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The usual theory of direct ultrasonic generation by electromagnetic radiation in metals is

based on the assumption that the conduction electrons experience specular scattering at the

boundary of the metal. The present study generalizes the theory of Reuter and Sondheimer for

the anomalous skin effect in metals to take into account the motion of the lattice. We develop

a procedure for the calculation of the conversion efficiency of electromagnetic to acoustic energy

when the electrons are scattered diffusely by the surface of the metal. The results show that

this efficiency is comparable in the two cases of specular and diffuse scattering. For example,
for metallic potassium under the conditions of the experiments by Chimenti et al. (incident ra-

diation of frequency equal to 9 MHz and electron mean free path of the order of 1.4 && 10 cm)
we find that the ratio of acoustic to electromagnetic fluxes is 4.5 x 10 ' for specular scattering

and 4.7 x 10 ' for diffuse scattering.

I. INTRODUCTION

In the theory of the skin effect in metals it is gen-
erally assumed that the atoms remain undisturbed by
the action of the radio-frequency (rf) eiectromagnetic
field which acts only on the conduction electrons. If
the frequency of the incident electromagnetic wave
lies in the microwave region, at low temperatures in
high-purity metals, the penetration of the wave is
anomalously large compared with what is expected
according to the standard theory. ' The reason for
this effect is to be found in the fact that, when the
mean free path of the electrons is larger than the skin
depth, only those electrons whose mean free path is
traversed for the most part within the skin depth con-
tribute effectively to the screening of the interior of
the metal. This concept was developed by Pippard'
to account for the experimental facts. It was subse-
quently studied mathematically by Reuter and Sond-
heimer who provided detailed justification for
Pippard's approach.

If we consider that not only the conduction elec-
trons but also the positive ions experience the action
of the rf field we conclude that acoustic oscillations
of the same frequency as the incident wave are excit-
ed within the metal. This is caused by the fact that,
when the electron mean free path is long, the screen-
ing of the motion of the ions is not locally exact.

This phenomenon has been observed by several in-

vestigators. In the experiments by Abeles short mi-
crowave pulses were made to impinge on an indium
film on a substrate formed by a slab of germanium.
The generation of acoustic waves was demonstrated
by the echoes of these pulses having a delay equal to
the transit time of an acoustic wave through the ger-
manium substrate which was thick compared to the
indium film. Other investigators have studied this
phenomenon by observing transmission of energy
across a metallic slab under conditions in which direct
electromagnetic coupling across it is not possible.
Recently, Perlow et al. " have studied a similar effect
in copper foils doped with "Co and observed the
Mossbauer resonance in a suitable absorber. In this
way, the presence of an electromagnetically generated
acoustic wave may be detected as frequency modulat-
ed sidebands in the Mossbauer spectrum. The results
of this experiment, ho~ever, appear to be related to a
different phenomenon. "

Theoretical investigations of ultrasonic generation
in metals by electromagnetic radiation have been
given by Quinn, "Southgate, " and Aiig. "

In any study of this effect it is necessary to consid-
er the nature of the scattering of the conduction elec-
trons by the surface of the meta1. In the investiga-
tions by Quinn'~ and Alig'~ it was assumed that an
electron reaching the surface of the metal from its in-
terior experiences a change in momentum only along
the normal to the surface. %e call this specular

20 1979 The American Physical Society



L. R. RAM MOHAN, E. KARTHEUSER, AND S. RODRIGUEZ 20

scattering. It is also possible that the component of
the momentum of an electron in the plane of the
surface is random after the collision. This is expect-
ed to be the case if the surface is not perfectly flat
within atomic dimensions. There is no rigorous
theory of this effect. Approximate discussions have
been given by Abeles, " Southgate, ' and others. '5'

There exist studies" "of the ultrasonic generation
in metals in a strong dc magnetic field normal to the
surface and thus parallel to the direction of propaga-
tion of the wave. In this case the efficiency of gen-
eration is enhanced because the Lorentz force pro-
vides a force on the metal that is not balanced as in
the case previously discussed. This force gives rise to
an acoustic excitation whose amplitude is proportion-
al to the magnetic field. While there does not exist,
at present, quantitative agreement between the exper-
imental measurements and the theory in the case of
zero applied magnetic field, ' in the presence of a
strong magnetic field the agreement is satisfactory.
At low fields, there exists a nonmonotonic behavior
of the acoustic amplitude as a function of magnetic
field which is yet to receive an adequate explanation.

The purpose of this paper is to give a theory of the
electromagnetic generation of acoustic-waves in met-
als assuming that the electrons are scattered diffuse-
ly at the surface. Section II gives a description of the
anomalous skin effect in metals in a manner which is
useful for our subsequent development. The results
are those already obtained by Reuter and Sondhei-
mer. 3 Section III gives a calculation of the surface
force arising from the transfer of transverse momen-
tum by the electrons to the surface of the metal. We
then study the motion of the positive ion background
when the acoustic wavelength is long compared to
the atomic spacings. We obtain the amplitude of the
traveling wave by introducing the surface force as a
boundary condition and requiring that there be no re-
flected acoustic wave since we take the metal to be
semi-infinite. This result is obtained neglecting the
attenuation of the acoustic wave. We call the ampli-
tude of such a wave g(~). The actual amplitude
measured must be corrected for the attenuation as in-

dicated in Sec. III. Section IV gives the calculation of
the insertion rate defined as the ratio of the energy
fluxes of the acoustic and electromagnetic waves.
This ratio is a measure of the efficiency of the
transformation of electromagnetic to acoustic energy.
The method used in the determination of the acous-
tic amplitude follows that employed in the calculation
of acoustic generation in superconducting surfaces
given by Kartheuser and Rodriguez. 2~ However, in
that study, it was supposed that the electrons were
scattered specularly at the surface of the material.

The result of our investigation indicates that the
detailed scattering mechanism does not significantly
alter the efficiency of the conversion of electromag-
netic to acoustic energy in the absence of a magnetic

(g))D =4.67 X 10 'z (1.2)

for diffuse scattering. The difference is attributed to
the surface force. This force is in the opposite direc-
tion from that of the electric field of the wave be-
cause the average electron momentum is directed an-
tiparallel to the electric field. We conclude, there-
fore, that the detailed mechanism of scattering of the
electron at the surface of the metal does not pro-
foundly affect the conversion efficiency of elec-
tromagnetic to acoustic energy in the absence of a dc
magnetic field at these frequencies.

II. ANOMALOUS SKIN EFFECT

We consider a metal bounded by a plane surface
which we take to be the z =0 plane of a Cartesian
coordinate system. We suppose that the metal occu-
pies the z & 0 region of space and that a linearly po-
larized plane electromagnetic wave of angular fre-
quency ~ is incident normally on this surface from
the empty region z & 0 and propagates into the met-
al. The x axis is taken to be parallel to the direction
of the electric field of the wave.

The electric and magnetic fields are described by
the complex quantities E (z) e ' ' and 8 (z) e '"',
where 8 is directed along the y axis. The Maxwell
equations give the condition (we use Gaussian units)

'I

2
E"(z)+ " E(z) =-

C2

'I

4%I cal J( )
C

(2.1)

the quantity J(z) e '"' is the total current density
which we take to be parallel to the electric field. The
current density J(z) has ionic and electronic com-
ponents. We calculate the electronic component us-
ing the procedure of Reuter and Sondheimer. A
solution of the Boltzmann transport equation is
derived for the semiclassical distribution function
f (z, k, r) of the conduction electrons. The distribu-
tion function is expressed as f0+ f~(z, k) e '"', where
fo is the equilibrium Fermi-Dirac distribution func-
tion. The deviation f~ of the distribution function
from its equilibrium value depends on the position z
and the wave vector k. We work in the free-electron
approximation in which the electron velocity
v = fk/m, m being the mass of the electron. We also

field. In the presence of a dc magnetic field the ef-
fect may give a significant difference and we shall
return to it in a future publication.

For metallic potassium, taking an electron mean
free path of the order of that in the samples used by
Chimenti et al. and for the frequency used in their
measurements we find an insertion rate

('9&) s =4 45 && 10 'z

for specular scattering and
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and

&&x
fo J~ d(E(f) exp(u)

ling

g
(2.2)

Ug
)

g

fo p „d(E(()exp(u)

fag

+(I —p) ~ d(E(() exp(u), (2.3)

with u being a function of the component v, of the
electron velocity and of ((—z) given by

suppose that the distribution relaxes to equilibrium
with a characteristic constant relaxation time r so that
the rate of change of f due to collisions is (f-

fo)/—r. Let p be the fraction of electrons experienc-
ing specular scattering at z =0. We obtain f( =f)(') if
u, (0, and f) =fP) if v, )0, where

IE(z)- e' E(k) dk .
2m ~- (2.9)

Substitution of Eqs. (2.8) and (2.9) into Eq. (2.1)
yields, after an integration by parts and using
E(z) -E(-z),
E(k) =2E'(z =+0) [—kz+(m/c)2

+ (4ni ca/c )K(k)] (2.10)

Here K(k) is the Fourier transform of Eq. (2.7) and
is given by

K(k) =—
t

'I

3ioo 2b k2 —b2 b —k+ ln
4lk k k~ b+k

~here

We introduce the Fourier transform E(k) of E(z) by
the equation

u =(I —ia r)(( z)/—ru, . (2.4) bl =sos+i —= ++i . (2.12)

J,(z) =—(e/4w3) „' d k u~f) .
so that

J,(z) =p J" df„K(z —g)E(g)

(2.5)

The charge on the electron is —e. The quantity fo is
the derivative of the Fermi distribution function with
respect to the energy e of the electron. This is a

highly peaked function which to a high degree of ap-
proximation equals —5(t eF), where eF is the Fermi
energy. In deriving Eq. (2.3) which is only valid for
z )0 we have arbitrarily redefined E(() =E( f) for-
/ & 0. The electronic current density is deduced
from the equation

It is convenient to define the function ([)(k) by

y(k) = k' —(4ni &o/c')K(k) . (2.13)

2E'(z =+0)—
y(k) —(ru/c) ' (2.14)

The surface impedance of the metal in this case is

4~ E(+o)
c a(+o)

Care must be exercised in selecting the principal
sheet of the Riemann surface for P(k). This study is
described in Appendix A. Then, the Fourier
transform E(k) of the electric field is

+(1 —p) J, dgK(z —g)E(() .

where the kernel function E is

K(z) =—a.oG(z)

(2.6)
4mi o) E (+0)

E'(+o) '

Use of Eq. (2.14) yields

(2.1S)

F

3~0 ""
A.
' —1 exp[ —(I —(cur) )(lz I/ij .

4I ~&
4I
c' "-" y(k) —(cu/c)'

(2.16)

(2.7)

In Eq. (2.7), oo= nezr/m is the dc conductivity, n is
the electron density, and I = vFr is the electron mean
free path; uF is the Fermi velocity of the electrons.

%e now describe how one obtains the profile of
the electric field and the surface impedance of the
metal for the two cases p =1 (specular scattering)
and p =0 (diffuse scattering) in a manner which will
be convenient for our further discussion in Sec. IV.

A. Specular scattering (p -1)
I

In this case

For the purpose of evaluating the integral (2.16) we
study the behavior of the function

(k) b2 z+ A 1 +~ —ll I+~
(a+ i)3 w2 2)v3 1 —w

in Appendix A. Here

w =k/b
and

3 UFQPp

2 co)

J.(z) =„K(z—()E())dg . (2.S)
with cue = (4n ne'/m)'i' the plasma frequency of the
metal. The numerical values of A and n = co~ in, the
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region of interest for metallic potassium at low tem-
perature are obtained using co~ =6.7 x10' sec ',
vF =8.6 x 10' cm/sec, and the purity to be such that
I = vF v =1.4 x 10 cm at liquid-helium temperature.
We take the frequency 3 of the incident wave to be 9
MHz (ru = 5.6 x 10' sec '). We have A = 1.7 x 10"
and a =9.3 x 10 . The quantity 0. A is of the order
of 1.4 & 10'. Under such conditions, the denomina-
tor of the integral in Eq. (2.16) has zeros for
~ w~ && 1 only. With the parameters given above the
zeros occur at w =+ (30.6 —i 51.4) and at
w =+ (60.2+F0 13) . Th.e value of the integral in Eq.
(2.16) is approximately that obtained by taking Q(k)
for kl » 1 with the value appropriate for Imk & 0
because in calculating Z one must consider solutions
in which E tends to zero as z approaches infinity.
This gives'

Z
4(m dk

(2 17)c' "-" k' —(3i m'ruhr, /c'I
~
k ~)

Evaluation of the integral gives

We now study the auxiliary function

1 I' K(k')E (k') dk'
(2.25)

this function has a discontinuity of +K(k)Et ~(k)
upon crossing I from below to above. From Eq.
(2.23) we obtain, using the Plemelj~9 relations, for k
on I,

The contour I is a straight line extending from —~
to ~ just above the line Imk' =Imk. We can select k
to be real so that I is parallel to the real axis and just
above it. Et ~(k') is the analytic continuation of the
transform of E(k) holomorphic in the lower half
plane as required by the condition that E(z) be zero
for large values of z and zero for z & 0.

From Eq. (2.23), for ~k
~

~, we have the asymp-
totic behavior

E(k) =—ik 'E(z =+0) —k E'(z =+0) +0(k ) .

(2.24)

Z = ,' (~37rl r '—/c"o«) '~'(1 —i J3) .

B. Diffuse scattering (p -0)

In this case we have

J,(z) = „K(z—~) d ~,
and

(2.18)

(2.19)

'I

2 2

k — E + (k) = k — — K(k) E (k) .
c2 c2 c2

(2.26)

Here E'+'(k) is holomorphic in the upper half plane.
Remembering that co has a positive infinitesimal ima-
ginary part, we rewrite Eq. (2.26)

H(z) = Jt
'

dK
27T I ~ l4

(2.22)

for H(z) where a is a positive number which can be
taken as small as we wish. We can now carry out the
Fourier analysis as before to obtain

E"(z)+, E(z) =—,Jt K(z —()E(()d( .

(2.20)

This equation is valid for z & 0. Without loss of gen-
erality we can set E(z) =0 for z &0. We then en-
counter the difficulty that even though the left-hand
side of Eq. (2.20) vanishes for z & 0, the right-hand
side does not. We can extend the validity of Eq.
(2.20) without altering it for z & 0 by rewriting it

o)2E"(z) +, E(z)
c

OO

H(z) „K(z—f)E(() d(, (2.21)

where H(z) is the Heaviside function defined by
H(z) =1 if z )0 and H(z) =0 if z & 0. We use the
representation

r«, E(~&(k)
k' —«P/c' —(4mi ru/c') K (k)

c k' —o)'/c'

x k ———it E (k) . (2.27)c

(k —co/c —i «) E (k) = 4(k) .

The procedure consists in defining " (2.28)

k' ru /c' —(4m i ru/c—)K(k) g(k) —co~/c

k' —ru'/c' k cd /c

Xt+&(k)
Xt-&(k) ' (2.29)

where the functions X+ (k) and X (k) are holo-
morphic in the upper-half and lower-half planes,
respectively.

Thus we have

We follow the Wiener-Hopf-Carleman method and
le t30, 31

E'(z =+0) —ikE(z =+0) ——k~ — E(k)
c2

4+ (k)/X'+'(k) =4 (k)/X (k), (2.30)

41rird 1
~t

K(k')Et ~(k') dk,
c2 2mi "r k' —k

(2.23)

showing that 4(k)/X(k) is analytic throughout the
complex k plane.

As k ~, the asymptotic value of 4(k) is
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iE—(z =+0). The function X(k) is defined as one
Whose logarithm has the discontinuity

1

ln
y(k) —s)'/c'

k' — '/c'

across the path I and at the same time approaches
unity as ~k ~

~. These requirements are satisfied
by

1

X(k) 1 ))
dk'

l
I/l(k') — /

2~i J r k' —k k' —co /c
L

(2.31)

It is necessary that the argument of the logarithm
possess no zeros along 1. Since the asymptotic value
of X(k) is unity as ~k~ ~, we find that 4(k)/X(k)
equals iE(z =—+0) everywhere, and we have

we have, after performing a suitable contour integra-
tion,

E'(z =+0) 1
(— i —mAa )'I

E(z =+0) 3n I

foo

x J dp p ln(1+ p),
so that

( =+0) i J3I( i
A) ~I3(I .

~&) (2 38)E'(z =+0) 4a

Thus the surface impedance in the diffuse scattering
case is —, the value for specular scattering. The nu-

merical value, corresponding to that in Eq. (2.35) in
the approximation (2.38), is

I
= (—4.24 + i 2.45) x 103 cm ', (2.39)

E( )(k) iE(z =+—0)X' '(k)
k eel/c I e

(2.32) in good agreement with Eq. (2.35).

From Eq. (2.23) for large k we have

1
ln

4(k) - / dk (2 34)
2m "r k —op/ c

Direct numerical evaluation of the integral for the
parameters given above gives

=(—4.09+i2.43) x10 cm ' .
E(z =+0)

( )

On the other hand, neglecting the displacement
current, i.e., dropping the term (a&/c)~ and using the
form of P(k) appropriate for ~k ~l )) 1, we have'4

f

E (z =+0) I
dk 1

E(z =+0) n "0 2k I

(2.36)

Substituting the variable k by

imAu
2k3I

(2.37)

E'(z =—+0) —ikE(z =+0) —k Et i(k) =0,
(2.33)

so that using Eq. (2.32) we have
r

E'(z =+0) . . i (k —co /c )X' (k)= lim —ik+
E(z =+0) k- k —co/c —i e

III. CALCULATION OF THE SURFACE FORCE
AND EQUATION OF MOTION

OF THE LATTICE

Tj&(z) = J/u, @Ifd k .
4m3

In equilibrium we set f = fo and find T& to be diago-
nal and equal to P5,~, where P is the pressure of the
gas. If the scattering at the surface z =0 is specular
T (0)'=0. However, for diffuse scattering, each
electron approaching the z =0 plane with v, ( 0 and
actually reaching it before being scattered will, on the
average, surrender to the atoms on the surface the
momentum mvq, where v~ is the transverse velocity
of the electron. Since the electric field is taken paral-
lel to the x axis, the only shear components of T&(z)
which do not vanish are T (z) = T (z). We calcu-
late this quantity using f =f0+ f~ and Eqs. (2.2) and
(2.3). We obtain

(3.1)

An electron gas in equilibrium exerts a constant
pressure on its surroundings. If the gas is nonuni-
form some layers move relative to adjacent layers
giving rise to shear stresses. This is precisely what
happens in the case under investigation since the
electric field of the wave is not uniform. Considering
the rate of i component of momentum transported
parallel to the j axis (i,j =1,2, 3) we obtain the stress
-tensor of the electrons on their environment. This is
given by

I e Ia oo

T (z) = ne J sin38d8—J E(() exp(u) d(
~/2 '

I S Iag

—
4

ne J sin38d8 p J E(f) exp(u) df+(I —p) E($) exp(u) dj (3.2)

where u is identical to the value given in Eq. (2.4). The symbol 8 stands for the angle between the velocity v of
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the electron and the positive z axis. To calculate the stress at the boundary of the metal we set z =0 in Eq. (3.2)
and obtain

p0 f oo

T~(0) = n—e(1 —p)
&

(I —p, ) dp, J E(g) exp[(1 —i &or)(/Itt, ] dg, (3.3)

where we have made several transformations and
used the substitution p, =cos8.

Before going further we establish the equation of
motion of the positive ions under the action of the
electromagnetic field. We first recall that in Eq.
(2.1), J(z) stands for the total current density. In
our analysis of the penetration of the electric field
given in Sec. II we approximated J(z) by the elec-
tronic current density. There is, however, an ionic
current density. This contribution is

and
.(3.7)

("(z)+ ", g(z)

From Eqs. (2.1) and (3.4) —(3.6) we obtain the cou-
pled equations

2 4m e o)E"(z) + E(z) + y g(z) + ' J, (z) =0

J;(z) =—(ye p/M)i s&g(z), (3.4) MY$2 M$2
'

pev$2
e '

where ye is the charge and M is the mass of each
positive ion, p is the mass density of the material,
and g(z) e '"' is the displacement at time t of an ion
whose equilibrium position is at z. We take this dis-

placement along the x axis. For this reason a single
component is sufficient to specify it. If we call $ the
speed of transverse-acoustic waves, the motion of the
positive ions is governed by the equation

—Ms)'((z) =Ms'("(z) +yeE(z) +F,(z) . (3.5)

The left-hand side of this equation is simply the mass
of the ion times its acceleration. The right-hand side
is the sum of three forces. The first is the elastic
force per atom, the second describes the action of the
electric field of the wave, and the third is a collision
force arising from the transfer of momentum from
the electrons to the lattice. It is assumed that, on the
average and in the frame of reference in which the
lattice is instantaneously at rest, the momentum of
the electron after the collision is zero. Thus in the
frame of reference of the experimenter the electrons
move with the velocity of the positive ions immedi-

ately after a collision. The rate of momentum
transfer from the electrons to the lattice per unit
volume of material is

2g"(z)+" g(z)= — y' g(z),
$ - M$2

(3.9)

where

(3.8)
In order to be precise J, (z) in this case differs

from that in which the lattice is at rest. In fact, the
distribution function f relaxes to a value where the
electrons retain the velocity of the positive ions. This
is equivalent to having an additional electric field in
the x direction, equal to i &sm g/e r This .contribution
is negligible as we see below. In solving the coupled
equations (3.7) and (3.8) we must recognize that the
terms containing g(z) in Eq. (3.7) are small and can
be neglected. These include the third term in Eq.
(3.7) and the contribution of J,(z) arising from the
effective field which we just discussed. We can, if we
wish, established an iteration procedure where E(z)
and g(z) are expanded in powers of the parameter
m/M. The expansion of E(z) contains powers of
m/M starting from zero while g(z) contains first and

higher powers of this parameter. Keeping only the
lowest terms in E(z) and g(z) leads to neglecting the
contributions discussed above and the third term in

Eq. (3.8). Thus, Eq. (3.8) reduces to

(nm/r) ((v) —u), . b(z) =E(z) —o.p'J, (z) . (3.10)

where (v) is the average electron velocity and
u (r, t) the displacement field of the lattice. Since
u (r, t) =xg(z) e '"', where x is a umt vector along
the x axis, we obtain the expression

F, (z) e '"'= (Mnm/pr) [(v,) +i cog(z) e j, '"'

for the average collision force on a positive ion.
Substitution for the electron and ion velocities in

terms of their currents yields

The general solution of the linear differential equa-
tion (3.9) is

e

g(z) =A exp +B exp
s S

+ " 8(g) sin . ~ dg . (3.11)
MSo) ~o s

The xz component of the strain at the surface z =0 of
the metal is given by

F, (z) =—(Mm/peT) J(z) . (3.6) g'(z =+0) =(is)/s)(A B) . —(3.12)
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For large positive values of z, physical require-
ments impose the restrictions that $(z) approach
zero and that g(z) behave as g(~) exp(i~z/s), i.e.,
that it be a wave propagating in the positive z direc-
tion. The asymptotic behavior of g(z) for large z is

j(z)= A+ '
J g(()exp ' d( exp'

2Msa) "o s s

wave determines the coefficient 8 in the form

I 'yc
g (() I Ctlj

2Mscu "o s
(3.14)

If one studies the generation of ultrasound in thin
slabs this condition is not satisfied since, certainly, a
reflected wave exists. We shall return to this prob-
lem in the future. We determine A by the require-
ment (3.12) together with the relation"

+ 8 — ~
Ji ltl(g) exp dg

2Ms o) 0 s
T (0) =ps'g'(z =+0) . (3.15)

—I OJZx exp
s

(3.13)

The condition just outlined that there be no reflected

If the scattering of the electrons at the surface were
specular, T (0) =0, and the surface z =0 would be
regarded as strain free [g'(+0) =01. For diffuse
scattering this is not the case. Combining Eqs. (3.3),
(3.12), (3.14), and (3.15) we get

i

goo f+ OO

A = y
&

8(() exp dg —(I —p)
&

(I —p, z) dp, J E(() exp d(.
2Mso) "o $4ps cu lp,

(3.16)

This allows us to find the amplitude g(~) of the acoustic wave in the bulk of the metal. Combining Eqs. (3.16)
and (3.13) gives

with
g(z) = g(~) exp(i ruz/s),

1

fi0 /i~
g(~) = '~

'I g()) cos d( ——'(I —p) i (I —p, ') dp, E(()exp
'

— d(
Ms o) ~0 Ip,

(3.17)

(3.18)

-k(s
e (3.19)

where k(, the imaginary part of the propagation vec-
tor, is given by

where
2Mvs 62+g2 (3.20)

We give a detailed study of these results in Sec. IV.
It should be mentioned that g(~) does not represent
the true amplitude of the wave in the bulk. One
must correct for the fact that it is attenuated by the
factor

IV. CALCULATION OF THE AMPLITUDE
OF THE ACOUSTIC WAVE

The results of Sec. III can now be applied to calcu-
late g(~). As before we consider specular and dif-

fuse scattering separately. For specular scattering the
results have already been given by Alig. ' We repro-
duce them here by a method that allows a rapid
derivation. For diffuse scattering the calculations are
more involved and require some developments which

are relegated to Appendix B.

A. Specular scattering

G =G(au/s) (3.21)

stands for the Fourier component after setting a =0
with wave number co/s of the function defined in Eq.
(2.7) and studied in Appendix A, and

Here, use of Eq. (3.18) gives
Woo ~

f(~) = ' $(g) cos ~ d(= '~ h-
Ms~ "o s 2Mscu s

a = c'co/s's&, 'r .

When rul/s (( I this is

ym v p. v'cu2 2

]0MS3

while if aol/s » I we have

2ym vy M
I

3~MS2

(3.22)

(3.23)

(3.24)

(4.1)
where $ (ru/s) is the Fourier component of h for
k = ca/s and we have taken 8 (() = 6 (—g) for g (0 as
before. We now remember that

h(k) =E(k) —cro'J, (k) = [I —G(k)]E(k), (4.2)

which reduces to

b(k) =-2E'(z =+0) [1 —G(k)][/(k) —(ru/c) 1 ',
(4.3)



$240 L. R. RAM MOHAN, E. KARTHEUSER, AND S. RODRIGUEZ

after making use of Eq. (2.10). Since

P(k) = k —(4nim'a«/c ) G(k), (4.4)

we can neglect (c«/c)' compared to (e«/s)' in the ex-
pression for g(~). We have

From Eq. (2.1) setting J(z) =J,(z) we can rewrite
h(g) entirely in terms of E(f) and its derivatives.
After substitution in Eq. (4.12) and an integration by
parts we obtain

g(e«) =E'(z =+0)(ye/Mse«)(D(+D2+D3) . (4.13)
T

g(~) =— y I —G —p
' —E'(z =+0) . (4.5)

MS ao S S
t

where

Dt =—as'/e«', (4.14)
It is customary to express these results in terms of

the insertion rate q~. This is defined as the ratio of
the acoustic flux in the bulk of the metal to the in-

cident electromagnetic flux. It is, therefore, a mea-
sure of the efficiency with which electromagnetic ener-

gy is converted into acoustic energy. We have

and

I +ia I' kE (k) dk
2rrE'(z =+0) "- k2 —(r«/s)z

(4.15)

D3 —=
, „t Et i(k)S(k) dk . (4.16)

nl = P'a/Pem

where

J'. = —,
' p~'I(( ) I' s

and

(4.6)

(4.7)

The function S(k) is defined by

S(k) = (il/6x4) [ 4x'—+3x'+6x
—6(x —I) ln(l —x)], (4.17)

with

= ' Ia(0)I'= ', IE'(z=+o)I' (4.8)
8m 8''QJ

Therefore,

x =ikl . (4.18)

The function S(k) has the following expansions valid

2 y

ym e«p s (1 —G)'
M «) c 1+(G/a)'

(4.9) S(k) =il(-+ —x+—x + —x + )2 1 2 2

4 15 12 35

(4.19)
In this expression for the insertion rate it is under-
stood that G is to be evaluated at k = ee/s. We recall
that, when n = eov « 1 which is certainly appropriate
to our case,

and, if IxI ))1,

S(k) =— +i2l
3x

(4.2o)

e

G(k) = 3 I+
2/3' /3

arc tanP —I

where

(4.10)
We now substitute E' '(k) from Eqs. (2.29) and

(2.32) in the form

iE(z =+0)X + —(k) (k —e« /c ) (4 21)
[y(k) —ee'/c'] (k —e«/c —i e)

P =kl =e«l/s . (4.11)

Taking e«l/s =4.5, e«=5.64 x 107 sec ', and the
remaining parameters appropriate for potassium (see
Sec. II) we obtain

(gt), =4.45 x 10 'z .

E( ) k iE(z =+0)ke-""
(k —ki) (k —kg)

The integrals

(4.22)

into Eqs. (4.15) and (4.16).
The function Xt+~(k) is evaluated in Appendix B

and we have, on neglecting aP/c'and using Eq. (Bg),

B. Diffuse scattering

Setting p =0 in Eq. (3.18) we obtain
and

Te oo dk k2el(k)

2w J -" (k —ki)(k —kg)(k' —e«'/s')
(4.23)

g(~)= '
Jt b(f)cos "~ d(

Ms co S

J (I —p, ') dp, J E(() exp ~ d(,

(4.12)

where we have made the approximation 0. = cue « 1.

I
I dk

kS(k) e
2rri "- (k —k()(k —k2)

(4.24)

now appearing in D2 and D3 are evaluated numerical-
ly by integration alorig Rek. As shown in Fig. 1, the
path of integration for I2 is indented at +e«/s in a
manner so as to account for the positive imaginary
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Imk part associated with ao. We obtain

I3 = (0.821 —i2.91) x 10~ cm (4.25)

k~ ~ and

I3 = (—2.95 + )4.23) x 10 cm . (4.26)

tt)/S

~ kl

++
Rek

With E'(z =+0)/E(z =+0) given by Eq. (2.35) we
evaluate the amplitude g(~) of the acoustic excita-
tion, and using Eqs. (4.6) —(4.8) we obtain the inser-
tion rate for diffuse scattering

(v))) D =4.67 x 10 " .
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APPENDIX A

1. Fourier transform of the conductivity kernel

The conductivity kernel K(z) given by

K(z) = ' d) )~-'()t' —1) ex
4l ~~ I

has the Fourier transform
1

K(k) = d. e-'~K(z) = ' +
4lk k k b —n

where b =(ear+i)/I We note t.hat K(k) is also expressible in the form given by Kjeldaas36 since

3 (y 0 p%/2 -(1 —io)r) zK(k) = sin38sec8d8 dz e '~exp
4l ~0 4 —oo l cos8

3~0 '" sin'8 d 8
4 «1—i cue. +ikl cos8

The substitution cos8 = )3„n= ~r, and p = kl leads to

(Al)

(A2)

K (k) = o 0
— + [P + (1 —) a) ] [arc tan(P —u) + arc tan(P + a) ]——, i ln

3 (1 —ia) 3 1+(p —~)'
2 p2 4p3 1+(P+a) (A3)

2. Phase of p(k)

The function g(k} defined by

y(k) =k'-,'"K(k)

is analytically continued in the complex k plane from its value on the real k axis. For this purpose the form of
K(k) given in Eq. (Al) is suitable and it is then necessary to specify the principal branch of the logarithm ap-
pearing in Eq. (Al). The phases of the logarithm for ~k

~
& b on either side of the two branch cuts going from

+b to +b~, respectively, are determined by comparing Eq. (Al) with Eq. (A3) for a =cur && 1, say. The cuts
are then aligned along the imaginary axis, and in Eq. (Al) for Rek & 0 we require in[(b + k)/(b —k}] for
( k ( & b to be ln[(k + b)/(k —b)] —i w, while for Rek & 0 we need in[(k + b)/(k —b)] +i n For arbitrar. y a we
then have, with w k/b,
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1 1

P(k)=b w + + ln
A~' 1 w' —1 w +1 +im, for Imw ~~0, IwI & I .(a+i) w 2w w —I

t L~

(A4)

Zeros of P(k)

The quantity A =
2

(waco~/c~), for ~ = 5.6 x 10 Hz and with parameters appropriate for potassium, is

1.74 x 10" Also a =cur —-9.3 x 10 '. Thus p(k) has no roots for I w
I
~ I because of the large value of Aa'

(A~'=1.4 x10'). For large k (or equivalently, large w =k/b) the y(k) is given by

2A+3 ' . w —1 1 w —1 1 1 12

p(k) =b w + +i' + +
3

—+
3 +,+, for imw~~0.(a+i)' 2w' w' w' w 3w' Sw'

(AS)

At the frequency under consideraton 0. (& 1 so that
the branch cuts in P(k) are aligned with the ima-
ginary k axis. Retaining only the leading term in 1/w
we have

2+
2(a+i) w

so that with

k, = (—'wA) 'i'—
2 I

the zeros of P(k) are given by'"

k (&
' i e' i e '5" 6I, for Rek (0

and by

ko(e'" e ' e''" j for Rek )0.
Only the roots in the upper-half k plane are needed
and these are indicated in Fig. 2. They are

ki =koe'~ = w~b

and

k2=k e' =w b

In the numerical analysis the terms of order w were
retained and the values of w~ and w2 were deter-
mined in this approximation. The actual values of
w~, w2 have been given in Sec. II.

APPENDIX 8'
EVALUATION OF THE FUNCTION X(k)

imI The function X(k) appears in the expression for
the electric field E(k) in the diffuse scattering case.
In the upper-half complex k plane we have

Xt+~(k) =exp „~, ln(+) I '" dk' y(k')
2' "-~ k' —k k'

t

Rek Imk &0. (Bl)

FIG. 2. Zeros of Itf(k) and the branch cuts originating at
Xb are shown. The zeros for Rek & 0 are indicated by cir-
cled dots, while the zeros for Rek & 0 are shown by circled
crosses. Only the zeros at k~ and k2 are relevant to the dis-
cussion in this work.

The quantity in the exponent is evaluated by contour
integration. Note that for Ik'I ~, P(k') increases
as k'2 so that the integrand behaves like 1/k'. In
closing the contour over the real axis with a semicir-
cle on the upper-half plane the latter yields a negligi-
ble contribution. However, there exists a branch cut
originating at k = b and extending to b ~ due to the
presence of the logarithmic term in P(k') [Eqs.
(2.11) and (2.13)], and two additional branch points
associated with the zeros of P(k'). Let the latter be
at k~ and k2. We have already seen in Appendix A
that for low frequencies there are only two zeros of
g(k) in the upper-half complex k plane.

We proceed by explicitly removing the two zeros of
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(k' —k,') (k'- k,')
+ln k'

Using

—=
. Y((k) + Y2(k) . (B2)

4(k') by writing3

Y(k) 1 dk'
l

g(k') k'2

2rri 4-~ k' —k (k'2 —k)~)(k' —k22)

/
/

/
I
I
f

—Co+i'd

imk"

7 t
I
I
l
I
Ic,

q ~ )k

I

I

2
yl

I Ill

b]
~ki

+"
1

Rek

ln
k' —k)2

k'

1 2k' dki
k' —ki

we have for Y2(k),

(k+ k, ) (k +k,)
Y2 k =in

k
(B3)

FIG. 3. Contour of integration for Y{k) defiped in Eq.
{B1).The original contour from —~+i ~ to ~+i e is dis-

torted to one around the branch cut together with the circu-
lar contour around k. The positions of the zeros of P{k)
are indicated.

Now we evaluate Y~(k) by ciosing the contour of in-
tegration by a semicircle in the upper-half plarie with
an indentation for going around the branch cut
emanating from k' = b (see Fig. 3).

With

point can be shown to give a zero contribution by

noting that the phases of p'+'(b) just above the
branch cut and P (b) just below the branch cut are
the same. ' This can be proved using Rouche's
theorem. Thus

we have

4(k)k'
(k'-k')(k'-k') ' (B4) Y~(k) = in/(k) +, ln

&+&4 b 2rr/ k' —k p (k')

=—in/(k) +1(k) . (B6)
1 dk'

Y, (k) = „, in j(k')
2vri "- k' —k

I

=in j(k) +,„, in j(k'), (B5)

where in/(k) is the residue at k'=k. The contour
C~ refers to the semicircular contour at infinity on
which the integrand tends to zero and the contour C2
refers to the path around the branch cut from b to
b~. The parts of C2 above and below the branch cut
can be combined into a single expression. The
remaining small circular contour around the branch

Writing

Y(k) =In (k+ki)(k+k2)
k

+ ln [Q(k) ] + 1(k),

we have from Etis. (B4) and (B7)

g(+)(k) g(k) el(k)
(k -k, )(k -k,)

(B7)

(BS)

The integral 1(k) is evaluated numerically for any
value of k. We shall need X~+ for real k only.
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