
PHYSICAL REVIEW B VOLUME 20, NUMBER 8 15 OCTOBER 1979
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The structure of the E levels of Mn + in stressed ZnS and ZnSe crystals and in several or-
ganic compounds with distorted tetrahedral symmetry is investigated. First, the slight departure
from tetrahedral symmetry of MnX4 {X=S, Se, Cl, Br) molecular clusters is analyzed in terms
of the normal coordinates 0(E) and 0(T2) of a regular tetrahedron. Second, the influence of
a linear coupling to E and T2 strains and of a quadratic coupling to E strains is considered.
Then, it is shown that for all clusters, the structure of the 4E levels can most likely be interpret-
ed in terms of an equivalent operator linear in g{E)and acting directly on the 4E states. The
values for the coupling parameters in the considered MnX4 clusters are given and the origin of
the equivalent operator is discussed. Finally, a study of the influence of the Jahn-Teller effect
on the fine structure of the 4E levels is made for all compounds. It is shown that the strength
of the Jahn-Teller coupling to E vibrational modes is insufficient to drastically quench the influ-
ence of the T2 strains on the observed vibronic 4E states, the reduction parameters associated to
these strains being greater than 0.35 for MnS& clusters and greater than 0.5 for the other clus-
ters. This indicates that the electronic 4E states are predominantly coupled to E strains, the elec-
tronic coupling to the T2 strains being small or negligible.

I. INTRODUCTION

The analysis of the structure' of the zero-phonon
lines of the Ti, 'T2 and 'E levels of Mn'+ ions in cu-
bic symmetry has attracted much attention in the past
few years. ' ' Although invoked for a long time, ' a

dynaical Jahn-Teller effect has been only recently
observed and interpreted in the fluorescent 4Tt level
of Mn'+ in ZnS and ZnSe. It was described by
Ham's model corresponding to a coupling to E vibra-
tional modes. A dynamical Jahn-Teller effect has
also been observed in the 4T2 level at lower energy in
these compounds', in this case, it was shown that its
main effect is to selectively transfer the intensity of
the At 1"8(—,)( T2) transition to excited vibronic
transitions. For these orbital triplets, the uniaxial-
stress experiments indicate that the coupling to T2 vi-
brational modes is either small or quenched by a
Jahn-Teller coupling to E modes. In order to lift this
ambiguity, Boccara performed a linear dichroism ex-
periment under uniaxial stresses. He concluded that
the 4T2 bands which are not subjected to a Jahn-
Teller effect are almost insensitive to T2 strains,
while the Ti bands are slightly coupled to T2 strains.
These results are in agreement with those obtained
on the fundamental vibronic transitions Ai "T2
which are very weakly (or not) coupled to T2 strains
and only weakly coupled to E vibrational modes [the
Huang-Rhys parameter being S(4T2) =0.6 for
ZnS:Mn and S(4T2) =. 1.2 for ZnSe:Mnj so that the

influence of the T2 strains is not strongly reduced by
the Jahn-Teller effect, They are also in agreement
with the results obtained on the fundamental vibronic
states A t 'Ti for which the coupling to the T2
strains is reduced by the Jahn-Teller coupling to E
modes [the Huang-Rhys parameters being
S(~T,) =1.8 for ZnS:Mn and S(~Ti) =2 for
ZnSe:M n).

In an earlier paper on the 4E level at lowest energy
of Mn + in ZnS and ZnSe, ' it was claimed that a cou-
pling to E strains should be negligible, due to a
third-order perturbation scheme in a theory restricted
to the d' configuration. Therefore, the uniaxial-
stress effects were tentatively interpreted in terms of
a linear coupling to T2 stress-induced strains via a
second-order perturbation scheme involving the
spin-orbit interaction and a stress-induced crystal-
field Hamiltonian of T2 symmetry.

However, optical experiments (reported in this pa-
per) performed on the 4E level at lower energy of
Mn + ions in distorted tetrahedral molecular clusters,
having shown splittings of the zero-phonon lines
which could not be interpreted in terms of a coupling
to T2 intrinsic strains, led us to investigate the case
of a linear coupling to E intrinsic strains and recon-
sider the nature of the coupling in stressed ZnS and
ZnSe crystals.

As in the case of the orbital triplet levels the prob-
lems to be solved for the 4E states of d' ions are (i)
define the electronic structure of these states (of
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gle crystals appear as platelets with dimensions of the
order of 5 x 5 & 2 mm . They are green yellow for
x =1 and 0.3 and colorless for x «0.1. The crystals
corresponding to x =0 and 1 are isomorphic. The
space group is Dqq, the dimensions of the unit cell
being': a =12.276 A, b =8.998 A, c =15.541 A for
x =0 and a =12.33 A, b =9.06 A, c =15.64 A for
x =1. For the molecular clusters (MnC14) 2, the lo-
cal symmetry is C~ (see Fig. 1)..

The other compounds are pyridinium-
tetrahalomanganates II, whose chemical formula is
(C5HSNH) 2Mn„Zn~ „X4with X =CI,Br and x = I,
0.3, and 0.1. These crystals were synthesized follow-
ing the method of Cotton et aI. They appear as
needles with dimensions of the order of 5 x 2 x 1

mm . They are green for x =1 and transparent for
x «0.3. The crystallographic data of Brassy et al. "
show that the crystals with X =Cl and Br are iso-
structural and triclinic. The space group is P —,. The
cell parameters are a =12.711 A, b =8.158 A,
c =7.681 A, a =100.38', P =93.43 ', and y =88.78'
for (CSHSNH) 2M nC14 and a = 13.128 A, b = 8.350 A,
c =7.939 A, a=100.61', P =96.66', and @=87.63'
for (C5HqNH)2MnBr4. The local symmetry for Mn2+

in the (MnCI)42 and (MnBr4)~ clusters is C~ (see
Fig. I).

The emission, absorption, and excitation experi-
ments were performed at variable temperature
between room temperature and 2.2 K with a Jobin-
Yvon spectrometer HRS II. The irradiation of the
crystals was performed either with a xenon lamp or
an argon laser CRS (coherent radiation).

The EPR spectra were obtained with a Varian E
2000 spectrometer operating at 35 GHz and a V 4502
Varian spectrometer operating at 10 GHz between
room temperature and 2.2 K.

The Raman spectra were obtained with a Coderg
PHO spectrometer equipped with a 1800-lines/mm
grating. Helium neon and argon lasers from Spectra-
physics were used for excitation.

zero-phonon lines from the phonon-assisted lines
the observed bands even with the aid of the Raman
spectra. This was primarily due to the presence of
low-energy phonons in the observed optical and Ra-
man spectra. In particular, the fine-structure patterns
for the zero-phonon lines of the A~ T2 transi-
tions, which were expected to be composed of six
lines in C~ symmetry and to extend over approxi-
mately 100 cm ', were blurred by several phonon-
assisted lines. (We did not try to recognize the lattice
modes and the localized modes in the Raman spec-
tra).

A part of the excitation spectrum and the Raman
spectrum of [(CH3)4N)2MnCl4 are represented in
Fig. 2. The inset gives the zero-phonon lines ob-
served in mixed crystals (x,=0.1). Four zero-phonon
lines are easily distinguishable as well as a one
phonon-assisted line appearing near 23039 cm '.

Figure 3 corresponds to (C5HSNH)2Mno ~ZnoyC14.
The excitation spectrum clearly shows two intense
zero-phonon lines and phonon-assisted lines. The in-
set clearly shows two very weak lines appearing at
22972 and 22976 cm '. This structure was particu-
larly difficult to be observed (slit: 0.2 cm ', T =2.2
K, concentration x =0.1).

In the case of (C5H5NH)2 Mno ~Zn0. 9Bf4 (Fig. 4),
four zero-phonon lines appear in the spectra. As in

40

B. Experiments

At 2.2 K, the emission spectra of the studied com-
pounds consist of broad bands centered at 21 250
cm ' for [(CH3)4N)2MnC14, 19200 cm ' for
(CqH5NH)2Mn„Zn~ „C14,and 19180 cm ' for
(C5H5NH)2 Mn„Znt „Br4.No zero-phonon line
was observed in emission.

The absorption spectra were observed at 2.2 K in
0

the range 2500—8000 A for the crystals having the
maximum concentration (x = I) in Mn'+. The exci-
tation spectra were obtained for all crystals described
in Sec. II A; numerous narrow lines were observed at
2.2 K in the bands of Mn2+ appearing in the range
2500—8000 A. However, except for the 4E band it
was not possible to unambiguously separate the

I IH

QO 250 cm~

FIG. 2. Excitation spectrum of the 4E band and Raman
spectrum (below) of f(CH3)4N]2MnCl4. The inset gives the
details of the zero-phonon lines of the 4E state obtained with
a mixed crystals [(CH3)4N]2Mno &Zn09C14 the lines near
23039 cm are phonon-assisted lines; the vertical bars give
the calculated energies and relative dipole strengths as calcu-
lated from the E-coupling model of Sec, IV.
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FIG. 3. Excitation spectrum of the E band, Raman specltrum (below) and details of the zero-phonon lines (inset)
for (C5H5NH)2Mnp &Znp 9Clg.

the case of (CqH5NH) 2Mna'ZnoqCI4 the two very
weak zero-phonon lines appearing at 22667 and
22671 cm ' were observed in selected single crystals
showing well-defined EPR spectra.

For all compounds presented in Sec. II A, a study
of the excitation spectra in terms of the concentration

(x =0.1, 0.3, and 1) only showed a broadening of all
observed lines. This broadening rapidly obscures the
fine structure observed in [(CH3) 4N12Mn„Zn~ „X4,
thus explaining the nonobservation of the structure
of these lines in [(CH3)4N]2MnC14 which was exten-
sively studied by Vala et al. '

22680
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22684

70

cm
't

22790 22800 23000

W I

0 50 'IOO 1SO 200 2SO cm~

FIG. 4. Excitation spectrum of the E band, Raman spectrum (below) and details of the zero-phonon lines (inset) for
(CSHSNH) 2Mnp )Znp gBr4.
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III. PRELIMINARY ASSUMPTIONS AND
TENTATIVE MODELS

In the absence of a dynamic Jahn-Teller effect, the
Hamiltonian governing the energy levels of d' ions in

nearly cubic symmetry can be written

Xo +~cub +~so +~ss +~~strain

where Xo andBC, „bare, respectively, the free-ion
Hamiltonian and the cubic part of the internal ligand
field. 3,'~o is the spin-orbit interaction and%» is the
spin-spin interaction. h, „„„representsthe noncu-
bic part of the internal ligand field corresponding to
stress-induced strains or intrinsic strains.

Our main assumption is that , „„„canbe ex-
panded in terms of a linear combination of normal
coordinates Q(I, Mr) transforming like the Mr com-
ponent of a representation I" of a cubic group. Expli-
citly, 53C„„;„canbe written

cm ', the covalency factors deduced from the ob-
served energies of the centers of gravity of the
'E($6) bands for the compounds studied are greater
than k =0.95, corresponding to a splitting of the 4A

l

and 4E states greater than 700 cm '. (Following this
assumption we will also neglect any vibronic coupling
between the E and A l states via E vibrational
modes in Sec. V concerning the Jahn-Teller effect).

In order to determine the structure of a E state in

nearly cubic symmetry it is necessary to diagonalize
simultaneously &so++»+ 43'.„„;„.However before
considering the influence of bX,„„„wewill briefly
recall the influence of 3&so+J{.'».

As previously demonstrated' the splitting of a E
level in cubic symmetry arises primarily from a
second-order perturbation scheme involving the
spin-orbit interaction. The energy levels are simply
given by

g
I('«rl&s olS'h'j't'~') I'

gr (4E) gr (2$'+ i hi)

with

~„„,„=g ave(r),
r with tv =I"6, I7, or I8. It can be easily found that

the three fine-structure lines are equally spaced, with

IX(r) = e V(r) $ $(r, Mr) Q (I', Mr)
Mr and

II (r,) —w(r, ) = II (r,) —w(r, )

where the g's are electronic operators transforming
like I, with Mr and the V's as the orbit-lattice cou-
pling constants. (As indicated in Sec. I, this assump-
tion is probably correct for the organic compounds
studied in this paper).

A second assumption is that the electronic coupling
between the studied 4E(54G) state and the ~A i(546)
state is negligible in slightly distorted clusters (the
spectroscopic terms are written as ' +„'L,v being the
seniority number). This assumption is justified by

the fact that there is no first-order coupling between
these two states in cubic or nearly cubic symmetry al-

lowed both by symmetry and seniority and that these
states are nondegenerate. The energy difference
W( A i) —W(4E) can be easily deduced from the co-
valent model of Koide and Pryce' adapted to the
case of a tetrahedral symmetry in Ref. 14. In this
model the splitting of the 4A i(54G) and 4E(546) states
is not due to a coupling between these states but to a

coupling allowed by symmetry and seniority between
the E(5D) and 4E(5 G) states by the electrostatic in-

teraction between electrons in o- orbitals. The net ef-
fect of this coupling is to shift the 4A i(q46) states and
the 4E(q~G) states to lower energy when the covalen-

cy factor k increases, the shift being greater for the
~E(q46) state than for the ~A i(546) state. '~ If we ad-

mit for the energy of the q46 state a value of 27000

W(r6) —W(I'8) =—{ T2} +—{4Ti}

+ —'pT }+—'pr, },

the parameters {»+'h } baing defined by

( E ilÃso II +'h') ( + h IIKso II~E)

II (4E) —II (»+'h')

The reduced matrix elements of so are given by the

general relation"

(Sh Il~so IIS'h') = (Shjtv }~so I
S'hj''t'r')

As a typical example of this structure we can recall
that of the E level of Mn'+ in a cubic sites of ZnS. '
In that case the calculated splitting W(16) —IY(rs)
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9.2 cm ' is in good agreement with the experimen-
tal value of 5 cm '. The contribution of the spin-
spin interaction was found to be 2.6 cm '. The ob-
served structure of the E level of Mn2+ in the cubic
sites of ZnS will be taken as a standard structure in
tetrahedral clusters in the forthcoming computations.

In order to take into account simply of LQC„„;„it is
now necessary to restrict the problem to tetrahedral
clusters. In Tq symmetry ~3.'strain reduces to

sx,„,,„=We(~,) + ax(E) +ax(T,) .

It can be easily found from symmetry considerations,
that a 4E level could be coupled to the first-order to
A] and E strains. However, in a pure d' configura-
tion or when a mixing of the 4E(5D) and E(5G) is
allowed by covalency, the first-order coupling to A ~

and E strains vanishes. Therefore we will first con-
sider the higher-order perturbation schemes which al-
low a coupling to E and T2 strains in the d' confi-
guration. %'hen restricted to this configuration, the
second-order perturbation schemes predict a linear
coupling to T2 strains and a quadratic coupling to E
strains. The relevant equivalent operators are

X„l'rJr ) ('r,p.laX(T,)+aX(T2) I'rior ) ('rift IXso
w(E')- w(r, )

I

with I, —= 'TI;, T2& and

X
ax(E) l'~, r.) ('~,r,

l ~x(E)
W(4E) —W("32)

with t —= I 8. The 'A2 multiplet arises from the 3F
spectroscopic term.

The energy-level diagram corresponding to a linear
coupling to T2 strains via iLX'(T2) is reported in Fig.
5 in terms of a parameter (R(T2) defined by

X ( E 113cso II T2;) ( T2g II hx(T2) II E)
W ("E)—W(4 T2;)

( E IIXso II TIJ) ( Tjj II MC(Tp) II E)
J W (4E) —W (4 TIJ)

strains induces a splitting of the 18 level linear in
$(T2). Furthermore, the energy differences
W(I'6) —W(18') and W(rs") —W(r7) increase with
tR(T2). Obviously this model fails to give the energy
levels of the 4E state in (CqH5NH)2Mn„Zn~ „C14and
(C,H, NH)2Mn„Zn~ Br4 but it could be correct in
the case of [(CH3)4N]2Mn„Zn~ „C14(with (R(T2) —40
cm '). The case of the 4E level of Mn2+ in ZnS will
be considered in Sec. IV, where it will be shown that
a linear coupling to E strains is in better agreement
with experiments than a coupling to T2 strains.

Figure 6 represents the energy-level diagram'
corresponding to a quadratic coupling to E strains.

The matrix elements of 53C'(T2) and b3C'(E') were
calculated in Tq" from the complex tetragonal com-
ponent system defined by Griffith. " Instead of writ-
ing numerous matrices or very large general formulas
for the matrix elements in T~'we will only define
unambiguously the reduced matrix elements of the
spin-independent operators intervening in the
relevant parameters. By slightly adapting Griffith's
notations, the reduced matrix elements of EX(r, llfr)
are defined by Tq by

h h' I
(sAHl53c(r, Mr) lsA'8') = [ 1]"+ v —ee'M,

Energy
(crrt-') ~

10.

r6

lsc
l)
-10.

3%

R(T2Ncm ]

x (sA II a 3c(r) II sA') .

The reduced matrix elements of %so are defined
above in Tq'.

Figure 5 clearly shows that a linear coupling to T2

-20.

304

FIG. 5. Energy levels of a 4E state in the case of a linear
coupling to T2 strains. @(T2) is defined in Sec. III.
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Energy~[
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The parameter (R(E2) is defined by

J&'EllSX(E) il'~, &J'

PV('E) —IP ('~,)

4 5 ly [1

(Egcm-lg)

This figure shows that the energy levels are subjected
to a common shift quadratic in R(E') [and therefore
quadratic in Q(E)]. However in this case, the energy
differences W(I'6) —W(I'8') and 8'(I' s") —W(I'7)
remain constant when lR(E2) increases. This model
cannot account for the linear shift of the E level of
Mn2+ in ZnS in terms of the applied pressure P [see
Fig. 7(a)] since this shift is obviously due to the
stress-induced strains of A ~ symmetry while a qua-
dratic coupling to E strains implies a shift quadratic in
P superimposed to the linear shift due to A~ strains.
For P II [110],

-15- P = 16 x 10' dyn/cm'

FIG. 6. Energy levels of a 4E state in the case of a qua-

dratic coupling to E strains. The quadratic shift common to
all lines is represented. S (E2) is defined in Sec. III.

the contribution of the quadratic shift should be 4
cm ' and therefore easily observed. From a study of
the intrinsic strains, it will be shown in Sec. V that a
model linear in Q(E) is more plausible for MnC14
and MnBr4 clusters.

A third-order perturbation scheme linear in the E
strains was also considered. The corresponding

I ~ Energy lcm 1 011[110]

ZnS: Mn

0,, -4E

21235

21225

dyn/cm2

'l0cm1

4 8' 12

Applied pressurell0 dyn/crrA

21233.

21215cm

1010cm

21'?65cm1

I I 1 '1
I I r ~

El[
P=16x10 dyn/cm

Pll [110]

10cm

FIG. 7. Vniaxial-stress effects on ZnS:Mn. The dotted lines correspond to the model given in Ref. 7 (linear coupling to T2

strains). The solid lines correspond to the E-coupling model as given in Sec. IV. SF corresponds to zero-phonon lines of axial
Mn2+ centers in stacking faults.
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operator is

St'-sol '" I«) ('T J«l ~«E) I
'I' I'r'. ') (4r, 'I'r'T (SC'so

JI".,J'I'. '

A numerical calculation shows that the contribution
of this scheme is negligible with respect to the contri-
bution of the previous scheme linear in the T2

strains. (For example, it predicts a splitting of the I'8

state less than SO cm ' per unit E strain in the case
of ZnS:Mn. )

IV. E-COUPLING MODEL

A. Energy levels

Since none of the above models permits a unified
interpretation of the observed structures, we will now
formally consider the case of a linear coupling to E
strains by means of an equivalent operator 3 3"(E)
acting to the first order on a 4E state. Such an opera-
tor does not exist in a d' configuration, but it appears
when configuration interactions or covalency are tak-
en into account (Appendix A).

The energy-level diagram corresponding to a linear
coupling to E strains is given in Fig. 8 in terms of a
parameter alt (E) defined by

coupling to T2 strains is equally valid (see Sec. III B)
and that the experimental results do not permit
determining unambiguously the nature of the cou-
pling in that case. For ZnS, the hypothesis of a
preponderant linear coupling to E strains is more jus-
tified than the previous hypothesis' of a linear cou-
pling to T2 strains for interpreting all uniaxial stress
experiments. More precisely, for an applied pressure
parallel to a [110] axis, the shifts and splittings of the
fine-structure lines can be fitted equally well either
with tR (T2) = —40 cm ', (for P =16 x 10s dyn/cm2)
or 6t (E) = —7.6 cm ' (for P =16 x 10s dyn/cm ) as
shown in Fig. 8. But for P ll [111],the E-coupling
model which predicts no effect on the fine-structure
lines [since Q(E) =0] is in agreement with the ex-
perimental results while a linear coupling to T2
strains predicts relatively large shifts and splittings
[see Fig. 7(c)].

Although in ZnSe the experimental results' are
less precise than in ZnS, the absence of a splitting of
the A~ I"8 transition for P II [111]is an argument in
favor of the E-coupling model.

, EEE
6t(E) = (E.I~X(E„)iE,) V-'

This figure clearly shows that the E-coupling model
provides a unified interpretation of the energy-level
diagrams for all considered cases. However, we must
remark that for [(CH3)4N]zMn„Zn~ C14, a linear

I.'15 Energy(cm~

tC5

5
ml)

B. Strains and dipole strengths

The bond lengths and angles defining the molecu-
lar clusters in organic compounds are given in Fig. I.
The relevant normal coordinates" and their ampli-
tudes are given in Table I. We must note that the
precision of the calculation of the normal coordinates
is strongly limited by the precision of the crystallo-
graphic data for the organic compounds (d Q —+0.01
A)

The relative dipole strengths (RDS) of the zero-
phonon transitions were calculated from the general
formula

('~ t -'Ef) =, X X ('~ t«lscsol'Ti«)1

i~( A ]) f'~'( F.)

2

&& (4T, r r ~3.',q„(T,) ~

"Er'r') (4Er'r'~4Ef)

FIG. 8. Energy levels of a 4E state in the case of a linear
coupling to E strains. 8 (E) is defined in Sec. IV, The
points correspond to the observed energy levels in the or-
ganic compounds and in ZnS for P =0 and P =16 x 10
dyn/cm2 (P II [110]). The numerical values for ~(E) are
given in Table I.

where sc,~„(T2)is an equivalent operator due to the
composition of the electric-dipole moment with the
odd part of the ligand field. The perturbed E states
are defined in terms of the projector ( Er'r'~ Ef) on
cubic ~4Et'r') states

Very tedious calculations involving values of the
normal coordinates Q(E~), and Q(E,), the orienta-
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TABLE I. Normal coordinates associated to the molecular clusters defined in Fig. 1 and to MnS4 clusters in stressed ZnS,
and orbit-lattice coupling constants V. R(E) is defined in Sec. IV A.

ZnS:Mn
P ii f110]

P =16 X10 dyn/cm

f(CH3)4N]2Mn C14 (C5H5NH)2MnC14 (C5H5NH)2MnBr4

Q(E,) (A)
Q(E,') (A')

f Q'(E ) + Q'(E )I' '
fQ'(T2 )+Q'(T, )+Q (T, )j' '
fQ (T2b~)+Q (T2b„)+Q(T2b)))

e (E) (cm-')
V (cm /A)

0.004
0
0.004
0.006
0.004

—7,6
-870

0.030
—0.052

0.060
0.006
0.050

—6.7
—55

0.073
0.001
0.073
0.020
0.120

—21
-140

0.077
0.005
0.077
0.012
0.085

12.4
80

tion of the clusters with respect to the growing planes
of the crystals, and the orientation of the electric
field of the light, permitted us to calculate the RDS
given in Figs. 2, 3, 4, and 7. We must note that the
calculated RDS's for the organic compounds are in
excellent agreement with the experiments, thus justi-
fying again the E-coupling model.

V. JAHN-TELLER EFFECT AND ORBIT LATTICE
INTERACTION IN THE

MOLECULAR-CLUSTER MODEL

A. Jahn-Teller effect

To account for a linear Jahn-Teller effect on an or-
bital doublet in cubic symmetry is necessary to add to
the classical Hamiltonian given in Sec. III the vibron-
ic Hamiltonian

sions for p and q which are sufficient for our purpose
are

p = exp( —1 974S0.76&)

where S Eqr/tee and 0.1 & S & 3 and q =
2 (1+p)

(q is at most =—, for EJT )) Ihu, see Fig. 9). Eqr is
1

related to Vand to the angular frequency co of the ef-
fective phonon by Eqr = V'/2p, co', p, being the mass
of the effective phonon.

Second, in a second-order perturbation scheme in-

volving different electronic states, the orbital parts of
the matrix elements which belong to A 2 and E are re-
duced by p and q, respectively.

From the above results it can be shown that the
main operators which intervene in the E-coupling
model are reduced. Obviously, the operator AX'(E)

+v el++K + +JT

where X,~ and +~ are, respectively, the elastic and
kinetic energy associated to an effective vibrational
mode Q„&,Q„,belonging to E. %jr is the interaction
Hamiltonian given by

sesr ——V(b~Q e+g Q )

pq

GI
(E law).761]

jT

where V represents the strength of the Jahn-Teller
coupling and the 8's are the electronic operators de-
fined in Ref. 8.

The influence of 3.'„onE states having been ex-
tensively studied, we will briefly recall the main
results of the theory.

First, the matrix elements of orbital operators act-
ing directly on the fundamental vibronic states of an
orbital doublet are identical to the matrix elements of
reduced orbital operators, acting on the electronic
doublet, the reduction factors being p and q for A2
and E operators, respectively. Approximate expres-
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FIG. 9. Upper limit for the Huang-Rhys parameter
S -EJT/%o and for the reduction factors p, q, for the MnS4,
MnC14, and MnBr4 clusters. The energies of the effective
vibrational modes are chosen to be 100 cm for MnS4 clus-

ters in ZnS (see Refs. 5, 18, 19) and 35 cm for the other
clusters.
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defined in Sec. IV E is reduced by a factor q (we
neglect a second-order interaction involving the excit-
ed vibronic levels of the ~E states). The second-order
contribution of the spin-orbit interaction is, at most,
reduced by the factor q. (The method used to obtain
the symmetry of the orbital part of ~o is a simple
extension of that presented in Appendix B; it shows
that the orbital part of ~o acting on a E state spans
the A t and E representations of Tq) In o. rder to find
the reduction factor associated to T2 strains, we have
to consider the perturbation equivalent operator
h~'(T2) defined in Sec. III. As shown in Appendix
B, the orbital part of this operator belongs to A2,
therefore the reduction factor associated to T2 strains
is p. This means that a strong coupling to E vibra-
tional modes can completely quench the influence of
T2 strains on a E state.

Coming back to the interpretation of our experi-
mental results, it will be shown that the Jahn-Teller
coupling to E modes is not strong enough to com-
pletely quench the influence of T2 strains on E states,
thus indicating that the electronic 'E states of Mn'+
in the considered clusters are only weakly coupled to
T2 strains. The following demonstration is based on
the determination of the orbit-lattice coupling coeffi-
cients in the molecular cluster approximation.

First, the OLCC's V(E) are defined in terms of
5t(E) by

V(E) = —6t(E) [Q (E ) + Q (E,)j 'i

(the factor —permits defining OLCC's analogous to

those of Hams). They are given in Table I. Second,
an upper limit for the Huang-Rhys parameter S (and
for the reduction parameters p and q) has been calcu-
lated for each cluster, following Ham's cluster model.
In order to obtain an upper limit for S
[S= V2(E)/2tt, tloo3], a very low energy for the effec-
tive phonons of E symmetry was chosen for the
MnX4 clusters in organic compounds. The results are
summarized in Fig. 9. For MnC14 and MnBr4 clus-
ters, the reduction factors p and q are greater than
0.5. For the MnS4 clusters they are greater than 0.3S.

VI. CONCLUSION

Very detailed experimental and theoretical studies
of the fine-structure lines of a 4E state of Mn2+ in
distorted tetrahedral clusters have shown that elec-
tronic models restricted to the d' configuration give
unreliable indications concerning the strain effects on
the orbital doublets of d' ions.

In order to describe the unusual structure of 4E

states of d' ions, a phenomenological model based on
symmetry considerations only has been elaborated
which accounts for the observed vibronic structure of
the 4E states in terms of a coupling to E strains. In a

second step, Ham's cluster model for vibronic in-
teractions has been considered in order to choose
between the two following hypotheses which can ac-
count for the nonobservation of a coupling to the re-
latively large T2 strains existing in the distorted clus-
ters: (i) the electronic E states are coupled both to
E and T2 strains, but the effect of the coupling to T2
strains is quenched by a strong Jahn-Teller coupling
to E vibrational modes, or (ii) the electronic 'E states
are predominantly coupled to E strains, the electronic
coupling to T2 strains being small or negligible.
Although probably very crude (as previously shown
in the case of the triplet states of Mn'+ in stressed
ZnS and ZnSe), Ham's cluster model indicates that
the coupling to E vibrational modes is small so that
hypothesis (ii) must be retained.

Finally, several perturbation schemes contributing
to the E-coupling model have been considered. How-
ever, a theory showing clearly the preponderance of
the electronic coupling to E strains remains to be ela-
borated from a detailed comparison of the various
perturbation schemes contributing to the coupling to
E and T2 strains.
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APPENDIX A

A perturbation equivalent operator of E symmetry
acting to the first order on 4E states can be obtained,
in the case of a tetrahedral symmetry, from a second-
order perturbation scheme involving the odd part of
the cubic field and the odd part of the intrinsic or
stress-induced strains. The relevant operator can be
written

2 X
oooo(~t)l Eood) &'Eoaal«oaa(E)

4 W(4E) —W(4Eoa~)
odd

a JC,qa(A t) being the odd part of the cubic field
defined in terms of spherical harmonics Yg by

Jt.'oqa(At) = X Ag(r") Yg
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and AX,aa(E) being the odd. part of the crystal field of E symmetry defined by

dXoaa(E) = X Ag(r ) Yg
k 5, 7

e

For d' ions, the relevant intermediate states I'E,aa) must be chosen in the 3d'nl configuratioris with 1~3.
In the case of the 3d'4f configuration, the I E,aa) states should be constructed from the multiplets 4D, G, H,
~l, and 1 (the parent multiplets of d being tHand 'G) D, G, 4H, and I ( the parent multiplet being 3Ft), and
4D, aG, 4H (the parent multiplets being 3D and 5D). A detailed calculation of the amplitude of 5X(E) being out
of the scope of this paper, we will only give a very crude value of the contribution of d X(E) to the parameter
8 (E) defined in Sec. IV. By taking X,aa(A t) =10',cm ', EX,aa(E) =20 cm ', this value corresponds to

[Q (Ea) + Q (E )]' =0.1 A

and

W( E) —W( E,aa) = W(3d ) —W(3d 4f) =—2 x 10 cm '

we get an upper limit for 6t(E) of the order of 1 cm '.
Of course,

'
third-order perturbation schemes also contribute to the equivalent operator of E symmetry. We can

consider, for example, the equivalent operator

d,X'(E) =
4E 4E '

odd odd

Xoaa(A t) I Eoaa) ("Eoaal ~X (E) I
E aa ) ( Eoaa IX oaa(A t)

[ W(4E) —W(4E,aa)] [ W(4E) —W(4E,'aa )]

where hX,„,„(E)is the even part of the crystal field of E symmetry. The relevant intermediate states belong to
the 3d4nl configuration with t ~1.

By taking

X,aa(At) =10 cm ', dX,„,„(E)=400 cm '

(for Q(E) =0.1 A) and

W(3d') —W(3d'4p) =-8 x 10' cm '

we get a contribution of the order of 6 cm '.

APPENDIX B:

In a second-order perturbation scheme via the spin-orbit interaction X~o and a spin-independent operator of the
form Q(I,Mr) 8(I,Mr), the matrix elements to consider are

M(ShMM'HH") = X ((ShMHI&solsh'M'8') (Sh'M'8'IQ(r, M„)S(r, Mr) IShM'8")
h'0'

+ (ShM8 I Q (I'.Mr) $(1".Mr) I
Sh'MH') (Sh'MH'l&so

I
ShM'8") )

W Sh —W(Sh')

In a cubic group, these matrix elements can be expanded as

M(ShMM'HH") = g ' " ")
( I) &+J+s-~[ I]t'+a+a'+a'(Sh II JCso II Sh') (h'118 I' ll h

tt agr~ W(Sh) —W(Sh')r
1

h h' T) h' h 1

8 8' ' 8' 8" M ~ 8 8'
t

h'

Mr —8V
S I S'

8- ~ -M -J M. Q'"M)
t.

where (Sh IIX so IISh') is the reduced matrix element of Xso. The coupling coefficients refer to the complex
tetragonal component system defined by Griffith, ' therefore j=—1, 0, +1. q is defined by

(h I I g (I ) I I h ') = tt (h I I S(1') I I h ')

The summation on 8' can now be easily performed by reordering the elements of the V's and using the following
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general equation for a complex component system:
'I

a e f b f d abc ah cede
C,t gt

= X l (c) [—1)""& d, f V
@,t

[For a real component system see Eq. (4.11) of Ref. 15.) A straightforward calculation gives

(Sh IIKso II Sh') (h' Il 8 (1') lih)M(ShMM'gg") = X l, (c) lV ( 1))+J+s er[-1)e+e+c+y
&&» urer W'(Sh ) W (Sh ') . h h h

'

'T, r . c''S l S'
h c

x[l+q( —1) ' )V . M M . M, Q(I', Mr) Vg„

This general formula clearly shows that the orbital part of the matrix elements spans the representations c of a
cubic group (see the last V symbol). It also permits a straightforward calculation of the amplitudes of the orbital
operators-spanning the representations c.

The particular case considered in Sec. V corresponds to I = T2, h = E. The strongest selection rule is given by
Tt +c

the factor 1+q(—1) which is nonzero only when e =Aq.
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