an appropriate combination of
parameters, instead of H~ or R alone that is more
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TABLE I. Anharmonic coupling constants Hi(II) and
Hi(VI) needed for the fits of Figs. 1 —3. Also, values of
these parameters multiplied by Y A. /k . The units and
values of Y, X, and k are those of Ref. 10.

TABLE II. Electron —two-phonon deformation potentials
Di and D&5 for ZnTe, ZnSe, ZnS. Also calculated
electron —one-phonon deformation potential dp of the I i5
valence band (from Ref. 5).

Cation
Y'X'

1 4 Hi

Anion
Y'X'

1 4

Mode Di (eV) - D&5 (eV) dp (eV)

ZnS
ZnSe
ZnTe

5.0
3.7
0.8

2.1 x10"
2.0 x 10"
3.8 x 10"

1.0
0.37

=0.8

14.4 x 10"
1],9 x 10"

=6.8 x 10'i

ZnTe
2TA
TA +LO
TO+ LO
2TO

575

100

340
100

meaningful to represent the systematics of the
second-order Raman scattering. For this purpose let
us note that the band-structure description of
resonant scattering is based on the deformation poten-
tials D~ (for the I'& component). ' Within this
description, the Stokes scattering efficiency for a
given group of two phonons around a critical point is'

ZnSe

ZnS

2TA
TA +TO
TO+ LO
2LO

2TA
2TO
2LO

545

510

1600
2470
5700

250
260

27

25

5 ~ D,' (u,') (u2)(1+n&)(1+n&)

where (u ) is the zero-point average core displace-
rnent, and ni and n2 are the Bose-Einstein factors of
the two phonons under consideration. A comparison
of Eqs. (3)—(5) with Eq. (7) indicates that D~ (see
Table II) plays approximately the same role as the
following combination of shell-model parameters:

Y'z'

4

with the polarizability n = Y~/k, and the "deformabil-
ity" 5= h./k. h. is a rough representation of the ma-
trix T, Eq. (4), by a nearest-neighbor force. 'P We
have thus also listed in Table I this combination of
parameters obtained from the fitted H~ (II) and
H~(VI) and the Y's and k's of Ref. 10. The sys-
tematics of these renormalized anharmonicity param-
eters is more reasonable than that of the Hi's. First
of all, the renormalized anion parameters are higher
than the cation ones, in agreement with the intuitive
idea that the anion polarizability must dominate the
scattering process. ' The residual cation parameters
are due to overlap effects which become important in
the case of ZnTe. We note that u(II) = Y~'~/kn in-

creases by only 15% in going from ZnS to ZnTe. The
more important decrease in H~(II) stems from the
short-range deformability parameters X and kii com-
bined into 8 = X/k in Eq. (8). The increase of this
overlap contribution to the Raman scattering may be
attributed to the bigger size of-the Te2 ion as com-
pared to the S2 ion which shifts the overlap center in
its relative position nearer to the Zn2+ ion and
enhances therefore the pseudo-polarizability and -de-

formability of the Zn2+ ion (refer to Ref. 15). It
seems that this analysis is the first case where the ef-
fect of overlap polarization could be, at least roughly,
identified in Raman scattering.

The systematics of the renormalized anharmonicity
parameters of Table I is similar to that of the defor-
mation potentials D~ of Ref. 5 (see Table II); any
quantitative differences are easily accounted for by
the fact that the D's represent resonance parameters
for the Ep gap while the constants of Table I are
average, nonresonant values. %'e see in Table II that
Di for 2TA phonons is larger than for 2TO in ZnTe
while the opposite is true for ZnS. This represents
the fact that the TA modes of ZnTe are mostly vibra-
tions of the heavier and more polarizable Te atom,
while the opposite is true in the case of ZnS. The
average values of Di increase from ZnTe to ZnS in a
manner similar to the renormalized anharmonic con-
stants of Table I.

B. First-order scattering

&F2 cm 'sr '
Cdp

(9)

As a byproduct of this work we have measured the
ratios of scattering efficiencies for the first-order
scattering by TO phonons at «)/a)p —0.8. The results,
normalized to ZnTe, are shown in Table III. This
scattering efficiency can be written"

~ dp pp'[n(Q) +1]ap
Mp p, O
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TABLE III ~ Calculated values of the scattering efficiency
for first-order TO scattering at room temperature compared
with experimental values of the relative scattering efficien-
cies of ZnS, ZnSe, and ZnTe. The experimental and
theoretical values of S/cd for ZnTe are normalized to those
of ZnTe.

The function F(x) is defined as
t 3/2

F(x) = —g(x)+ f(x) — f(x,)
4~p Cdp

hp ps,

g(x) =x '[2 —(1+x) ' ' —(1 —x) ''],

ZnS ZnSe ZnTe f(x) =x '[2 —(1+x)'l' —(1 —«)'~']

S (calculated)
S/co4 (experiment)
S/co~ (calculated)

2.6 x 10 1.6 x 10~ 1.2 x 10~
0.4 1 1

0.43 0.69 1

where, for convenience, the laser frequency co is in
0

eV, the lattice constant ap in A, the reduced atomic
mass p, in nuclear mass units, and the phonon fre-
quency 0 in cm . dp is the deformation potential
for the I i5 state and cop is the energy gap, both in eV.

OJ CUX=, Xg=
QJp QJp + Ap

where Ap is the spin-orbit splitting of the I"i5 valence
state. We have evaluated the scattering efficiencies
of ZnS, ZnSe, and ZnTe for co/coo =0.8 with Eq. (9)
using the deformation potentials dp of Table II. The
resulting values are listed in Table III. In order to
compare these efficiencies with the relative experi-
mental results they must be divided by cd. The
result of this procedure, also shown in Table III,
agrees reasonably well with experiment.
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