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Negative magnetic circular polarization in the emission of Jahn-Teller systems
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The magnetic circular polarization of the high-energy emission of Tl+ phosphors under excita-
tion in the A band has been measured at low temperature as a function of field intensity. The
effect, which exhibits an opposite sign with respect to the results previously obtained in the
low-energy emission band or with similar monovalent impurities, is accounted for by a double-
minimum Jahn-Teller model.

Zeeman-effect measurements on the emission of
Tl+-like impurities in alkali halides were performed at
low temperature by Fukuda et al. ' and revealed
strong magnetic circular polarization (MCP) in both
high-energy (Ar) and low-energy (Ar) emission
bands (in the case of KI:Ga the MCP degree is about
80% with a field intensity of 4.2 T). These results
were well interpreted on the basis of a model2 which
predicts the coexistence of nonequivalent Jahn-Teller
minima with suitable degeneracy and symmetry on
the relaxed excited states of the impurity. '

Till now, as far as we are aware, the only existing
results on the emission of Tl+ were those of Fontana
and Davis who measured, with excitation in the D
band, a relatively high degree of circular polarization
in the A» band of KI:Tl (- 14% with a field intensity
of 2.3 T), while a negligible effect was observed in
the AT band. This suggests that in the case of Tl+ a
different level scheme should be adopted.

In this paper we report the results of a systematic
investigation on the AT emission of Tl+ phosphors
and their interpretation on the basis of a double-
minimum potential that, although fitting in the
framework of the coexistence model, is directly con-
nected with a previous simplified analysis. '

Samples of KI:Tl, KBr:Tl, and KC1:Tl (with thalli-
um concentration in the range 10~—10 2 mol%) were
placed in the bore of a superconducting coil
(H II [001]) immersed in liquid helium. The tempera-
ture was lowered below the h. point (-2 K) by
pumping over the helium reservoir in order to avoid
the boiling which introduces strong noise in the sig-
nal. The samples were single crystals supplied by K.
Korth (Germany) or grown by our Kyropoulos ap-
paratus. The phosphors were excited in the A band
with a 150-W xenon lamp through a monochromator
and an interference filter. The emitted light was
viewed along the magnetic field axis and analyzed for
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FIG. 1 MCP signal (solid line) and emission intensity
(dashed line) vs wavelength of Kl:Tl at 2 K with a magnetic
field intensity of 5 T and excitation at 2820 A.

its left (I ) and right (I+) circular polarization by an
electro-optic light modulator. The light was then col-
lected through a monochromator by a photomultiplier
whose output was sent to a lock-in amplifier.

A typical MCP signal (I+—I ) obtained with the
KI:T1 in a field H= 5 T is shown in Fig. I together
with the emission spectrum (I = I++ I ). This signal
corresponds in the Ar band (340 nm) to a negative
zero-moment change, while in the Aq band (420 nm)
to a positive zero-moment change; a variation in the
first moment of the AT band is also seen.

The field dependence of the degree of MCP
[P, = (I+ —I )/I) of A r emission in KI:Tl (340 nm),
KCl:Tl (300 nm), and KBr:Tl (310 nm) is reported in

Fig. 2 after the spurious effects, likely due to the ap-
paratus, have been compensated. This has been ac-
complished by fitting each experimental set of data
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FIG. 2 Degree of circular polarization as a function of the
field intensity of A~ emission in KBr:Tl, KCl:Tl, and Kl:Tl,
Solid lines represent the fitting of the experimental data.

separation 8 of -1000, 300, and 100 cm ', respec-
tively.

The excited state of Tl+ involved in the A-band ab-

sorption and emission is the T t„(slightly admixed
with Tt„by spin-orbit interaction) with the underly-

ing '3 ~„ trap level. After absorption, the original
symmetry (0„) is lowered by the Jahn-Teller effect
and configurations of different symmetries can arise;
the A~ emission originates from potential minima of
tetragonal symmetry (D4q). ' In such a symmetry,
the level scheme consists of a double-degenerate lev-

el E„and two nondegenerate levels A ~„and A2„, see
Fig. 3. In presence of a magnetic field parallel to z

axis, the degenerate E„„and E„~ states are mixed at
the 001 sites and strong positive circular polarization
arises. The A2„„(A2„~) and E„» (E„„)levels are
mixed at the 100 (010) sites and weaker circular po-
larizations arise depending on the energy separation.
If the Aq„ level is in the upper position (that is

E„and At„are lower lying) and preferentially popu-

lated after absorption and relaxation, the left-circular
component (I ) can prevail and a negative effect
arises. This hypothesis is based on a possible solu-

tion of the static Jahn-Teller problem and represents
a plausible luminescence mechanism in Tl+ centers. 2 5

As for the Ay emission, where a positive MCP is ob-
served, we have to suppose that the level scheme is

simply reversed (that is, in order of decreasing ener-

and then subtracting Ho and Po from the coordinate
values of the experimental points. In all the con-
sidered systems, the MCP of the A~ emission turns
out to be negative (a& 0) while in the case of In+

we obtained (as a test) an opposite sign. There is
also a sensitive deviation from linearity (with p )0)
which causes, with increasing H, first a saturation
and then an inversion of the slope. The maximum
of the effect corresponds to a field intensity of
3.5—S.S T where we have a MCP degree of a few per-
cent, although increasing from KI:Tl (&1%) to
KCl:Tl (-3%) and KBr:Tl (-10%).

Now we shall attempt to interpret the negative sign
of the effect, its field dependence as well as the shape
of the MCP spectrum on the basis of a semiclassical
calculation. The relatively small size of the polariza-
tion indicates that the magnetic field has mainly a
mixing effect between nondegenerate levels rather
than between degenerate ones. According to Ref. 4,
the degree of circular polarization can be expressed

A2u, z
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P, =2 tanh
5 2kT

where p,~ is the Bohr magneton and 5 the energy
separation between the mixed levels. Assuming for
the g factor the value of 2,3tbt Eq. (2) with H = 5 T
and T = 2 K reproduces the absolute values of the
experimental data in KI, KC1, and KBr:Tl with a

FIG. 3 Schematic energy-level positions of the relaxed
excited state of Tl -impurity in D4~ symmetry vs magnetic

field intensity, H II /001] direction. In each site the levels
coupled by the field are labeled by the same symbol
(Oor x). Vertical arrows indicate emission related to linear

polarization n, completely circular polarization cr+ (whose
intensities are I+ ) at the 001 sites, or partially circular po-

larization cr+ (with I+&I ) at the 100 and 010 sites.
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gy, we have E„, A2„, and A ~„, as in Ref. 6). How-
ever, when the MCP, besides being positive, be-
comes strong, the most plausible origin of the emis-
sion is the E„ level (with underlying A ~„ trap level)
like in the lighter impurities In+ and Ga+.' ~"

A complete analysis of the problem should be per-
formed in the five-dimensional space of tetragonal
and trigonal distortions. If however we limit our-
selves to analyze the x and y minima, a simplified
model can be constructed in the two-dimensional

Q2 —Q6 space. Here, given the comparable strength .

of the coupling to tetragonal (b) and trigonal (c)
modes, the potential assumes the shape of a circular
trough with two tetragonal minima and two inter-
mediate saddle points. ' Assuming for simplicity a
complete circular symmetry (b = c), the potential for
the A2„(upper branch) and E„(lower branch) states,
both with minimum, has been obtained by diagonal-
izing the interaction matrix as given by Honma in
the basis (A„t„&), ~'T2~& &), ~ C„t„&) and can be ap-
proximated as (see Fig. 4)

V(+)( ) [b2( — )2 + g2]1/2 + 2 (3)

—1.5

Eux

—5

-4
.5

Euy

1.5

FIG. 4 Cross section of the potential containing the q2

axis obtained for q3 = q3 of x and y minima; for b = e, the

cross section containing q6 is identical and there is a com-

plete circular symmetry in the q2
—q6 plane. Here,

q2=b02/5, 4=E& —Ez is the difference between Cand 3
absorption-band energies. The two branches of the potential

are fitted by Eq. (3).

where p=(Q2 +Q6)' ', b =c (3EJT)' ', k is a cou-
pling constant related to the spin-orbit coefficient,
p0=8/2b is the crossing-point coordinate of the un-

coupled levels. The degree of MCP with a magnetic
field parallel to z axis turns out to be9

P, = y -—+2(e—e )
26 3

1+6
where the minus sign holds for the upper branch and
plus for the lower branch, e=gp, aH/8 (( I,
8 = V + —V . This relation reproduces well, for the
presence of the cubic term, the field dependence of
the experimental data [Eq. (I)].

We have evaluated the Franck-Condon integral for
the emission and for the MCP in the transitions from
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FIG. 5 Computed MCP [F(x), solid line] and AT emis-
sion intensity [1(x), dashed line] for KI:Tl vs normalized
.photon energy x = ( AN~

—6p) /b (k T) ' where 6p is the ener-
gy difference between the ground and the excited states at
the crossing point. The ordinate scales are in arbitrary units.
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the excited states [Eq. (3)] to the A~~ ground state
[ V~(p) = p']. Figure 5 shows the computed spectra
with a choice of parameter values compatible with
KI:Tl (EJr =3000 cm ', p0=5 cm ' ) =2000 cm ')
and assuming the contribution from the upper branch

(A2„ level) to be four times greater than the con-
tribution from the lower branch (E„ level). This fit-
ting factor coincides with the population ratio of the
levels only if 100 and 010 sites are considered; inclu-
sion of 001 sites raises this factor in order to com-
pensate their contribution. The resemblance of the
diagrams of Fig. 5 to the Ay experimental spectra of
Fig. 1 is self-evident, and therefore we may conclude
that the model accounts rather well for the experi-
mental data. The extension of this semiclassical cal-
culation to KC1:Tl and especially to KBr:Tl requires
some caution for the breakdown of the adiabatic ap-
proximation(8 comparable with the vibrational quan-
tum). Moreover, especially when the MCP is not
very low (as in KBr:Tl), other possible level arrange-
ments cannot be completely excluded.
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