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Monte Carlo simulation of the classical two-dimensional one-component plasma
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We have used Monte Carlo simulation, lattice dynamics in the harmonic approximation, and

solution of the hypernetted-chain equation to study the classical two-dimensional one-
component plasma. We find a fluid phase for I = e (mn) '

/k& T ~ 125 + 15 and a solid phase

for higher I . The solid phase shows directional long-range order. In the solid phase positional
long-range order is lost as the thermodynamic limit is approached. We also present the results
of calculations of the thermodynamic functions and one- and two-particle correlation functions.

I. INTRODUCTION

This paper is concerned with the properties of a
two-dimensional one-component plasma. Our system
consists of a single species of charged particles im-

mersed in a uniform neutralizing background. The
particles interact via a 1/r potential, where r is the
two-dimensional separation. Our calculations are lim-

ited to ranges of temperature and density such that
quantum effects are unimportant. We have made
calculations of the equation of state in the fluid phase
using both the hypernetted-chain equation (HNC)
and Monte Carlo simulations. Our calculations in the
crystal phase were done by Monte Carlo methods,

There a're two reasons why we find such a system
interesting. First it can be considered as an idealized
model of a bound surface layer of electrons above
liquid 4He. Second, there have been extensive simu-
lations of the properties of the three-dimensional
one-component plasma. The extension to two di-

rnensions may provide insight into the behavior of
both systems.

We begin by briefly reviewing the state of our
knowledge of the electron surface layer above liquid
He. Several years ago Crandall and Williams' sug-

gested that under favorable circumstances, electrons
trapped on the surface of liquid helium might crystal-
lize to form a two-dimensional electron solid. Since
in most experimental situations the density of elec-
trons can be changed by several orders of magnitude,
it was hoped that the so-called Wigner crystal' might
be within experimental reach. This led to a great deal
of theoretical and experimental activity in the follow-

ing years, and Chaplik3 suggested that a similar cry-
stalization can occur in the inversion layer near the
surface of a semiconductor. In the helium context a
model of a charge-compensated one-component sys-
tem of N electrons confined to an area A at a tem-
perature T interacting with 1/r potential can be, and
has been, considered as the canonical model. 4 '

In this paper we consider only the classical

behavior of the model. This is appropriate for the
electron surface layer above liquid helium in the usu-
al experimental regime. However, our model is not
appropriate for the problem of the rnetal-
oxide —silicon inversion layer where the electrons
form a degenerate quantum system.

Although studies by Brown and Grimes of cyclo-
tron resonance in a tipped magnetic field have shown
that the electron motion on the surface of liquid heli-
um is two dimensional, it is clear that for a strong
clamping field (most experiments require a clamping
field in order to localize the electrons layer for a rea-
sonable amount of time) one needs, in principle, to
take into account the acoupling in the perpendicular
direction, for example, the deformation of the helium
surface. However, the characteristic dimensions are
such that the interelectronic spacing (—104A) is
much larger than the spread in the charge density in

0
the direction perpendicular to the surface (-102A),
so that the system can be considered to be essentially
two dimensional. Therefore the model of a two-
dimensional electron gas, neutralized by a uniform
positive background, and interacting by an e'/r po-
tential is probably a reasonable first approximation to
the experimental situation. The system is characte'r-
ized by the dimensionless quantity 1 = e2/aks T,
where we have a = (mn) '~ and n =N/A.

The simulations that have been made on the
three-dimensional one-component plasma have esta-
blished its equation of state, the phase boundary
between the crystal and liquid phases, and the two-
particle correlation function at several densities and
temperatures. In addition, Lindemann's ratio at
melting has been found to be 0.17—rather close to
the values for other inverse-power potentials. The
height of the first peak of the structure factor at
freezing was found to be close to 2.85—again, close
to the values for other potentials. In view of these
results it seemed worthwhile to carry out a similar
study of the two-dimensional one-component plasma.
In particular, we were interested in determining
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whether the two-dimensional system would undergo
a phase transformation to a crystalline phase. To our
knowledge, there has not been any calculation com-
paring the free energies of the solid and the liquid
phases which is, after all, the basic method for locat-
ing this phase transition. In this paper we present
such a calculation. We employ both the hyper-
netted-chain integral equation and the Monte Carlo
technique to calculate the free energies. We have
computed the thermodynamic functions and correla-
tion functions over a wide range of I, i.e.,
1 ~ I" ~300. A recent publication by Totsuji' con-
tains Monte Carlo results for the thermodynamic
functions and pair correlation function for
0.15 « I ~ 50. Within the range of I our results are
generally in good agreement with those of Totsuji.
On the other hand, our results are quite different
from a very recent computer experiment" which em-
ployed a special type of molecular-dynamics method
(PPPM: particle-particle —particle-mesh). Contrary
to the A.-point transition obtained there, we tentative-
ly find a first-order transition, our transition being
roughly 20% higher in I; namely, I =125. Our

, results are qualitatively similar to the corresponding
three-dimensional calculations of Hansen'~ and Pol-
lock and Hansen. " We find that the triangular lattice
is stable and have calculated the harmonic phonon
dispersion laws for such a lattice. We also find that
the two-dimensional square lattice is dynamically un-
stable. Our calculations for the harmonic solid are in
agreement with a recent calculation by Bonsall and
Maradudin. '4

Before proceeding further, we should comment on
the existence of two-dimensional crystalline order.
Some years ago Mermin" published a rigorous proof,
based on Bogolyubov's inequality, that two-dimen-
sional systems cannot display long-rarige crystalline
order. The proof had two limitations. First, and
probably less important, the interaction potential was

assumed to fall off faster than 1lr'. Second, the
result only applies in the thermodynamic limit.
When the same mathematical methods are applied to
a large but finite system, one finds that no incon-
sistency arises from the assumption of crystalline ord-
er. Thus any system that can be studied in the la- .

boratory or in a computer simulation can exhibit cry-
stalline order. We do, indeed, find a stable crystal
phase in our simulations, however, it does have
unusual properties. These are described in Sec. VI
and VII.

The plan of our paper is as follows: After formu-
lating the problem in Sec. II, Secs. III and IV are de-
voted to the calculations of the thermodynamic func-
tions in the liquid and solid phases, respectively. In
the liquid phase we present results for both the HNC
method and Monte Carlo (MC) simulations. Section
V is devoted to the determination of the phase boun-
dary between the crystal and fluid phases.

Lindemann's ratio and its dependence on the size of
the system are discussed in Sec. VI. The one- and
two-particle distribution functions are presented in
Sec. VII.

II. FORMULATION OF THE PROBLEM

Consider a system of N electrons obeying classical
statistics, confined to an area A, and neutralized by a
uniform positive background. The Hamiltonian,
apart from the kinetic energy, .which does not enter
into our considerations, is then

8 1
H, = X———Nnv(0)

]~g fQ 2
(2.1)

t' e'" + 2n. e~
v(k) =e~ Jl d~r —'

r k
(2.2)

Once again k = (k„,k~) is a two-dimensional vector.
For the problem of electrons bound to the surface of
helium four one should use the "renormalized"
charge'

(2.3)

~here we have assumed that uniform media with

dielectric constants ~I and eq fill the adjacent half
spaces. The thermodynamics of this one-component
classical electron plasma is determined by a single di-

mensionless parameter

1' = e '/ks Ta (2.4)

where k~ is the Boltzmann constant, T the tempera-
ture, and a is the average interparticle distance deter-
mined by n =1/wa'. The complete solution of the
problem therefore reduces to the calculation of aver-
ages of the kind

(F) = Jl F(r(, ...,r„)exp — X v(r J)
1

kg T;&~

xd~r~ . d~rN/Q„ (2.5)

where

Qn=„J exp — gv(r&) d rt d rn
kg T j(J

where, the last term arises from the interaction of
electrons with the uniform positive background.
Here r» =

~
r; —rj ~

is the two-dimensional separation
and n =Ã/A is the area density of electrons. The
Fourier transform of e~/r potential in two dimensions
is given by
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The two-particle distribution function is given by

N(N —1)
!I ex 1 X v(r&) d r3 d rN

Q~ » ksT ~&i
(2.6)

For the liquid phase P(r~, r2) = n g(r~2), where g(r)
is the pair correlation function.

Before we proceed any further, we should point
out that the summation of the ring diagrams
(random-phase approximation) produces a divergent
free energy, and therefore the result analogous to
Debye-Huckel limit in three dimensions does not ex-
ist. In fact, it is easy to mimic the corresponding
three-dimensional calculation' " to obtain

where S(k) is the structure factor defined by

S (k) = 1 +2» I rJ0(kr) [g (r) —1)dr (3.2)

pA/Nks T =1+U'*/2NksT

and the excess free energy is given by

(3.3)

where Jo~„~ is the zeroth-order Bessel function. The
pressure obtained from the virial theorem is

Qii/N! =Nln(1/n) +1+ W

where 8'is the contribution of the ring diagrams

(2.7) F F"-,t" U'*(r') dr'
NkgT "o NkgT I'

The ideal-gas free energy P is given by

(3.4)

4vrn "0
~m 2mne2 1

k~T q
P4 n 2mb=ln

Nkg T mkg T
(3.5)

—ln 1+ 2mne2 1
dq

(2 8)
or, in our units,

P~/Nks T =2lnI' —1 + ln(ks T/Rv) (3.6)
which diverges as q ~. This is different from the
behavior of the corresponding three-dimensional in-
tegral:

t

1 ~I' 2 4rrne 1
ns 4 2 I T 2

—ln 1+ 4mne2 1
dq

AT q2

= I'2(2lnI'+2y —1+2ln2) + I'4[—8(lni')2
Nks T

+8(1 —2y)lnI'+4(1 —2y)ln2] + .

where y is Euler's constant.
(2.9)

III. LIQUID-PHASE CALCULATIONS

Given the pair correlation function g (r) then the
excess internal energy U is given by

= I J) [g (r) —1]dr
Nkg T

This high-q (small-r) divergence for the contribution
of the ring diagrams to the energy has also been no-
ticed by Totsuji. ' He has, however, sho~n that if
one includes the simplest set of next-order diagrams,
then the divergence is cancelled. His results can be
expressed as a small I expansion for the excess inter-
nal energy,

where R» = e4m/2t2 is the three-dimensional
Rydberg's constant. Equations (3.1) to (3.6) are the
relations we use in our liquid-phase calculations.

A. Hypernetted-chain method

The hypernetted-chain equation has been very suc-
cessful' ' in predicting the properties of the dense
one-component plasma in three dimensions. We car-
ried out hypernetted-chain calculations for our two-
dimensional plasma. While this paper was being
prepared for publication Lado ' published results for
the same model. Since his method and results are
essentially identical with our own, we will not present
our method or results in this section. Our results are
displayed graphically in Fig. 2, and comments on
them are made later in this section.

8. Monte Carlo method

Our MC simulations were performed in the tirne-
honored manner pioneered by Metropolis et al.
Each run had a given number of particles N, a given
area 3, and a fixed value of I. The area 3 was
chosen to be a rectangle capable of accommodating a
section of triangular close-packed lattice with periodic
boundary conditions. To minimize surface effects,
the rectangle was chosen to be nearly square with the
ratio of the xand y edges as

= —,
' r Jt dk [S(k) —1], (3.1) L„/Ly = 3' '/2 (3.7)
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This shape enabled us to make runs with
4n2(n =1,2, 3, ) particles.

Due to the long-range nature of the potential, the
interaction of each particle with the other (N —1)
particles in the basic rectangle, with all images of the
N particles, and with the uniform neutralizing back-
ground must all be included. This complete interac-
tion can be written

v(r) = I

l r+L.7, 'l
(3.8)

~here X' is the set of vectors generated by the basis
vectors (1,0) and (0,3' 2/2), and where r is the dis-
tance vector between the two particles. This interpar-
ticle potential may be efficiently handled via the
Ewald technique. ' The computation proceeds in a
similar way to the three-dimensional (3-D) case."
The result is

units we have

yt &/2

Nk T
———1.09653r

Nkg T LxL»
(3.11)

U"' Uo N
NkgT NkgT N —1

(3.12)

Our excess internal energy is then

In our MC calculation the center of mass is not
fixed. To correct for this effect the difference
between the MC value for the excess internal energy
UMc/NkT and the static energy Uo/NkT of a perfect
triangular close-packed lattice must be multiplied by
N/(N —1).24 If we follow Hansen, "and call the
difference between the excess internal energy and the
static energy the thermal contribution (U'h) to the
excess internal energy

Uex Uth Uo+
Nkg T Nkg T Nkg T

(3.13) '

2, 1 nl7l+,/,
~~',

, erfc
Here the static lattice energy is given by half the
Madelung energy of the triangular close-packed. lat-

tice, i.e.,
Ir

x exp —2+i
Lx

(3.9) Uo/Nks T -—1.106 103I' (3.14)

y
X

v(r~&) y'

AT l&~ AT AT
(3.10)

The constant term is just half the Madelung energy
of a rectangular lattice with sides L„and L». In our

where the second sum is over a reciprocal lattice with

basis (1,0) and (0,2/3'I2). The prime on that sum
denotes the exclusion of the term with A.

"= (0, 0).
The parameter a may be varied to achieve a balance
in the rates of convergence of the two sums.

Even with the application of the Ewald"technique,
Eq. (3.9) is unacceptably slow for MC calculations.
To make the calculation more efficient, v(r) is split
into two parts. The first part consists of the spheri-
cally symmetric (7. ' =0) term which is tabulated with
a 35000-point mesh. The remaining part of v(r),
which is invariant under reflections (x —x,y —y)
and inversions (r —r), is tabulated on a 151 x 171
point grid. With linear interpolation applied to each
part of v (r ), the potential energy of a configuration
may be efficiently calculated with an error of approxi-
mately 0.001%, which we found to. be negligible.

If we now include the interaction of each particle
with its own images, we obtain the total interaction
energy of a configuration of the N particles and im-

ages as follows:

The liquid-phase Monte Carlo runs were made with

16, 36, 64, and 100 particles. These numbers of par-

ticles, while small for three-dimensional work, are
reasonable for two dimensions. The starting confi-
gurations for the runs were either a triangular close-
packed lattice, or a quasirandom configuration. For
each run approximately 13000 moves per particle
were made, and on the average 50% of these moves
were accepted. Of these approximately 3000 moves
per particle were discarded in order to allow the sys-
tem to lose its memory of its original configuration
and reach an "equilibrium state. " Since the amount
of configuration space to be sampled is considerably
reduced in two dimensions over three dimensions,
these runs represent very long Markov chains when

judged by standards normally applied in three dimen-
sions. Runs of this length are needed to accurately
determine the thermal portion of the excess internal
energy which is only about 1% of the total excess
internal energy. From block averaging we estimate
that our calculated excess thermal energies have errors
of the order of 1%.

For the small I region effects due to the small
numbers of particles are not really significant; even
the 16-particle runs show little effect due to the small
size. For the largest values of I number dependence
becomes much more important. However, as can be
seen from Fig. 1, the number dependence, in the en-

ergy, is essentially eliminated by the time 100 parti-
cles is reached.
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The most convenient way of dealing with the HNC
and MC results is with a simple and accurate fitting
function. The small I expansion of Totsuji, ' men-
tioned in Sec. II, gives us the low I behavior of the
excess internal energy. Ho~ever, this expansion is
not accurate for I above 0.3. We have fitted our MC
and HNC data up to a value of I of 0.5 by the simple
expedient of adding a term cro to Eq. (2.9). The
value of c, and all other fitting parameters, is given
in Table I.. We have a second fitting formula for
values of -I in the range 0.45 to 130. It is based on
Hansen's'2 three-dimensional work and the fact that

aj
a2
a3
a4
a5

a6
ap

as

MC

—1.106 103
0.765 873
0.775 448
0.261 904

—1.202 048
0,957 986

HNC

—1.102 071
0.799066
0.951 230
0.201 743

—1.593 872
0.131 187

—0.232 854
0.536 553

TABLE I. Fitting parameters for the liquid-phase
results: c =—9.290 414.

Uex Uo
lim = —1.1061r-~ Nkg T Nkg T

The formula is

(3.15) Solid-phase parameters' . a =4,986, b =561.1

1

Uex a( a3 a5 a7
I 2 + 2+ +-

NksT a, +r (a4+r)' (a, +r)' (a, +r)' (3.16)

where the value of a~ is fixed by Eq. (3.14). This formula accurately reproduces both our MC and HNC results
with the parameters given in Table I. Our MC results are presented in Table II and Fig. 1.

We have calculated the excess free energy of the liquid phase by using Eq. (3.4) with Eqs. (2.9) and (3.16).
We switch between Eq. (2.9) and Eq. (3.16) at I o =0.45. Our free energy is then given by

rex =I'2 lnI'+y —1+ln2 +I' [—2(lnr)2+(3 —2y)lnI' +(1 —2y)(ln2 ——) ——) +
Nkg T 2 4

for 0 ~ I ~ I o, and by

(3.17)

1

p'ex a2+ I o a4+ I+a~ I —I"p+a2ln +a3 ln
Nkg T Nkg T a2+ I a4+ I"p

I I o a6 1 1+ +a5—
a4+ I' a4+ ro 2 (as+ r)' (as+ I'o)'

1 1 as 1 1 1 1+a71+a6I' I +asro 3 (as+ r) (as+I'o) 2 (a, +r)'
1

(a, + ro)' (3.1S)

for I'o ~ I ~ 130, where Fo" /Wks T is given by Eq. (3.17) evaluated for I = I'o. Our results for the free energy

TABLE II. Thermodynamic functions of the liquid phase. The internal energy had had the
ideal-gas and static-lattice contributions subtracted from it and the specific heat has had the ideal-
gas contribution subtracted. The number of particles, N, is the number of particles in the Monte
Carlo run.

64
64
64
64
64
64
64
64

100
64

100
64

100
100
100

1

2

5

10
20
30
40
50
60
70
80
90

100
110
120

U'~/Nk, r

0.32
0.43
0.61
0.75
D.91
1.01
1.08
1.14
1.19
1.23
1.25
1.29
1.33
1.34
1,32

F'Ot/Nk& T

—0.61
1.46

—4.30
—9.36

—19.84
—30.52
-41.28
—52.09
-62.93
-73.81
—84.70
-95.61

—106.54
—117.47
—128.42

Cge"/Nk g

0.16
0.26
0.40
0.52
0.66
0.76
0.82
0.89
0.94
1.00
0.87
1.16
1.06
1.36
1.37
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FIG. 1. Excess thermal internal energy as a function of I . The points are the results of Monte Carlo calculations with the trian-

gles representing a 16-particle system, the circles a 36-particle system, the squares a 64-particle system, and the diamonds a 100-

particle system.
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FIG. 2. Excess thermal free energy as a function of I . The circles give the results of a calculation based on the hypernetted-
chain integral equation, the triangles show the results of the Monte Carlo liquid-state calculation, the diamonds show the predic-
tions of lattice dynamics in the harmonic approximation, and the squares show the results of our Monte Carlo solid-state calcu-
lations.



332 R. C. GANN, SUDIP CHAKRAUARTY, AND G. V. CHESTER 20

are tabulated in Table II and displayed graphically in Fig. 2. We agree well with the results of Totsuji' for the
free energy. It should be noted that our Monte Carlo runs are approximately ten times longer than his. For this
reason we believe our data is more accurate.

The excess specific heat at constant area may be calculated by differentiating the excess internal energy

Cg" 9 1 U= —r'
Nkg 91 1 Nk T

(3.19)

In the region 0 «I «0.45 we obtain

gex
= —I 2(2y+1+ln4+2ln)+14[(2y —. 1)4(2+3ln2) —8(6y —1)lnI +24(lnI ) ] —ScI6

Nkg
(3.20)

and for 0.45 « I «130 we get

%kg

t

0) 203 3a5 407 Q, Q3 Qg a7+ ---—+ + , —r'-' +- +
2 + ~ (a4 + I )' (a6 + I)' (as + I')' a2 + I' (a, + I')' (a, + I') («+ I')4

(3.21)

The equation of state follows from the virial
theorem, Eq. (3.3).

Table II contains our results for the specific heat.
Figure 3 shows our results for C& using the fitting
formula and from direct Monte Carlo calculations.
The latter calculation is difficult due to the large fluc-
tuations in the data and our results are preliminary in
nature. We discuss them in more detail in Sec. V.

1.4—

1.2—

1.0

NI 0.8
z'

0.6

0.4

0.2
D

0 I I I I I I I I

0 40 80 120 160 200 240 280 320
r

FIG. 3. Excess specific heat as a function of I . The points
give the result of direct Monte Carlo calculation based on
Eq. (5.1). The solid line shows the result of calculating the
specific heat via Eqs. (3.33) and (4.11), which were obtained
from fitting the Monte Carlo results for the internal energy,

IV. SOLID-PHASE CALCULATIONS

A combination of lattice-dynamics and MC
methods was used to compute the properties of the
solid phase. The lattice-dynamics calculation was per-
formed in the manner of Bonsall arid Maradudin. '

The technique of special points2 was used to effi-
ciently calculate various thermodynamic functions by
averaging functions of the frequencies over the first
Brillouin zone. The lattice-dynamics calculations pro-
vided us with approximations for the free energy and
other thermodynamic functions and the root-mean-
square deviation of particles from their equilibrium
lattice sites. The MC calculations provided us with
internal energies, and the one- and two-particle distri-
bution functions for the crystalline phase. From
these results we calculated the free energy and specif-
ic heat. These MC calculations were performed in
the same way as in the liquid phase with the excep-
tion that all runs were started from a perfect lattice.
Again, runs were performed for 16, 36, 64, and 100
particles. For I «120 we found that the deviations
of the particles from their original lattice sites did not
reach a steady value during runs. This value of I
was taken as a preliminary indication of the location
of the phase transition to the liquid phase. Solid-
phase MC runs were made for values of I between
130 and 300.

A center-of-mass correction was applied just as in
the liquid phase. The dependence of the thermo-
dynamic quantities on the number of particles in the
simulation was found to be less severe than in the
high I liquid phase with the 100-particle system again
well representing the infinite-particle system. The
prediction of harmonic lattice dynamics for the excess
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TABLE III. Results of our lattice-dynamics calculation. N represents the number of points
summed over in the Brillouin zone. The angular brackets denote the average of the various func-
tions of frequency. The characteristic frequency o)p =e /ma .

(m 2/m2) (oro/") &m/mo& (ln(«/rao))

4
16
36
64

100
144
196

6.63
8.88

10.38
11.43
12.25
12.91
13.47

3.13
3.39
3.49
3.53
3.56
3.58
3.59

1.67
1.63
1.63
1.63
1.63
1.63
1.63

-0,599
—0.677
—0.693
—0.698
—0,700
—0.702
—0.702

internal energy is

U"'™/NksT = 1+ Uo/Nks T (4.1)

various grids in the first Brillouin zone in Table III.
The harmonic approximation for the excess specific

heat is

Fharm U I ltor ( q )
, (4.2)

where the sum is over frequencies in the first zone,
and j is summed over the two branches. In the clas-
sical limit we get

F~ AO)p+ —X ln +21n
Nkg T Nkg T N ~ J O)p

'

kg T

The pressure is, of course, still given by Eq. (3.3).
In the harmonic approximation the total free ener-

gy is given by '
C~ba™/Nka = 1 (4.5)

where d is the near-neighbor distance. In the classi-
cal limit this becomes

We can also calculate in the harmonic approxima-
tion root-mean-square deviation of particles from
their lattice sites, yH. It is given by

(y")' = (r'/d') =— X coth
h. 1 1

m 2N ~ cog q'2krrT
(4.6)

where too = e2/ma3. In our units we obtain:

(4.3)
r

b") =(r/d)= — —XI' 2rr N ~ roy(q)
(4.7)

Fharm UO I tu& (q )+—Xln
Nkg T Nkg T N &~ Np

AT+3lnI —ln2 + ln
Ry

(4.4)

This result is tabulated for varying numbers of points
in the Brillouin zone in Table V.

An important point to note is that the small-q
behavior of or~(q) is'

The values of the sums over freq'uencies is given for
(4.8)

TABLE IV. Thermodynamic functions of the solid phase. The internal energy has had the
ideal-gas and static-lattice contributions subtracted from it, and the specific. heat has had the ideal-

gas contribution subtracted. The number of particles, N, is the number of particles in the Monte
Carlo run. The column headed (r2/d2) gives the root-mean-square deviation of particles from
their lattice sites.

Uth/NkB ~ Ftot/Nk& T Cg "/Nkg T (r2/d2)

100
100
100
100
100
64
64
64

130
140
150
170
190
220
250
300

1.06
1.06
1.03
1.04
1.04
1.03
1,03
1.03

—139.37
—150.35
-161.34
-183.33
-205.34
-238.37
-271.42
—326.54

1.25
1.15
0.98
1.13
1.09
1.10
1.03
1.08

0.16
0.15
0.14
0.13
0.12
0.11
0.099
0.092
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. TABLE V. This table gives the root-mean-square devia-
tion if particles from their lattice sites for I' =200 and vari-
ous numbers of particles in the basic MC rectangle. The
predictions of lattice dynamics in the harmonic approxima-
tion are also presented.

(r /d )Mc ( / )LD

16
36
64

100
144
256
512

1024

0.09
0.10
0.11
0.12
0.12
0.13
0, 13

&0.13

0.1 1

0.12
0.12
0.13
0.13
0.14
0.14
0.15

The anharrnonic contribution is the first part of an
expansion in powers of T or inverse powers of I".
The values of a and b which we find are 5.0 and 560.
The internal energy, is displayed in Fig. l.

Given our simple result for the excess internal en-
ergy, the other thermodynamic functions follow
directly. We assume that in the infinite I limit, the
harmonic free energy becomes the exact free energy.
Hence, we may obtain the free energy for finite I by
integrating the anharmonic correction to obtain

+„( r'-'+/I' ')-
NkB T NkB T r'

FhILf m
1—aI-' ——,br-' . (4.10)

The free energy is plotted in Fig. 2. By differentiat-
ing the excess internal energy according to Eq.
(3.31), we obtain the excess specific heat of the solid
phase,

Cg/Nks = I +2ai' '+3bI (4.11)

Figure 3 shows this function and also our result for
C& from direct Monte Carlo computation.

Thus, the harmonic approximation predicts a loga-
rithrnic divergence, as the thermodynamic limit is ap-
proached, of yH due to the small q behavior of a&, (q).
This divergence has been seen" in molecular-
dynarnics studies of crystalline systems of hard disks
ranging in size from 100 to approximately 7000. We
have no reason to believe that it will not occur in our
system. This means that Lindemann's ratio is not in-
dependent of the size of the system in two dimen-
sions. We give a more detailed discussion of these
matters in Sec. VI.

Our solid-phase MC results are tabulated in Table
IV, together with some of the lattice-dynamics pred-
ictions. Our MC results are well parametrized by ad-
ding a small anharmonic correction to the harmonic
excess internal energy, Eq. (4.1),

U'"/Wk Ts= Uha™ W/k sT+ar '+bI' ' (49)

V. THE PHASE TRANSITION

I2 ' '2

B I'&J i(J
(5.1)

Calculation of the specific heat in this fashion is inev-
itably noisy, but our results. are clearly incompatible
with the results of Hockney and Brown. " They per-

Using the free energies calculated in the preceding
sections we searched for a phase transition between
the liquid and solid phases. Looking at Table II, we
see that for the 100-particle system, the liquid free
energy is lower than the solid free energy for I below
about 130. However, this crossover point is extreme-
ly sensitive to the free energies. An error of only
0;04% in the total free energy, or 0.7% in the excess
thermal free energy would shift the melting point I
by 15. Doing a double tangent construction to deter-
mine the width of the two-phase region shows that
the melting and freezing points are only separated by
about 0.1 in I.

Since the free energies lie so close, it is worthwhile
to seek confirmation of the location of the phase
transition by looking at the behavior of systems
which were started from a perfect crystal and allowed
to melt. The 100-particle system started at I =130
achieved an equilibrium value of the root-mean-
square deviation of 0.158. This sytem was allowed to
age for 13000 moves per particle. The I =120 parti-
cle system melted after about 2000 moves per parti-
cle. In our N =64 particle runs the same behavior
was observed with the I = 130 system attaining an
equilibrium root-mean-square deviation of 0.153.
Hence, the phase transition probably lies below a
value of I of 130 and above a I' of 120. Since mc-
tastability appears to be much less of a problem with
softer potentials in two and three dimensions, and
the free energies are difficult and expensive to com-
pute for such potentials; monitoring the stability of
the crystal lattice is a sensible alternative for soft po-
tentials. The quantity l is essentially a measure of
the ratio of the potential and. kinetic energies of the
plasma. We therefore see that the system crystallizes
when the potential energy is approximately one hun-
dred times larger than the kinetic energy. This, to
us, somewhat surprising result is very similar to that
found in three dimensions.

Hockncy and Brown" found a second-order phase
transition at I = 95 + 2 in a moleclar-dynamics simu-
lation involving 10000 particles. We have made
several careful runs in the neighborhood of I =95,
but have found no signs of an anomaly in either the
free energy or the internal energy. In Fig. 3 and
Table II we have presented the results of a direct cal-
culation of the specific heat at constant area based on
the fluctuations in internal energy, where
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formed their calculation by starting at a. low tempera-
ture, or high value of I, with a,crystal with several
grain boundaries, and then increasing the tempera-
ture in steps. We interpret the the discrepancy with
our results as showing that they did not give their
system time to achieve equilibrium at the various
temperatures. It is hard to blame the discrepancy in
the difference in numbers of particles; we do not see
how a system which melts at a value of I of 120 for
100 particles could remain stable at a I of 100 for
10000 particles. As Sec. VII shows, traditional indi-
cators of crystalline order, such as the mean-square
deviation of particles from their lattice sites, increase
with the number of particles for fixed I. We know
of no quantity which indicates increased order as the
number of particles increases in two-dimensional sys-
tems.

The order of the phase transition is an important
question. A recent discussion by Kosterlitz and
Thouless argues that melting in two dimensions for
short-range forces is caused by the appearance of free
dislocations as a result of the breakup of pairs (or
higher combinations) of dislocations with opposing
Burger's vector. Their calculation results in an ana-
lytic specific heat at the transition, but the approxi-
mations they make are of the type which could easily
mask a weak singularity. A recent calculation by Nel-
son yields an essential singularity in the specific
heat. Another calculation by Ho1z and Medeires ' ar-
gues for a first-order phase transition with short-
range forces and gives a rationalization for the
second-order phase transition observed by Hockney
and Brown. "

Young has performed a calculation similar to that
of Nelson, ' paying particular attention to the angular
forces between dislocation pairs, and finds qualita-
tively similar results. Most recently Halperin and
Nelson have argued that two-dimensional melting
occurs in two steps. They propose that at a low tem-
perature the breakup of dislocation pairs leads to a
transition to a "liquid-crystal" phase, and at higher
temperature the dissociation of disclination pairs
yields an isotropic fluid.

We thus find the theoretical situation to be less
than completely clear, especially for long-range
forces. Our results are compatible with a first-order
phase transition, but our total free-energy curves
cross with a difference in slope of 0.03%. It may be
argued that fitting the equation-of-state data biases
one toward a first-order phase transition, and we are
unwilling to state an order for our phase transition.
All we can say is that, in the thermodynamic quanti-
ties we have calculated, we see no indication of any
divergences.

It is our conviction that the way to proceed at this
point is to attempt to use molecular dynamics to in-

vestigate the mechanism of melting, and we are start-
ing further work along these lines.
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VI. LINDEMANN'S RATIO AND SIZE DEPENDENCE

In Table IV we show values of the root-mean-
square displacement of electrons from their original
lattice sites. All of these values are for 64 or 100
particle systems with periodic boundary conditions.
Examination of these quantities shows that melting
occurs for a root-mean-square displacement of
0.16 +0.01 in terms of the near-neighbor distance.
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FIG. 5. Superimposed positions of the particles for 100 dif-
ferent Monte Carlo configurations, each separated by 4
passes. A pass is defined as one attempted move per parti-
cle. In this simulation I =200 and N =144. Roughly speak-
ing, this represents a short-time picture of the crystal.

0 4
r.

4
4
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FIG. 4. Root-mean-square deviations of particles from their
lattice sites as a function of the square root of the logarithm
of the number of particles. The root-mean-square deviation
is measured in terms of the near-neighbor distance, d. The
solid circles are the results of Monte Carlo calculations for
16, 36, 64, 100, 144, 256, 576, and 1024 particles. The point
for 1024 particles represents only a lower bound. The circles
reprsent the prediction of lattice dynamics in the harmonic
approximation. The squares represent the results of a

molecular-dynamics calculation for hard disks by Young and
Alder (Ref. 28). The hard-disk calculations have
V/V0=120, where Vo is the close-packed volume.
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Thiz quantity is known as Lindemann's ratio. How-
ever, as we will see, this statement is an oversimplifi-
cation of the situation in two-dimensional crystals.

Over 40 years ago Peierls' and Landau" argued
that there would be no true long-range two-
dimensional crystalline order. Peierls produced an ar-
gument based ori the harmonic approximation, and
Landau used his theory of second-order phase transi-
tions. Ten years ago these arguments were made
rigorous by Mermin, "who proved that, for every
k WO, the Fourier component pg of the density must
vanish in the thermodynamic limit. More precisely
he sho~ed that

where

~~= —(Xe ') .k g (6.2)

He also showed that

([ u (R) [')' =const(lnN)' ', (6.3)

@(r)—Zr')'2'P (r)
~

(6.4)

where u (R) is the deviation of the particle from the
lattice point at R.

This proof is valid for potentials $(r) for which

p„-& [ln(N)1 '~' (6.1)
is integrable at r = ~ and positive and nonintegrable
at r =0, both for A. =0 and some positive finite value

~,,4 p 0 & e + + q y
~ ' 1 y 4 t ~ e g e y g~ ~ o i y 4 t + 0 y + e e 4e y ~ ' e o y + o a 0 oe 1 g o + ~ o o y y 0 4 ge y q y ~ a ~ ~ g a a

~
0 y g & + 0 y g P + 14 i p y y g y 1 + t W,

y p ~ y y & 1 e + g 4
y 0 g g y y Q P g Q O~

4 0 Q y 0 p g e ~ g ~ 0r & t y e l f ~
y g 1 r r e

e q + 4
~ o o a y, ~ ~ ~ '+ s ~ g ~ ~ ~ a

o 4 + 4 e p 0 & a o + 4, 14 + 0 1 + 1 a P t 1 r4 y q y ~ ~ e 1 o
4 I

1l + g +«g y y ~ 0 + a t & e ~ e
~, y gg y y g, 0 1 y' e

+
o

p Q y g 0 ' 0 0 + 1a» i q e4
$ g q y g e

~ 1 & 0 e y O
o I 0 + g i t e+ + t + g ~I y & 0 o sr 1 Q y I e
g + ~ g g + e p y, a ~

~ r $ g 0 ~ + + q g g
h' % $ Qt 0 + 0

y 0' p + e 1
q y e p o e a g ~ g g. ~ g e0 + 1 & e O + & q' ~ a 4 o ~ ~
~ + ' + + ~ 0 4 0 't 4) y p g g f P

1 ~ 0 & + y eo
ye ~ 0 ~ i 0 ~ ~ p a y a

a 0 ~ »
y y 4 0

e 4 ee 0 i y j
0 y + y g ~ & + ~ e t ~ 4

. ~ 0 + 4,j 0 ~ + y y 0 a O ~
0 e + y 0 t e

4 0 + + y y & 0 y e
O 0 I + o y a a y pO~ ~ "w o e ~ a ~a

4
y + g 1 4 t 1 l g g g p g ~

FIG. 6. The superimposed positions of the particles for 100 different Monte Carlo configurations, each separated by 4 passes.
A pass is defined as one attempted move per particle. In this case I =200 and N =1024. If this figure is compared with Fig. 5,
the additional effect of the long-wavelength phonons for 1024 particles may be seen. To see the long-wavelength oscillations in
particle positions, look down the rows from a vantage point almost in the plane of the paper.
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of h.. The 1/i potential does not meet the first cri-
terion. Hence, the question as to whether the two-
dimensional one-component plasma can display
long-range crystalline order has not been rigorously
answered at present. We do, however, find the
Landau-Peierls' ' argument very convincing.

To investigate this question, we have performed a
series of Monte Carlo calculations at a value of I
equal to 200 and with the number of particles varying
from 16 to 1024. The root-mean-square deviation is
plotted against [ln(N)['~' in Fig. 4. For comparison
the result of a lattice-dynamics calculation is shown
on the same graph. Due to the extremely lengthy
calculations required to achieve convergence of this
quantity, we were not able to obtain more than a
lower bound for the cases of N =512 and N =1024.
It is seen that the points from N 16 to N 256 are
compatible with the ln(N) behavior, but do not de-
finitely rule out the approach of the root-mean-
square deviation as a constant value. We plan more
work on this question in the near future.

In Figs. 5 and 6 we have displayed plots of the dis-

tribution of particles about their lattice sites for N
values of 144 and 1024. The increase in the mean-

square deviation can be clearly seen. The one-
particle distribution functions are displayed in Fig. 8.

In his paper Mermin' pointed out that two-

dimensional crystals while not possessing true long-

range translational order, may have long-range orien-
tational order. If we have R-niai+n2a2 and
r (R) =i+u (i), then in the harmonic approxima-
tion

b, '= ([r (R+a~) —r (R)] ~ [r (R'+a~& —r (R)))
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In Fig. 7 we show the results for h2 at I =200 for
various numbers of particles. It is seen that this

quantity rapidly approaches a constant value indepen-
dent of N.

We believe that we have established that the lattice

displacements in the one-component plasma behave

in a very similar way to those of the hard-disk sys-

tem. There is a loss of translational long-range ord-

er as the size of the system increases. On the other

hand, there appears to be long-range orientational
order. The full implications of this observation must

await a more detailed investigation of larger systems.

O. l 0.2 0.3 0.4 0.5 0.6 0.?
LOG (r )

FIG. 8. Single-particle distribution function as a function of
r, where r is measured in units of the near-neighbor dis-
tance. The triangles are for 1024 particles with I =200, the
squares are for 64 particles with I =200, and the circles are
for 64 particles with I =300. The normalization has been
chosen so that n(r) =1 for the first point.
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FIG. 7. Angular correlation 42, defined in Eq. (6.5) as a
function of the distance R between pairs of particles for
I =200. Both h2' and R are measured in terms of the near-

neighbor distance. The results are for Monte Carlo calcula-

tions with 144, 256, 576, and 1024 particles. In each case h2

differs only very slightly from 1, thus demonstrating the an-

gular order observed in the crystal.

VII. ONE- AND T%0-PARTICLE DISTRIBUTION
FUNCTIONS

In Fig. 8 we have plotted the distribution function
n(r) for particles about their lattice sites. The
single-particle distribution function is defined so that
n (r) d r is the probability of finding a particular parti-

cle within a volume element d r at a point removed
from the lattice site by a displacement r. The loga-

rithm of n (r) has been plotted as a function of the
distance from the lattice site squared. Hence, if the
distribution of particles about their lattice sites were

Gaussian, the points would fall on a straight line.
The normalization has been arbitrarily chosen so that
n (r) = 1 for the point with the smallest value of r.

Two effects are illustrated in this plot. For the two

plots with N =64, we can see the effect of lowering I
from 300 to 200. In addition, the effect of changing
N from 64 to 1024 for I 200 is evident. In none of
the cases is n(r) truly Gaussian. The result for
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I =300 is approximately Gaussian, but the results for
I' =200, although more spread out than n (r) for
I' =300, appear to be cut off more steeply than a
Gaussian distribution. Our results contrast with the
results of Young and Alder, who find that densely
packed hard disks form a Gaussian distribution, but
that at lower density the distribution decays more

slowly than a Gaussian distribution. Thus, the con-
siderable differences between hard disks and 1/r par-

ticles seem to produce opposite deviations from
Gaussian behavior as the melting transition is ap-

proached.
The radial-distribution function g(r) is defined by

the equation

g( )=, „~ „I exp[ —X v(r,,)]drq dry
W(W —1) 1

p N i&J
(7.1)

We have calculated values for g (r) function for
I" =36, I =90, and I =120. These are tabulated in

Table VI and plotted in Figs. 9, 10, and 11. For
I = 90, the HNC result for g (r) is plotted for com-

parison with the Monte Carlo result. The perhaps

surprising feature is that g (r) shows considerably

more structure than the corresponding values of g(r)
given by Hansen' for the three-dimensional case.
This, however, may be a general feature of two-

dimensional simple fluids as both Fehder and Tsien
and Valleau found the height of the first peak in

g (r) to fall between 3 and 4 for two-dimensional
Lennard-Jones fluids. The HNC result for g(r)
shown for I =90 also shows correspondingly more
structure than three-dimensional HNC results.

Finally, we have also calculated the structure factor
S(k) which is defined via

S(k) = k/(k +2I') (7.4)

The k vectors used are those corresponding with the
reciprocal lattice generated via the periodic boundary
conditions associated with the W-particle basic Monte
Carlo rectangle. To determine S(k) we directly used

definition (7.2) with definition (7.3). In Table VII
and Figs. 12 and 13, our results for S(k) are illus-

trated for I =36 and I =90. For I =90 we also
present the result of our HNC calculation. Just as in

the case of g (r), these show more structure than the
three-dimensional results of Hansen. ' %e found it
difficult to get a good estimate of the height of S(k)
at the first peak, but it is clear that it will be larger
than the value of 2.85 found at freezing in many
three-dimensional systems. "

The Debye-Hiickel result for S(k), 6

S(k) = (I/N) (p-„p I)
where

ik T,.pk= Xe

(7.2)

(7.3)

provides the correct low k behavior for S(k). How-
ever, for our smallest values of k the Monte Carlo
values of S(k) have already risen above the Debye-
Huckel results.
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FIG. 9. Radial-distribution function g (r) as a function of
interparticle distance. The points were produced via Monte
Carlo calculation with 100 particles and are for I" =36. The
distance is measured in terms of the ion-sphere radius,
a =1/(mn)'~, where n is the density.

VIII. CONCLUSIONS

In this paper we have presented the results of a
Monte Carlo calculation of the properties of particles
interacting via the 1/r potential in two dimensions.
In particular, we have emphasized the nature of the
ordered phase and attempted to show how the
dimensionality has influenced the nature of the ord-
er. The second main point is the phase transition it-
self. Much work is currently underway in two-
dimensional melting and much remains to be done.
%e hope that experimentalists will soon observe an
ordered phase of two-dimensional electrons. This
should be possible with lower temperature experi-
ments as higher values of I can be achieved at lower
densities. In addition, as Fig. 14 shows, quantum ef-
fects, as measured by the ratio of r, and the de Bro-
glie thermal wavelength, will become less important
in the neighborhood of the phase transition if it is
observed at lower temperatures.
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TABLE VI. Monte Carlo and hypernetted-chain results for the radial-distribution function
g(r) for I -36, 90, and 120. Distance is given in units of the ion-sphere radius.

- Monte Carlo

g(r;r -36) g(r;r-90) g(r; I 36) g(r;r-90)

1.06
1.11
1.17
1.23
1.28
1.34
1.40
1.46
1.51
1.57
1.63
1.69
1.74
1.80
1.86
1.91
1.97
2.03
2.09
2.14
2.20
2.26
2.31
2.37
2.43
2.48
2.54
2.60
2.66
2.71
2.77
2.83
2.89
2.94
3,00
3.06
3.11
3.17
3.23
3.28
3.34
3.40
3.46
3.51
3.57
3.63
3.69
3.74
3.80
3.86
3.91
3.97
4.03
4.09
-4.14
4.20
4.26

0.01
0.02
0.06
0.13
0.25
0.44
0.66
0.94
1.22
1.46
1.68
1.81
1.87
1.86
1.81
1.71
1.57
1.44
1.30
1.17
1.06
0.95
0.87
0.79
0.75
0.70
0.67
0.66
0.66
0.66
0.69
0.72
0.76
0.80
0.87
0.92
0.99
1.04
1.09
1 ~ 14
1.17
1.19
1.21
1.21
1.19
1.19
1.17
1.13
1.10
1.06
1.03
1,00
0.96
0.94
0.92
0.91
0.90

0.00
0.00
0.00
0.00
0.01
0.05
0.16
0.37
0.73
1.21
1.72
2.18
2.49
2.63
2.55
2.33
2.06
1.75
1.45
1.20
0.99
0.81
0.70
0.60
0.52
0.48
0.45
0.44
0.44
0.45
0.47
0.52
0.56
0.64
0.71
0.80
0.91
1.03
1.14
1.25
1.35
1.44
1.48
1.49
1.48
1.45
1.39
1.31
1.22
1.14
1.06
0.97
0.90
0.84
0.79
0.75
0.72

4.31
4.37
4.43
4.48
4.54
4.60
4.66
4.71
4,77
4.83
4.89
4.94
5,00
5.06
5.11
5.17
5.23
5.28
5.34
5.40
5.46
5.51
5.57
5.63
5.69
5.74
5.80
5.86
5.91
5.97
6.03
6.09
6.14
6.20
6.26
6.31
6.37
6,43
6.48
6.54
6.60
6.66
6.71
6.77
6.83
6.89
6.94
7.00
7.06
7.11
7.17
7.23
7.28
7.34
7.40
7.46
7.51

0.89
0.89
0.89
0.89
0.91
0.93
0.9S
0.95
0.98
1.00
1.02
1.03
1.05
1.05
1.06
1.07
1.06
1.06
1.06
1.05
1,04
1.03
1.02
1.01
1.00
0.99
0.98
0.98
0.97
0.97
0.96
0.96
0.96
0.97
0.97
0.97
0.98
0.98
1.00
1.00
1.01
1.01
1.02
1.03
1.02
1.02
1.02
1.02
1.02
1.01
1.01
1.00
1.00
1.00
1.00
0.99
1.00

0.71
0.71
0.71
0.72
0.76
0.79
0,84
0.89
0.94
1.00
1.06
1.11
1.15
1.18
1.21
1.22
1.22
1.22
1.19
1.17
1.14
1.10
1.06
1.03
0.99
0.95
0.92
0.89
0.87
0.85
0.85
0.85
0.85
0,87
0.89
0.91
0.93
0.95
0.98
1.01
1.03
1.06
1,07
1.10
1.10
1.11
1.10
1.10
1.09
1.08
1.06
1.05
1.03
1.01
0.99
0.98
Q.97
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TABLE VI. (Cont'd. )

Monte Carlo

g(r;I =36) g(r;r =90)
Hypernetted Chain

g(r;r =120) g(r;1 =90}

7.57
7.63
7.69
7,74
7.SO

7.86
7.91
7.97
8.03
8.09
8.14
8.20

0,99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
1.00
0.99
0,99
1.00

0.94
0.94
0.93
0,92
0.92
0.93
0.93
0.94
0.95
0.97
0.98
0.99

1.30
1.45
1.60
1.75
1.90
2.06
2.21
2.36

, 2.51
2.67
2.82
2.97
3.12
3.28
3.43
3.58
3,73
3.89
4.04
4.19
4.34
4 49
4.65
4.80
4.95
5.10
5.26
5.41
5.56
5.71
5,87
6.02
6.17
6.32
6.48
6.63
6.78
6.93
7.09
7,24
7.39
7.54
7.69
7.85
8.00
8.15

0.01
0.20
1.31
2.72
2.68
1.70
0.90
0.51
0.36
0.35
0.44
0.63
0.94
1.30
1.56
1.59
1,41
1.12
0.85
0.66
0.59
0.64
0.78
0.99
1.20
1.32
1.31
1.20
1.06
0.94
0.83
0.77
0.78
0.86
0.98
1.12
1.19
1.19
1,12
1.03
0.95
0.89
0.87
0.88
0.92
0.99

1.17
1.30
1.44
1.57
1.70
1.84
1.97
2.10
2.24
2;37
2.50
2.64
2.77
2.90
3.04
3.17
3.31
3.44
3.57
3.71
3.84
3.97
4.11
4.24
4.37
4.51
4.64
4.77
4.91
5.04
5.18
5.31
5.44
5.58
5.71
5.84
5.98
6.11
6.24
6.38
6.51
6.64
6.78
6.91
7.05
7.18
7.45
7.58
7.71
7.85
7.98
8.11
8.25
8.38

0.01
0.12
0.67
1.53
2.20
1.96
1.61
1.25
0.98
0.80
0.70
0.65
0.66
0,72
0.83
0.99
1.14
1,24
1.25
1.19
1.10
1.02
0.95
0.90
0.88
0.88
0.91
0.95
1.00
1.05
1.07
1.08
1.06
1.04
1.01
0.98
0.97
0.96
0.96
0.97
0.98
1.00
1.02
1.02
1.03
1.02
1.00
0.99
0.99
0.98
0.98
0.99
0.99
1.00
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FIG. 10. Radial-distribution function g(r) for I =90. The triangles are the results of Monte Carlo simulation with 100 particles

and the circles were calculated by solving the 'hypernetted-chain equation. Distances are measured in terms of the ion-sphere ra-

dius.
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FIG. 11. Radial-distribution function g(r) fear I =120. The
points are the result of Monte Carlo simulation with 100
particles. Distance is measured in terms of the ion-sphere
radius.

FIG. 12. Structure factor S(k) for I'=36, The points
resulted from Monte Carlo calculation with 100 particles.
The wave number, k, is measured in terms of the inverse
ion-sphere radius.
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FIG. 13. Structure factor S{k) for I =90. The triangles are the result of Monte Carlo calculation while the circles were calcu-

lated via solution of the hypernetted-chain integral equation. The wave number, k, is measured in terms of the inverse ion-

sphere radius.
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FIG. 14. Density vs temperature plot which shows the location of the predicted phase transition. Only the region of tempera-

ture greater than about 1'K and density less than approximately 2 x 10 cm have been explored experimentally. The line

~here the de Broglie thermal wavelength is one quarter of the near-neighbor distance has been included to give an indication of
the region where quantum-mechanical effects become important.
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TABLE VII. Monte Carlo and hypernetted-chain results for the structure fair Sikl for
I =36, 90, and 120. The wave number is measured in terms of' the inverse ion-sphere radius.

Monte Carlo

S(k;r =36) S(k;1 =90)
Hypernetted-chain equation

S(k;I =90)

1.40
1.69
1.96
2.16
2.36
2.55

2.72

2.86
3.02
3 ~ 14
3.29
3.43
3.52

3.66
3.78
3.88
3.99
4.08
4.22

4.29
4.38
4.50
4.59
4.66
4.76
4.84
4.98
5.03
5.15
5.27

5.36
5.75
5.5&

5.74
5.91
6.10
6.36
6.77

0.04
0.06
0.09
0.12
0.16
0.23

0.32
0.41
0.63
0.78

1.11
1.43
1.80
1.94
2.08
2.05
1.98
1.81
1;49
1.38
1.27

1.10
1.06
0.97
0.93
0.91
0.81

0.81
0.78

0.76
0.75
0.74

0.74
0.76
0.76
0.80
0.87
0.97

0.02
0.02
0.04
0.05
0.08
0.10
0.16
0.21
0.35
0.52
0.83
1.46
2.04
3.37
3.36
2.89
2.41
1.90
1.38
1.24

0.95
0.87
0.75

0.69
0.67
0.64
0.56
0.60
0.53
0.57
0.53
0.54
0.57
0.62
0.63
0.71
0.82
1.06

0.75
0.90
1.06
1.22

1.37
1.53

1.69
1.85

2.00
2.16
2.32
2.47
2.63
2.79
2.95
3.10
3.26

3.42

3.57
3.73
3.89
4.04
4.20
4.36
4.52

4.67
4.83
4.99
5.14
5.30
5.46
5.62
5.77
5.93
6.09
6.24

6.40
6.56
6.72
6.87

7.03
7.19
7.34
7.50

0.01
0.01
0.01
0.02
0.02
0.03
0.04
0.05
0.06
0.09
0.12

0.17
0.24

0.34
0.51
0.78

1.18
1.69
2.14
2.26
2.07
1.75
1.45
1.23

1.06
0.94
0.85

0.79
0.75

0.73
0.71
0.71
0.72

0.73
0.76
0.80
0.84
0.90
0.96
1.03
1.10
1.15
1.19
1.20
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