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Determination of the analytical and the nonanalytical part of the exchange interaction
of Inp and GaAs from polariton spectra in intermediate magnetic fields
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The isotropic analytical exchange interaction A~ of GaAs and InP is determined to be

0,02+0.01 and 0,04+0.015 meV, respectively, for the two materials from a comparison of
theoretically generated and experimentally determined transverse exciton energies and oscillator
strengths in magnetic fields up to 20 T. The calculation of the theoretical spectra is based on a

recent intermediate-field theory including the analytical and nonanalytical part of the exchange
interaction. The experimental values are determined from a two-oscillator line-shape analysis of
g, - ~+-, and m-polarized magnetoreflection spectra. A newly developed model describing the

exciton-free surface layer of a semiconductor by an exponentially decreasing damping of the ex-
citon contribution to the dielectric constant is shown to improve strongly the quality of the line-

shape fit. This improvement is achieved without increasing the number of fitting parameters as

compared to the older model using a layer of finite thickness with infinite damping. From a

similar comparison of theoretical and experimental values of the energies and oscillator
strengths of longitudinal-transverse mixed-mode exciton spectra in magnetic fields which are
found for the cr polarization in Voigt configuration (kL H ) the size of the nonanalytical ex-
change interaction ht ~ in GaAs is determined to be 0.08+0.02 meV. For InP an upper limit

of ALT «0. 1 meV is derived.

I. INTRODUCTION

The theoretical understanding and the experimental
characterization of the excitonic polariton in cubic
direct-gap semiconductors including the effects of
external magnetic fields has progressed rapidly during
the last years. This was partly stimulated by the suc-
cess of Baldereschi and Lipari' (BL) in solving the
Schrodinger equation of the free exciton including the

complex sixfold degenerate valence band, in contrast
to the earlier simplifying isotropic two-band models. '
High-resolution magnetoreflectance investigations of
a series of semiconductors gave direct evidence for
effects due to the degenerate band structure reveal-
ing, e.g. , polarization- (and therefore MJ) dependent
diamagnetic effects. 3 These and other experiments
showed simultaneously that a correct understanding
can only be reached if the exchange interaction and
the interaction of the exciton with the radiation field
(polariton picture) is included in the description of
both the experiment and theory and if an exciton-
free layer at the surface of the crystal is assumed. " '

The low-magnetic-field theories of Cho et al. and
Swierkowski' account for the band-structure and
short-range exchange effects. Unfortunately, there

are only few experimental results available to be
compared directly with these perturbation theories
which are limited to rather low magnetic fields
H (0.3y, where y =0.

Stcam,

/R is a relative measure
of the magnetic field, with cu, = e tjm'c and R = (13.6
eV) m "/moo'.

The adiabatic-high-field theory of Altarelli and
Lipari" (AL) was recently6' successfully applied to
analyze the field dependence of the energies of the
six o-+-, o- -, and m-polarized exciton ground states
of GaAs and Inp. The Luttinger parameters yl, y2,
y3 and K were derived from this analysis, which were
subsequently found to well describe the acceptor
spectra. " However, the interpretation of the strong
dependence of the 0- spectra on the direction of the
wave vector k of the light relative to the magnetic
field axis H observed for both materials is beyond the
scope of the theory of AL at its present state.

On the other hand, one of us (W. E.) developed a
rather general theory for intermediate magnetic
fields, ' ' including the analytical and nonanalytical
parts of the exchange interaction, and covering very
well a range of fields 1.0 ~ y ~ 5 for which precise
experimental data are available. The band-structure
parameters employed to give a good description of
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the experimental field dependence of the energies in
the framework of the intermediate-field theory'
were found to agree very well with the parameters
derived from a best-fit procedure on the basis of the
high-field adiabatic theory.

In this paper the energies and oscillator strengths
of transverse excitons [rr spectra in Faraday (k IIH)
and m spectra in Voigt (kl. H) configuration] and of
longitudinal-transverse mixed-mode excitons (o.
spectra in Voigt configuration) as calculated by the
intermediate-field theory are compared with the
results of a line-shape analysis of exciton reflection
spectra of Inp and GaAs taken for Faraday and Voigt
configuration in magnetic fields up to 20 T. The ra-
tio of oscillator strengths of the pairs rr,+„,„g/rr„+„„,
rrrtrong/rrweak, and grstrong/'trweak is a function of the
analytical exchange splitting 5, (Fig. l). ' ' The
difference between the exciton energies and oscillator
strengths for Faraday and Voigt configuration is
mainly a function of the nonanalytical exchange-
interaction (L- T—splitting constant) ELr. Therefore
we are able to derive simultaneously in a rather direct
manner the size of both interactions. It is found that
the analytical exchange splitting is extremely small,
but definitely positive; .whereas the L- T—splitting
constant is of the order of =—,0 meV for both ma-1

terials.
The paper is organized in the following way: In

Sec. II we will discuss the various k-dependent parts
of the exciton Hamiltonian. The different types of

exciton states in a magnetic field are explained by the
competitive quantization due to different directions
of the wave vector k and the magnetic field H, In
Sec. III we give a short phenomenological theory of
magnetoexcitons and magnetopolaritons. A relation
connecting the magnetopolariton states at k =0 in
Faraday and Voigt configuration is derived. After
that we discuss the model of an exponentially de-
creasing exciton-free layer to get a best fit of the ex-
perimental magnetoreflectivity line shape. Section IV
is devoted to some experimental details. In Sec. V
we give a detailed comparison between theory and
experiment. Section VI is the conclusion.

II. k DEPENDENCE OF THE EXCITON

The various k-dependent terms of the Schrodinger
equation, where k is a generalized momentum of the
center of mass" of the exciton in a magnetic field,
are briefly discussed in this section, and a k-
dependent classification of transverse, longitudinal,
and mixed-mode excitons is given.

In an external magnetic field H all electromagnetic
wave phenomena depend on the angle between H
and the direction of propagation of the wave k. The
magnetic field introduces optical anisotropies even in
the case of an "isotropic crystal. " In a real crystal
(e.g. , a cubic one) the magnetic-field-induced apisot-
ropies depend further on the direction of the field H
relative to the crystal axis. Since the optical prop-
erties of an ideal semiconductor in the near band-gap
region are governed by excitons, a microscopic theory
of the field-induced anisotropies (e.g. , Faraday and
Voigt effect) in this frequency range has to result in
k-dependent exciton spectra, even in the case of an
isotropic crystal. A cubic semiconductor like GaAs is
an example for such a system if the cubic anisotropy
of the valence band is neglected. The exciton Hamil-
tonian in a magnetic field includes three k-dependent
terms which result from the solution of the
Schrodinger equation in the following way:

Separating the center-of-mass coordinate R by"

FIG. 1. Schematic splitting and polarization pattern of the
F = 1 (top) and F = 2 (bottom) exciton states in a semicon-
ductor with I 6 conduction and I 8 valence band in the pres-
ence of an external magnetic field. For Faraday configura-
tion (wave vector k of the light parallel to the magnetic field
direction H) the eigenstates are purely longitudinally (L) and
transversely (T) polarized with respect to k. For Voigt con-
figuration (ks H ) all o. states are mixed modes (MM) and
only the m states are purely transverse modes. The cubic
anisotropy of the analytical part of the exchange is neglected
for simplicity here. 4~ is the analytical and AL7 the
nonanalytical exchange splitting.

t

4,„(r„rq) = exp i k+ A (r) R0 fc

x X Fj"~ (r) UJ (r, )KUj (rg)
C V

the set of envelope functions Ff& (r) turns out to be
C ll

a solution of the following set of equations:
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H p+ —A(r)+ —ttk 8 —H —p+ —A(r)++ttk 8 — 5 5 +[1(k)l
JcJC C 2 J~Jv J~Jv 2 JcJc Cpf CJC o v JCJ V'JC J

JCJ„

XF"i (r) =E,„(k)Ftkt (r) . (2)

In Eqs. (I) and (2) we used the following notations:
r„rq are the coordinates of the electron and hole;
r = r, r t„—K = ar, +P rq, a = m, /(m, + mt, ),
P = I —a, and mt,

' = yt/mo, ma is free-electron mass,

y~ is the Kohn-Luttinger parameter of the valence
band; p is the linear momentum of the relative mo-
tion of the exciton; A is the vector potential of the
external magnetic field; and H, H are the

Kohn —Luttinger-type matrices describing the bottom
of the conduction bands j, and the top of the valence
bands j„in the effective-mass approximation.

UJpUJ pare the 8loch f actors at the bottom o f the
C, P V, P

conduction band and the top of the valence band; Jt

is the time-reversal operator; ep is the static dielectric
constant of the crystal; 8, 8 are the Kronecker

C C ll ll

symbols; I stands for electron-hole exchange interac-
tion, and means a many-particle correction to an
effective-mass description of the exciton. Only this

type of many-particle correction is included since it

mainly controls the splittings of an otherwise degen-
erate set of excitons as a solution of an effective-
mass calculation. "

The three k-dependent terms of Eq. (2) are quite
different in their size and their physical meaning:

(a) The nonanalytical (long-range) part of the
electron-hole exchange interaction is already present '

in the field-free case. It is the most important term
depending on the direction of k and it does not vanish
for k 0.' Since this term represents a contact po-
tential -8(r) it is proportional to the excitonic oscil-
lator strengths. Therefore a strong enhancement of
this term is to be expected in a large magnetic field
where the wave function starts to shrink.

(b) The kinetic energy 8'2k~/2M, „of the exciton
center of mass vanishes in the limit k 0.' ' This
term introduces the spatial dispersion in the optical
properties of excitons.

(c) The k && H term contributes a field-dependent
part to the dispersion relation of excitons or polari-
tons. It gives rise to a magneto-Stark effect. In
crystals with weakly disturbed inversion symmetry
(e.g. , GaAs and InP) its influence on the excitonic-
ground-state 1s multiplet might be small for small k

values which are the only ones of relevance here. In
contrast to this, the k x H term has some influence
on the 2s-2p splitting (e.g. , of the exciton in CdS).20

For small k values the nonanalytical electron-hole
exchange interaction can be expected to be the most
important k-dependent contribution in the exciton

Hamiltonian. The terms (b) and (c) are caused by
the finite translational mass of the exciton. Term (a)
has quite another origin: it represents the electrostat-
ic interaction energy of the induced polarization
charge —divP, „of the longitudinal part of the exci-
tonic polarization with its own electric field.

This term depends on the excitonic oscillator
strengths as mentioned above and has nothing to do
with any translational mass effect! At zero magnetic
field and for small cubic anisotropies longitudinal and
transverse excitons are good eigenstates of the Ham-
iltonian independent of the direction of k (for
k 0). In an external magnetic field the terms longi-
tudinal and transverse are meaningful only for Fara-
day configuration k IIH, since in general the magnetic
field introduces another axis of quantization, which is

competitive to the direction of k (see Fig. I). In a

general direction of k longitudinal and transverse ex-
citonic states are coupled. ' The general mode in the
presence of a magnetic field is then a coupled
"magnetoplasma"-photon mode, ' a coupled state of a

transverse photon field and a longitudinal-transverse
mixed mode of the excitonic polarization field.

Three different types of exciton spectra in cubic
crystals in a magnetic field are expected due to the
nonanalytical exchange interaction. These are in or-
der of increasing complexity (see Fig. I):

(a) Faraday geometry, k IIH: There exist pure
transverse (o.+, o. ) and longitudinal (m) exciton
states. But in sharp contrast to the zero-field case,
the tensor of the dielectric constant cannot be diago-
nalized by choosing a system of axes in real space.
The tensor is diagonal only in the "polarization
representation" o+(x+t'y), a (x —ty), and m(z),
where z is parallel to the field direction.

(b) Voigt geometry, kl. H: Transverse (n) and
longitudinal-transverse mixed-mode excitons (cou-
pled o+, o. states) are formed. This case is similar
to a general direction in an uniaxial crystal like CdS
(with the exception of lacking time-reversal sym-

metry in the presence of a magnetic field).
(c) General geometry, k H WO, kH: Only m, tr+, a

coupled mixed modes are eigenstates of the Hamil-
tonian. This case resembles the situation in a biaxial
crystal.

Since we compare theory and experiment for Fara-
day and Voigt configuration on the basis of the field-
dependent solutions of Eq. (2) including the
directional-dependent exchange interaction we give
the two potentials for k II [001) II H and k II [100]xH
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as follows (we consider only excitons being constructed from the I'b conduction band and the I'8 valence band):
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In Eqs. (3b) —(3d) we used the following notations:
ao= g ao/oboe with Ibo' =m, '+pi/mo, 8(r) is the
Dirac 8 function, 50 is the isotropic part of the zero-
field analytical part of the exchange interaction, and
EL,~ is the zero-field L- T splitting of the dipole-
allowed I 5 exciton.

III. PHENOMENOLOGICAL DIELECTRIC THEORY

ReAection experiments give information on exci-
tons because the dielectric constant and therefore the
index of refraction are modulated by the presence of
exciton states with finite dipole moments. In this
section a short description of magnetoexcitons in
terms of Maxwell's equations is given and the
quantum-mechanical description is linked to the
dielectric theory.

The dispersion relations for normal waves ' in
dielectrics are given as the roots of the following gen-
eral equation'.

t

Qj
det

2 ej(k, cn, H) —k 5J+k;kg =0
C

where ~ is the frequency, c is the velocity of light in

aa(k, nt, H) = ay~(k, «t ~ H) (6)

This e is then completely determined (besides a
"background" part ab) by the solutions of Eq. (2), be-
ing the basis of a microscopic theory.

Assuming the external magnetic field to be in z
direction (parallel to the [001] axis of the cubic crys-
tal) from Eq. (4) a relation between no and k can be
derived"

[1 —(c~k2/tn2e~)] [1 —(c2ki/tn2e )]
[1 —(c'k'/m'e )][1 —(c'k'/m'e')]

vacuum, k is the wave vector of the normal mode
being excited, and e& is the i,j component of the
dielectric tensor, I,j =x,y, zya H is the external mag-
netic field not to be confused with the weak magnetic
field of the normal wave.

The principle of symmetry of the kinetic coeffi-
cients 3 yields the general symmetry relation

atq( k, nt, H ) =
ajt (—k, tn, —H )

If the dielectric is assumed to be free of loss the
dielectric tensor 61 has to be a Hermitian tensor
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In Eq. (7) the following abbreviations were used:

t+ = 6+( k, hl, H ) = 6~ + I 6~ (8a)

a'—= a'(k, a, H) =, (gb)
—,
' (a++a )

and ig is the angle between k and H. If we now con-
centrate on the configurations k II H and kj H, we im-

mediately obtain the dispersion relations:
(a) Faraday geometry, 8 = 0

2
= 6+ 2

=6- Khz=0 (9
Cia+ OJ

The first two solutions of Eq. (9) yield left and right
circular-polarized transverse polariton states and the
third solution represents a longitudinal exciton.

(b) Voigt geometry, 8- —, m
1

c2k2 e2k2
(10)

co, ao

The first solution of Eq. (10) is a transverse linearly

polarized polariton state and the second characterizes
longitudinal-transverse mixed-mode polaritons. Let
us discuss these mixed modes first without coupling
them to photons. Then we have to look for the
singularities of a' or, from Eq. (8b), the zeros of

T(a++a ) =E~=0]

We have in this case a coupled mode between
transverse excitonic polarization, longitudinal exci-
tonic polarization, and longitudinal electric field.
Due to its mixed-mode character this normal wave

can be excited by transverse perturbations as well as

by longitudinal ones. Therefore from the second of
the Eqs. (10) the square of the index of refraction for
light being polarized in a plane perpendicular to the
magnetic field H can be calculated and yields coupled
states of transverse and longitudinal polarization and
transverse and longitudinal electric fields!

Due to the different coupling schemes in both
geometries we obtain different states and frequencies
for o.-polarized states. However, there is one irnpor-

tant exception. If we put k =0 in the equations
above, it is easily seen with the help of Eq. (8b) that

the polariton energies at k =0 for o--polarized states
agree in both geometries. The zeros of a'(0, co, H)
agree with those of a+(0, ~, H ) and e (0, cv, H ). This
relation has been used as a check for all numerical
computations for both geometries.

So far we have only discussed the relation between
the zeros of the dielectric constant and the solution
of the Schrodinger equation in intermediate magnetic
fields. If we want to compare theory and experiment
we have to go one step further and inc1ude the effect
of a surface layer of the crystal, where the exciton
does not contribute to the dielectric function of the
crystal. This so-called "dead layer" or "exciton-free
layer" strongly alters the actually measured reflectivi-

ck 4' Moo) T
2

n3 =—= ay+
a)r + a)rhk /M —cu —i cuI'b

i 1/2

. (12)

Here 4muo is the oscillator strength, &AT is a solution
of the exciton Schrodinger equation for a certain con-
figuration and I b is the damping constant of the
bulk. M is the total mass of the exciton. The k

dependence of the latter one is neglected here. If
the exciton is simply excluded from a surface layer of
thickness l, then the reflectance R is a function of
two interfering waves with phase difference $. R is

then given by

n' —1R=
n" +1

where n'is a function of the phase angle 8 =2qn2l
and of the different indexes of refraction as discussed
in Ref. 3. A change of the thickness l of the
exciton-free layer and therefore a change of the
phase lag between the two interfering waves com-

pletely changes the line shape. This effect was re-

cently used to measure for the first time directly the

anisotropy of the exciton wave function in a magnetic
field. "

Ho~ever, a rectangular exciton-free layer with an

abrupt change of the damping from infinite inside to
a very low level value at the end of the layer is only a

crude approximation. This model was recently
much refined by introducing an exponentially de-

creasing damping within the depth Q [see Fig. 2(b)].
The reflectance then has to be calculated by means of
a multiple reflection model, approximating the ex-
ponential function I —e "~' by a step function. A

much improved fit to the experimental data resulted.
Figure 3 gives as example GaAs at six different mag-

netic fields. In this figure the best fits of exciton re-

flection spectra in various magnetic fields are com-

pared for a three-layer model and an exponential
model. The difference is striking, and all experimen-
tal results were evaluated using the exponential
model.

None of the experiments (except at zero magnetic
field) shows only one single well-separated oscillator.

ty of a crystal. In a first approximation the reflection
of an electromagnetic wave on the surface of a sem-
iconductor can be described in a three-layer model
[see Fig. 2(a)] with: (i) Vacuum with refraction index

n~ =1. (ii) Dead layer with refraction index

n2 = (ab)', where ab is the background dielectric
constant. The surface acts as a potential repelling the
excitons within a certain depth. This depth depends
on the exciton diameter. (iii) Inside the crystal the
exciton contributes to the dielectric properties. The
index of refraction is frequency- and momentum-
dependent, as discussed above, and approximately
given by
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FIG. 2. Schematic picture of the reflectivity of a semiconductor (a) with a square-well exciton-free layer (infinite damping);
(b) with an exponentially decreasing damping of the exciton contribution on the surface. (I &, I,: damping levels in the interior
of the crystal and at the surface; R, Rl, R2'. reflectivities of the half space and of the various interfaces; Fo'. incident intensity;
2a~'. diameter of the exciton. )
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FIG. 3. Comparison of cr -polarized spectra (open circles) with a theoretical line-shape fit using a three-layer model (right)
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ponential model yields a much improved fit, particularly at higher fields. The position of the longitudinal and transverse exciton
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The oscillators always appear as doublets (a.+, o, n)
or as a quartet (o. in Voigt) in a magnetic field. The
interaction between the oscillators was taken into ac-
count by using a two-oscillator model for the evalua-
tion of the data as discussed in detail in Ref. 29.
This procedure is, of course, only an approximation
in the four-oscillator case.

Experimental values of the field dependence of the
polaritoo. energies and oscillator strengths —as far as
they are relevant for the calculation of the constants
4, and ~LT of the exchange interaction —derived from
the spectra in the way discussed above, are presented
in Sec. V. A short account of the experimental pro-
cedure is given in Sec, IV.

IV. EXPERIMENTAL

a
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ev +05

e .
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K~ -05.
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lf- S s, H/g, ce
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All reflection experiments were done with

predispersed light of a bandwidth hA. =0.1 A, ern-

ploying light levels as low as possible to avoid heating
and free-carrier effects. In contrast to earlier experi-
ments, a weak He-Ne laser of some pW power excit-
ed the part of the sample from which the light was
reflected. In this way free carriers were created to as-
sure flat band conditions. The angle of incidence of
the test light was 4' in all experiments. An an-
chromatic Fresnel rhomb, together with a Polaroid
linear polarizer, was used to polarize the light. All
crystals used were of very high purity. They were
grown by E. Bauser (Max-Planck-Institut fiir
Festkorperforschung, Stuttgart), K. Fairharst (Royal
Signals and Radar Establishment, Gt. Malvern), and
P. Rosetto (Kristallabor, University of Stuttgart).
Typical impurity concentrations and mobilities were
ND N„=8 x 10'3—/cm3, p, =170000 cm2/V sec for
GaAs, and ND —N~ =2 x 10'4/cm3, p, =100000
cm'/V sec for InP. More experimental details are
given in Refs. 3 and 29.

V. RESULTS AND DISCUSSION
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In this section first experimental and theoretical
results for the o, o.+ levels in Faraday geometry and
the m levels in Voigt geometry are compared with
each other for GaAs and InP. An upper limit for the
isotropic part of the analytical exchange interaction is
derived for both materials from this comparison. '
Then the nonanalytical exchange constant b, LT is
determined from the mixed-mode spectra.

.0
LIJz
LIJ

'

-05-

3

A. Determination of the analytical

exchange constant h

(i) InP In Figs. 4(a) —4(c). the results of a best fit
of the theory to the experimental cr+, cr, and m exci-
ton energies are shown. The input parameters for

FIG. 4. Comparison of experimental values (crosses) of
transverse exciton energies in InP determined from a line-

shape fit as a function of a magnetic field with theoretical
values for (a) cr+ polarization, (b) o. polarization, and (c)
e polarization. The input parameters used for the calcula-
tion are given in the text.
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these fits are

y~ =4.95, y2 =1.85, y3 =2.55, k =0.97

q =0.0, m, =0.0803mo, g, =1.31

They agree very well with the values derived from a
fit to the adiabatic high-field theory. 7 As can be seen
from Fig. 4, theory and experiment are in good
agreement with each other. Experimentally deter-
mined transverse exciton levels are compared with the
theoretical results here and not only the minima of
the reflection curves. Therefore no assumptions con-
cerning the zero-field L-T splitting had to be made.
Since the energies do not depend strongly on 5, and
4, is expected to be rather small, the energy cornpar-
ison provides the input data for the calculation of the
oscillator strengths, On the other hand, the value of
5, deterimes in a very sensitive manner the ratio of
the oscillator strenths of the three doublets. Figure
5(a) gives an excellent example for the a+ pair in
InP. We start at I, =0 with a strong lower line and a
weak upper one and arrive then at a value of
6, =0.04 (measured in units of the zero-field exci-
tonic Rydberg R = poe4/2t2e02) at a strong upper line
and weak lower one. Figure 5(b) shows the theoreti-
cal oscillator strengths for the m case at different
values of 4, . For b„=0 the ratio of the oscillator
strengths of the two vr components is very close to 1,
as expected from atomic theory. At larger values of
5, we obtain a strong upper level and a weak lower
one. In Fig. 5(c) the experimentally determined ratio
and sum of the oscillator strengths for the m polar-
ized lines are compared with the results of the
present theory. Our result for the sum of the oscilla-
tor strengths agrees very well with the oscillator
strengths of an exact numerical calculation of an iso-
tropic spinless hydrogenic problem by Cabib et al. '

The ratio of the oscillator strengths yields an ex-
tremely small value of h„of -(0.0075 +0.003)R.
These values agree quite well with theoretical esti-
mates from band-structure calculations. As to the
sum of the oscillator strengths, the agreement
between theory and experiment is also very good. In
this connection it should be stressed that theoretical
oscillator strengths are much more sensitive on the
approximation chosen for the solution of the eigen-
value problem than the energies. This is best
demonstrated by the Table II of Ref. 13 where the
adiabatic oscillator strengths measured in zero-field
units are compared with the oscillator strengths of
Cabib et al. ' A large discrepancy of the two sets of
oscillator strengths is found there in contrast to the
good agreement found here. The results obtained
from the comparison of experiment with theory for
the (T, o.+ components agree with this result and are
therefore not further discussed.

(ii) GaAs. Figures 6(a) —6(c) give a comparison
between experimental transverse exciton energies and
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FIG. 5. Theoretical magnetic field dependence of the os-
cillator strengths of the two transversely o-+ (a) and m (b)
polarized oscillators in InP for two different values 5 of the

analytical part of the exchange interaction. In (c) the experi-
mental and the theoretical field dependence of the ratio (left
scale) and of the sum (right scale) of the oscillator strength
of the two m oscillators are compared with each other for
two values of b,~,

the best fit of the theory for the cr+, ~, and m spec-
tra of GaAs. The agreement between theory and ex-
periment is as good as in the case of InP. The input
parameters are

y~ =7.05, y2 = 2.35, y3 = 3.0, k = 1.28

q 0.04, g, =0.46, m, =0.0665mo
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The input parameters used for the calculation are given in the text.

In Fig. 7 the experimental oscillator strengths

f"""lf~,„,„are compared with the theoretical ones
for the m spectra. From the variation of f"'"'/f„„„
as a function of 5, a value of 6, —(0.005 +0.002)R
is derived. Since the band structures and effective
masses of GaAs and InP are rather similar, similar
values of 5, for both materials are not astonishing.
The value of d, =0.02+0.008 meV for GaAs rough-
ly agrees with Sell's value of 6, =0.1 +0.1 meV
which was obtained from piezoreflection measure-
ments and is in direct contrast to the value 0.37 meV
obtained previously by Gilleo et al. ' from stressed
luminescence studies and to the value 0.38 meV ob-
tained by Abe35 from a variational calculation. It is
believed, however, that the value of 5, being derived
here is more convincing since it is derived from the
ratio of the oscillator strengths, which is much more
sensitive to a small variation of 5, than the energetic
splittings. Although 3, is rather small for both ma-
terials, it is clearly positive, larger than zero.

B. cr mixed modes (Voigt geometry)

The numerical calculations of mixed-mode energies
and oscillator strengths are performed in the follow-

ing way: We start from the set of functions Eqs.
(28a) and (281) of Ref. 15, which were first used
separately to calculate the o-+ and o- states in Fara-
day geometry. Then the nonanalytical part of the
electron-hole exchange interaction is taken into ac-
count. Two new effects result. First we get a
separate intra-series coupling of the o-+ and o. states,
an effect that has been discussed in detail in Ref. 14.
This coupling results simply in a replacement of the
constant 5, by 5, +0.SHALT. Second, o.+ and o-

states are coupled by the inter-series matrix elements
of the LT-splitting potential. This coupling causes
that only mixed modes are solutions of the exciton
Hamiltonian. The transverse dielectric constant e'

and its zeros are then calculated using the mixed-
mode energies and oscillator strengths. As described
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of the ratio (circles) and the sum {crosses) of the oscillator
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predictions for three different values of the analytical ex-
change interaction b ~.

in Sec. III, they have to agree with those calculated
from ~+ and ~ for k=0. This is indeed the case
within the numerical accuracy.

In the framework of the theory used here, there is

just one new parameter, the zero-field LT-splitting
constant ALT, which has to account for all differences
at the same time found between the Faraday and
Voigt spectra. Therefore it is thought that this com-
parison of the o.-polarized exciton spectra for Voigt
and Faraday geometry establishes an accurate value
for the zero-field LT-splitting constant ALT.

In Figs. 8(a) and 8(b) we present theoretical
mixed-mode energies for GaAs as a function of 4LT.
They are compared to the experimental values taken
from a line-shape analysis of the two strongest com-
ponents of the quartet giving the most reliable
results. It is obvious that by changing ALT by a fac-
tor of 4 the quality of the fit is merely changed, indi-

cating again the insensitivity of the exciton energies
to the very small exchange energies. Therefore again
the oscillator strengths which are much more sensi-
tive and their dependence on the magnetic field are
evaluated. Figure 9 compares the theoretical ratio of
the oscillator strengths of the two lower to the two

higher oscillators for five different values of A~T with

some experimental results. A value of
dkLr = (0.02 +0.01) xR (=0.08 +0.04 meV) is

+1.5-

+

+05-
00
EY
LLlz:0
LLj

1 2 3 5

derived. This value disagrees somewhat with Sell's
value ' of ALT =0.1 —0.25 meV. However, it agrees
perfectly with recent results obtained from Brillouin
scattering.

For InP a line-shape analysis of the mixed modes

FIG. 8. Comparison of the theoretical magnetic field
dependence of the four mixed modes in Voigt geometry
with the experimentally determined energies of the two
strongest components of the quartet for two different values
of b&T =0.01 and 0.04 R and the same 4, =0.005 R in GaAs.
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VI. CONCLUSION

FIG. 9. Ratio of the oscillator strengths of the two ener-

getica11y lower to the two energetically higher mixed modes

of Fig. 8 for five different values of ALT as a function of the

magnetic field, Some experimental results are given by the

crosses.

was hampered by computational difficulties. There-
fore, we give only a fan chart (Fig. 10) showing the
experimentally determined minima of reflectivity in
comparison with the zeros of the transverse dielectric
constant ~' for 4, =0.0075R and ALT=0.02R. From
this we obtain as a rather crude upper boundary for
BIT=0.1 meV. But an exact value can be obtained,
of course, only by a line-shape analysis. No other
experimental or theoretical value for AL, T of InP is
available for comparison, to the best of our
knowledge. Due to the similarity of the band struc-
ture, ho~ever, one would again expect a similar or
slightly larger value as determined by us for GaAs in

agreement with the above estimate.

The magnetic field dependence of the energies and

oscillator strengths of the 3 x 2 transverse exciton
states cr+, o. , and m in GaAs and in InP are calculated

within the framework of an intermediate-field theory.
Input parameters are the Luttinger parameters y~, y2,

p3 K g, m„g„and the analytical exchange constant

5, . Since the energies depend only very weakly on
the choice of 5, as far as it is reasonably small, a

best fit to experimentally determined energies yields

the Luttinger parameters which are found to be in

good agreement with the values derived recently

from a fit to an adiabatic high-field theory. The
transverse exciton energies are identical with the

poles of a dielectric function in the appropriate ener-

gy range. The poles are experimentally determined
from a line-shape analysis of recent magnetoreflec-
tion experiments using a ne~ly developed exponen-
tial model for the exciton-free layer on the surface of
a semiconductor.

In contrast, the oscillator strengths are found to

react most sensitively to the slightest variation of the

exchange constant 5, . Thus this constant can be
determined from a comparison with the experiments,
with much higher precision than hitherto, to be

5, =0.02+0.008 meV for GaAs. For the first time a

value for Inp b, =0.04+0.015 meV is derived in the
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same way. I

The cr-polarized exciton eigenstates in Voigt confi-
guration (kJ. H) are mixed longitudinal-transverse
modes. The differences of their energies and oscilla-
tor strengths from those of the purely transverse
cr+, 0. modes observed in Faraday configuration
(k II H ) are a function of the nonanalytical part of the
exchange interaction (L- T splitting) ALr. Again
model calculations within the framework of the
intermediate-field theory show the dramatic depen-
dence of the oscillator strengths of the mixed modes
and their ratios to the actual value of AL~ in contrast
to the energies, which are rather insensitive to it.
From a comparison to experiment b, L~ of GaAs is

determined to 0.08 +0.02 me~, thus substantially

supporting conclusions recently drawn from Brillouin
experiments and revising somewhat a value derived

from piezoreflection. An upper limit of b, L~ =0.1

meV is given for InP in good agreement with expec-
tation from a comparison of the two materials based
on their similar band structure.
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