
PHYSICAL REVIEW B VOLUME 20, NUMBER 8 15 OCTOBER 1979

Quantum-statistical mechanics of extended objects.
I. Kinks in the one-dimensional sine-Gordon system
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Making use of thermal-Green's-function technique, we study the quantum-statistical mechan-

ics of a sine-Gordon system in 1+1 dimensions. In the weak-coupling limit, the temperature

dependences of the soliton energy, E„ the soliton inertial mass, and the soliton density are

determined. At high temperatures (T & m, where m is the mass of the fundamental field), E,
decreases monotonically as the temperature increases, and E, jumps to zero around T = T«

1

(=e 'E, ), where E, is the soliton energy at T =0 K, The soliton density agrees with the classi-

cal statistical-mechanics results for T«& T » m, if E, in the classical theory is replaced by the

temperature-dependent one of the present theory.

I. INTRODUCTION

Recently there has been great interest in kinks or
extended objects in-condensed-matter physics. Since
a pioneering work by Krumhansl and Schrieffer' on
kinks of the "$4" field theory, classical statistical
mechanics has been applied to kinks of a variety of
one-dimensional systems. ' These analyses have firm-

ly established kinks (i.e., localized nonlinear solu-
tions) as a new class of elementary excitations in the
one-dimensional system. Unfortunately, however,
the above statistical-mechanics approaches are
plagued by minor but persistent ambiguities. Furth-
ermore in the case of the sine-Gordon system, inclu-
sion of breathers as independent modes appears to
completely destroy the excellent agreement between
the exact transfer-matrix technique (TMT) result3

and the heuristic ideal-gas model. 2 In parallel to the
above development, there has been remarkable ad-
vance in the quantum field theory of nonlinear sys-
tems in 1 + 1 dimensions. 4 8 In particular for the
sine-Gordon system some exact results are known. '

The object of the present series of papers is to
develop a quantum-statistical mechanics of the sine-
Gordon system. We rely heavily on the earlier works
on its quantum field theory. The finite-temperature
effect is handled in terms of thermal Green's func-
tions. In the present paper we focus our attention
on the kink (the soliton) related properties. In the
second paper the breathers will be dealt with.

In Sec. II, we present the general formalism. We
first divide the Hilbert space into sectors depending
on the number of solitons N in the states. The parti-
tion function Zo of the N =0 sector and Zl of the
N = 1 sector are obtained within the weak-coupling
limit. A moving soliton is also considered. From Zo
and Zt, we can derive m, E„EI,and („the physical

mass of the fundamental boson (i.e., radiation), the
soliton energy, the inertial mass of the soliton, and
the fugacity of the soliton, which are discussed in
Sec. III. We note that E, ~ Et for T ~ 0 K, since the
presence of thermal radiation breaks the Lorentz in-

variance of the system. In the higher-temperature
region (E, & T » m), the above result is compared
with the TMT results.

The present result predicts a number of interesting
corrections on the result obtained within the classical
statistical mechanics. Of particular interest is the
correction to the cos-cos correlation function ob-
tained by Mikeska, ' within the classical theory. Re-
cent neutron scattering experimental data on the
one-dimensional ferromagnet CsNiF3 by Kjems and
Steiner" are reanalyzed in the light of the present
theory.

II. FORMULATION

In the field-theoretical study of the nonlinear sys-
tem in 1+1 dimensions, we generally encounter two
principal problems. First, we have to renormalize a
variety of divergences in a consistent way, in order to
obtain finite sensible results, as the fluctuation of the
field is usually divergent. Second, we have to deal
with nonlinear modes (i.e., kinks) of the system, if
any, which are not accessible by means of a simple
perturbatianal analysis with respect to the small cou-
pling constant.

Fortunately, in the case of the sine-Gordon sys-
tem, these two problems are completely solved at
zero temperature by Coleman and by Dashen,
Hasslacher, and Neveu (DHN). ' In this section we
shall capitalize on these results and build up the
quantum-statistical mechanics of the sine-Gordon
system.
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The sine-Gordon system is described by the follow-

ing Hamiltonian'.
1

H= —' Jl dx m'(x) +
()X

is transformed into
T

H = — 'i dx n (x) +
2 Q gX

't 2

2(m')' 2mp

g
2

—cos g$+
g2

where

2m 2m'
g2

N( c-osg P) +
g2

where n (x) = dP/dt, and m' and g being the bare
mass of the Bose field $(x) and the coupling con-
stant, respectively. %e took here cp the limiting bo-
son velocity as unity for simplicity. Also for later
convenience we have added a constant term 2mpg ',
with mo the physical mass of the P field at the zero
temperature.

First of all we shall note that the sine-Gordon sys-
tem has infinitely degenerate vacua given by
/=0, +2rrg ', +4rrg ', ... . Furthermore, the topo-
logical conservation' of the system demands that the
difference P(x =+~) —@(x= —~) is independent of
time and given by 2m' ' with N an integer. This
follows simply from the fact that a local perturbation
cannot change P(x =+~) or $(x = —~). Therefore,
in order to investigate physical properties of the sys-
tem, we can classify all possible states in terms of this
integer %. The interger N corresponds to the number
of the solitons N, (or more precisely, N, —N, , where—
N,- is the number of the antisolitons) in the state.
%e call the part of Hilbert space specified by N as
sectors. %e shall now examine the W =0 sector and
N =1 sector separately. Note that intrinsic properties
of a single soliton are extracted from the ratio Z&lZO

where Z~ and Zp are the partition functions of the
sector N = 1 and the sector N =0, respectively. '

m'= (m')'exp[-( —,
' g')D] {6)

In +fo(pm)
1 2A

277 m
(8)

Assuming that $(x) is a free boson with mass m,
D is evaluated as

D= Tx Jt D"'(k, „)2'
where Dt ~(k, co„) = (co2 +k + m2) ' is the thermal
Green's function of the free boson and ao„=2m. Tv
the Matsubara frequency with integer v. In the di-
agrammatic language, we have renormalized all the
interaction vertices in Eq. (I) by closing two dangling
lines into a loop in all possible ways. For example
the renormalized mass vertex in Eq. (5) is shown in
Fig. 1(a). If we assume that the mass m in Green's
function is the same as that in the left-hand side of
Eq. (6), Eq. (6) gives a self-consistent equation for m.

Introducing a cutoff momentum A, Eq. (6) is
evaluated as

1 " 1D =
J~ dk coth( prok)—

47T A cUk
2

A. Soliton-free state (N 0}

In this case, following Coleman, we can complete-
ly eliminate the divergences from the simple boson
loops even at finite temperatures. For this purpose it
is convenient to introduce the "normal product" at
finite temperatures as at T =0 K, This is defined as {a)

+ + '

N (A ) = A A pgjgjgg (2)

where all possible pairings in the operators $ in A

are subtracted. In particular (N(A)) =0, if A does
not contain a c-number term. Furthermore, we have

where

the thermal Green's function of $ at the equal space
time. At T =0 K, Eq. {2) reduces to the standard
definition in the quantum field theory 6Then Eq. .(I)

FIG. 1. Diagrammatic representations of the present
analysis; the renormalized mass vertex m (a), and the
higher-order corrections to m (b) and Op (c). The white and
black circles represent the bare and renormalized interaction
vertices, respectively.
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and

goo 1
fp(pm) =— dk N(lul, )

1T ~ O Qjk

where Zp is the partition function of the N =0 sector
and L is the length of the system. Substracting from
Eq. (15) the ground-state energy Ep at T =0 K,

=—X &p(nPm)
1

+n 1

(9)
Ep=

2 g, mk- 2moDpL
1 ~ p 1

k

where ppq = (k'+mp )' ', we obtain

(16)

where cps - (k' + ml) '~, P - (ks T) ', N (E)
-(e~E—1) the Bose distribution function, and
Kp(z) is the modified Bessel function. At T =0 K,
Eq. (8) reduces to

Dp= ln
1 2A

27K 1710
(10)

where mp is the mass of the boson at T =0 K.
Substituting Eq. (10) into Eq. (6), we have at

T=O K

mp =(m") exp — ln
2A

4m mp

This relation obtained by Coleman relates the phy-
sical mass at T =0 K to the bare mass m'. Now
making use of Eq. (11), we can completely eliminate
the divergence from Eq. (6). Expressing m" in terms
of mp, we have

m'= mpz exp[ —(—,
' g') D']

Qp —Ep )
' dk -p= P '„ ln(1 —e ")

~ 2''
&2

+ g m'f,'+O(g'), (17)
8

where the first term is an ordinary thermodynamic
potential for a free boson system and the second
term gives a finite correction due to interaction for
small g'2. Therefore the mass renormalization com-
pletely eliminates the divergence from the theory at
least for the N =0 sector,

The above results for m and Op are in fact the
lowest-order terms in perturbation expansion in

powers of g'. The next-order corrections of the order
of g to m and. Qp are shown in Fig. 1(b) and Fig.
1(c), respectively. All these contributions are con-
vergent and therefore neglected in the present work.
Therefore our results are exact in the weak-coupling
limit.

B. One-soliton state (N 1)

m = mp exp[ —(—,
' g')fp(Pm)] (13)

where D' = D —Dp, which is free of the divergence.
Finally making use of Eq. (8) the mass m at finite
temperatures is given by

As is well known the sine-Gordon equation

+
"

sing@=0
9t Qx g

(18)

with
2

gr2
I —gl/8 n.

(14)

m—(m' —mp2) g '+ D L + 0 (g'), (15)
2

Equation (13) shows that at finite temperatures the
physical mass depends on temperature and decreases
as the temperature is increased. This is one of our
principle results in the present analysis.

Making use of Eq. (5), the thermodynamic poten-
tial of the N =0 sector is given by

np(-=-P-' lnZ, )

= p ' gin(2sinhl pplq)
k

which can be derived from Eq. (I) allows a class of
classical solutions of the form

4 l m(x 'Ul)
Q, = —tan exp,

L1 —& )
(19)

4 =4*+4 (20)

where qh, is the classical solution for a single sdliton.
In this subsection let us consider a static soliton; the
soliton with v =0.

Substituting Eq. (20) into Eq. (1), we obtain

which describes a moving soliton with velocity v.
Here we have replaced m" in Eq. (I) by m, which will

be determined self-consistently (see Sec. II A).
According to DHN, ' the N =1 sector is treated by

substituting for $ in Eq. (1) by

'2

H = ED+
2 J1dx mz(x) + + m (cosg y, ) y

2 .2 2 2 2

cos [g ($, + @)]+ l cos(g $,) — sin(g @,)@—
2

cos(g @,)Q
g (21)



3226 KAZUMI MAKI AND HAJIME TAKAYAMA 20

where m(x) = d@/'dt and E, ' is the classical soliton
energy given by

propagator for the @ field. D, (x) is calculated in Ap-
pendix A as

E i= — dx
~Ps 2m'

+ (1 —cosg@,) 8m
2 Q+ g2 ' g2

(22) and

D, (x) = D — +f~ (Pm) sech'(mx)2' (24)

The field $ is now expanded in terms of the normal
modes of the eigen. equation

m'f)
= dk cuk N (a)k) (25)

o)„'u„(x) =—,u„(x) +m cos[gg, (x)]u„(x)
()X

(23)

of which normal modes are well known. '2 In particu-
lar, ther|: is one bound state with eoq =0 and scatter-
ing states with cok = (k~ + m ) '~ where k is the wave
number of the mode.

Making use of the normal mode, we can carry out
the mass renormalization as in Sec. IIA. For m, we
have an equation identical to Eq. (6), except that D
in Eq. (6) is replaced by D, (x) the equal space-time

The first term in Eq. (24) is the propagator for the
free boson with mass m. Therefore m has to be
identical to m, except in a narrow region around the
static soliton (i.e., x =0). Since m deviates from m

in the narrow region, we can put m = m, as long as
we neglect terms of the order of L '. Although this
argument is sufficient for m, a more careful analysis
is required to calculate the soliton energy, as the soli-
ton energy is expressed as a difference of two quanti-
ties of the order of L. The details of this analysis are
again given in Appendix A. Finally the thermo-
dynamic potential of the % = 1 sector is given by

r

Q, —= Q~ —Qp=
~ +p ' Xln 2sinh~co„—Xln 2sinh ~k + J dx(1 cosgqh, )D— (26)

Zl Zl
!is

Zp+Z] + ~ ~ ~ Zp
(27)

In particular, the probability of one soliton state with
v=0 (or p =0 where p is the momentum) is given
by

where Q~ —=—p ' In(Z~~„~), and the sum over n has
to be carried out over all the eigenmodes with eigen-
frequency rp„of Eq. (23). Here we have subtracted
O~ by Op the thermodynamic potential of the N =0
sector.

In the dilute limit the probability of one soliton
state in the grand canonical ensemble is given by

Q, =,
~ +2mfp+2Tfp (31)

where g'~ and fp have been already defined in Eqs.
(14) and (9), respectively, and

m
fp(Pm) = ——

J dk o)k ln(1 —e ")

which implies

Bfp(z)
p Z

Bz

(32)

(33)

divergence of Eq. (29) is exactly cancelled with the
last term in Eq. (26). Substituting Eqs. (29) and (30)
into Eq. (26), we can simplify Eq. (26) as

n, (0) =exp( —pQ, ) (28)
At T =0 K, O, is nothing but the soliton energy

The second term in Eq. (26) is transformed follow-
ing DHN (see also Appendix A) as

X ln(2 sinhT~ prp„) —X ln(2 sinhT~ pppk)

J dk A(k) ln(2 sinh
z Prpk), (29)

(34)
8mp

g&2

which is one of the DHN results.
At finite temperatures, we can extract the soliton

energy from O, by

where E, =O, —T
dOs 8m
dT

(35)

d, (k) =2 tan '(m/k) (30)

is the phase shift of the $ field with wave number k
scattered by the static soliton. The integral in Eq.
(29) is logarithmically divergent, which we have cut
off at ~k )

= A, consistently with Eq. (8). Then as in
the case of zero temperature' the logarithmic

In arriving at the last expression, we have made
use of Eq. (13) as well as Eq. (33).

Equation (35) is surprisingly simple; the soliton en-
ergy is given by the same expression as that at T =0
K, except that the boson mass mp is replaced by the
temperature-dependent (self-consistent) mass.
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C. Moving-soltion state (N -1)

At the absolute zero of temperature, the energy of
the moving soliton is readily obtained by the Lorentz
transformation

EO

I v

However, at finite temperatures, this is not neces-
sarily true, as the thermal bosons. establish a pre-
ferred frame (i.e., v =0). Therefore it is worthwhile
to check the effect of this background fluctuation on
a moving soliton. For this purpose as a classical solu-
tion, we take a time-dependent solution given in Eq.
(19), then as in Sec. II 8, we work out the fluctuation

P = ')dx
()~ ax

(38)

The thermodynamic potential for a moving soliton
with velocity v is given by

corrections to the classical solution. In our calcula-
tion it is very convenient to express everything in the
rest frame of the soliton. Denoting the operators in
the rest frame of the soliton by primes, we have, for
example

0'+ vP'
2) t/2

where H is the Hamiltonian and P is the momentum
operator

n, (v) —= Q((v) —Qp

t A

(1 —v ) ' + dk'h(k'), ln 2sinh+a&„+2m(l —v~) ' D
g2 2m "A Qk 2

(39)

(1 —v~) '/~+2m(1 —v ) ' fp+2Tfq(v)
gr2

(40)

where

rpk = (rg)k + vk ') (1 —v )

m
fs oo —leo)

fq(v) = — (1 —v )' dk [ao/, (~k+vk)] ' ln(l —e ")
2m

(41)

= E, (1 —v')-'/'+ SE,(v), (42)

where

8E, (v) =2m(1 —v ) fp 2T, af,(.)
aT

(43)

For small v (((I),Eq. (40) can be rewritten

E,(v) =E, + E/v~—1 (44)

In deriving the above expression, we have taken into
account the fact that in the moving frame the length
of the system is contracted by a factor (1 —v~)'/~ [i.e.,
L'= (1 —v')' 'L) and that the mass of the P field is

the same as that in the rest frame.
The energy of the moving soliton with velocity v is

then given as before

d Q, (v)E (v) =—0 (v) —T
dT

where

E/ = E, +4mf ( (45)

p =E;v (46)

A final remark is in order; as one can see from
Eqs. (13), (17), (31), and (35) in the weak-
coupling limit, the proper expansion parameter ap-
pears to be g' rather than g . This is again in quite
harmony with an observation of DHN at T =0 K.

and f~ has been defined in Eq. (25). Since f& & 0,
Eq. (45) implies E/ & E,. However, it should be
remembered that Eq. (45) does not mean that there
are two distinct masses involved. Rather Eq. (45)
implies that at finite temperatures the limiting veloci-
ty of the soliton is reduced by a factor (E,/E/)'/',
although we shall refer to E~ as the inertial mass of
the soliton.

Sometimes it is more convenient to ~rite the soli-
ton energy as a function of momentum p. In this
case Eq. (44) can be written E,(p) =E, + , E/ 'p~ and-
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III. SOLITONS AT FINITE TEMPERATURES

A. Energy, inertial mass, and fugacity

The soliton energy at finite temperatures is given
by Eq. (35); the temperature dependence is exactly
given by that of the $ field mass m. Within the
weak-coupling limit m is given self-consistently by
Eq. (13). In this limit m deviates significantly from
)he zero-temperature value mo only when T && m.

ln this limit fo in Eq. (9) is expanded (see Appendix
B) as

but rather g'(Pm) ' in this temperature region].
However, the above behavior strongly suggests that
the cosine potential of the $ field is completely
washed out in this temperature region (T = T„), due
to the fluctuation of the $ field itself; the potential
necessary for the soliton and the mass of the Q field
may disappear around T = T„. In order to character-
ize completely the temperature dependence of the
mass ratio A' near T = T„, further work is certainly
required.

The inertial mass of the soliton is given, on the
other hand, by Eq. (45). Making use of the high-
temperature expansion of f~,

f~ = —[(Pm) —2/?r +—(Pm)2+ ...] (49)

(47)
where y =1.76... the Euler constant and f(3) is
Riemann's zeta function.

The self-consistent equation is then approximately
given by

R =exp[—(T/Ea)R '] (4g)

where R =—m/mo and E, is the soliton energy at the
absolute zero temperature. The mass ratio R de-
creases monotonically with increasing temperature.
But around T = T„(=e 'E, ), R drops discontinu-
ously to zero, where E, is the soliton energy at T =0
K.' This feature is clearly seen in Fig. 2, where 8
obtained numerically starting from Eq. (13) for some
values of g' are shown. The critical temperature, at
which the discontinuous drop occurs, appears to in-
crease slightly as g is increased. Of course, the de-
tails of temperature dependence of 8 near T = T„
can be quite different, as our weak-coupling approxi-
mation starts to break down around this temperature
region [the expansion parameter is no longer g2 itself

we obtain for Pm « 1,

g' /tsar —l?l (RED)
—1 T2 Eo

yPm 7r 2

(50)

d Q, (??)
p. "=p, +??mf = T—

dT
= TS,

2T f2 (??) + T—df, (??)

dT
(51)

or fugacity

$, (??) =e '=(,e (52)

Therefore unlike the soliton energy E„ the inertial
mass is only weakly temperature dependent except
for near T„. E?/Eo are also shown for some values
of g' as functions of T/E, o in Fig. 2.

From Q,t"? obtained in Eq. (40), we can calculate
the chemical potential of the soliton

Eg

&s

Here p,, and g, are those for v =0, which are ex-
ponentially small at low temperatures (T « m). At
high temperatures (T ))???),on the other hand, we
have

and

p,, = T ln(2Pm) —1+— (Pm)
2 g(3)
3 (2?r)'

(53)

O.l

I ) I

I

I

I I I

I I

I I

I I

.I I . I I

e'
Eg

? ?

[1+0 ((P???)') ]
e

(54)

where we have made use of the asymptotic expansion
of f, for Pm « 1 (see Appendix B),

?

f? = ——In(2Pm) — (Pm) ln
1 yPm

2 2m 4m
FIG. 2. Temperature dependences of E, (thick line) and

EI (thin line). Both lines are from the top for g =1.2, 0.62,
0.2, and 0.005. 2?r ' (55)
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B. Soliton density

We have already seen that the probability of find-

ing one soliton with zero velocity is given by
-pO

n, (0) = e ' in the dilute soliton limit. Similarly the
probability of finding one soliton with velocity v is

given as

defined by
1S(q, ru) =

2 J~ dt dx exp[i(qx —cot)]2m'

x (cos[gg(x, t)]

x cos[gp(0, 0)]) (61)

—po, ( )
n, (v) =e (56)

where Q, (u) is given in Eq. (40).
Then the total probability of finding one soliton

(i.e., the soliton density) is given by

1/2 ' ' 1/2

Here we focus our attention to the contribution to
S(q, co) arising from the scattering of the soliton
S, (q, ~). Making use of the soliton density given in
Eq. (56), we obtain

S( )
rr t 2m tteg-mE

32m q eT

(57)

Et'=Et —2mf~ =E, —
2

T (58)

where („Et, and E, have been already given. The
new parameter E('arises from the v dependence of
the fugacity and is given by

t

16 Et ~ rrq/2mx exp-
vr 4 Tq2 sinh(vr q /2m ) (62)

which reduces to Mikeska's classic result, 9 if we put
E, = Et = E, . Equation (62) gives the half-width for
a& at half maximum (HWHM) catt and the integrated
intensity S, (q) of the structure factor S,(q, co) of Eq.
(62),

where the last expression is for Pm « 1.
First, at low temperatures (T « m) Eq. (57)

reduces to

]/2

co = (2ln2)' '
qH E' (63)

n, =
' 1/2

E,' -pEo
$

2mP
(59)

and

]/2 1 ]/2

S,(q) ~8 — ' (TEt)'t'

which agrees with the one obtained by Trullinger. "
He has made use of a heuristic ideal gas model. At
high temperatures (T » m) on the other hand, we
have

/2 r ~)/
2m PEt Et PE, —

2m E(' (60)

C. Correlation function

This agrees. within a numerical factor, with the result
of the classical statistical mechanics, if we replace
E„E(',and E( by the temperature-independent
soliton energy E, . The important difference between .

the classical result and the present result is the fact
that E, in the exponent is the temperature-dependent
soliton energy. In the classical statistical mechanics,
the fluctuations of the @ field, which reduces E, at
high temperatures, are completely neglected; Anoth-
er minor difference is an overall numerical factor of
1/e, of which the origin is not clear at the moment.

rrq/2m ttE, —

sinh(mq/2m)
(64)

IV. CONCLUDING REMARKS

Extending the field theoretic approach by Coleman
and by DHN to finite temperatures, we have studied
the quantum-statistical mechanics of the sine-Gordon
system in 1+1 dimensions. We find that with the
single mass renormalization, the divergences of the
system are completely eliminated. This results in a
self-consistent equation for m the mass of the $ field.
The quantum correction to the soliton energy is ob-
tained. We find at all temperatures E, =8m/g' with

The HWHM is determined by E(', while the ex-
ponential factor of S,(q) is controlled by E, . The
present theory predicts that at high temperatures AH
deviates slightly from the classical result'o (note
Et = Ea), while the exponential term in S,(q) can be
much larger than the classical result in particular at the
high-temperature region (T » m).

The present technique is easily applied to calculate
dynamical correlation functions of the P field, Of
particular interest is the cos-cos correlation function

=g 1 — g
1

Sm
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This is a simple extension of the DHN result. We
have also calculated the soliton density, which agrees
at high temperatures with the result of the classical
statistical mechanics, if the soliton masses in the clas-
sical theory are reinterpreted as E„EI,and EI'.

Recently very interesting neutron scattering data
for quasi-one-dimensional ferromagnet CsNiF3 were
reported by Kjems and Steiner. "The observed cen-
tral peaks in the presence of high magnetic fields
were analyzed in terms of the classical theory of
Mikeska. '0 They obtained a rather satisfactory agree-
ment for the HWHM, by making use of the value
E, =34 K and g =0.62. However, they found that
the integrated intensity was better described with

E, =27 K rather than E, =34 K. In fact the present
theory predicts E, = 25 K at T = 10 K, if we choose
E, =34 K and g' =0.62. Therefore the above
discrepancy may be accounted for by the quantum
corrections. In any case further experiments are cer-
tainly desirable.

If we limit ourselves to CsNiF3, a more direct com-
parison with the present theory can be done either by
measuring the spin-wave energy gap m as a function
of magnetic fields or temperatures. Alternatively the
magnetization in CsNiF3 in high magnetic fields is
also proportional to m. Therefore the predicted tem-
perature dependence of m should be directly accessi-
ble to experiments.

Note addedin pmof. The discontinuous change in

the soliton energy found in this work is very likely
the artifact of the single-loop (or the self-consistent
harmonic phonon) approximation used here. What
actually takes place around T„ in this one-
dimensional system appears to be a crossover (con-
tinuous change) from a symmetry-broken state at
lower temperatures to a symmetric state at higher
temperatures. In a separate publication we will re-
examine the role of solitons in such crossover
behavior in the one-dimensional system.
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APPENDIX A: EQUAL-SPACE-TIME
GREEN'S FUNCTION IN THE

PRESENCE OF A SOLITON

We shall derive here Eq. (24) and Eq. (26) for the
N =1 sector. First let us note that the normal modes
of Eq. (23) consist of one bound state ub ~sechmx,
with cub =0 and a set of scattering states, which is

given by"

ut, = Cqe'""(k +im tanhmx)
L

(Al)

with coq = (k'+ m )' 2, and the normalization constant
Cq up to O(L ') ts

1/2
2m

Ck k I. (A2)

The allowed values of k are defined by the
Born —von Karman boundary condition, which for the
scattering states, is given by'

(A3)Lk„+ t) (k„) =2rrn

n being an integer, and the phase shift 6 (k) is given
by Eq. (30). The field operator @ is then expanded
as

&/2

j(x) = $ [a„u„'(x)+ a„tu, (x)]
n n

~here ~„=~~ . Here we have discarded the bound-

state mode ub(x), since this mode represents the
translational degree of freedom of the soliton. The
therni~l average of [qh(x)]' is then given by

([j(x)]') =—D, (x) = rx X—
n y+ pg

&& (k„2+ m tanh2mx) . (AS)

Taking into account Eqs. (A2) -and (A3) as well as
the fact that n =0 term is missing in the sum X„,we
obtain

D, (x) =D —[1 /m2+f, (pm)]
x sech'(mx) + O(L ') (A6)

which is Eq. (24). Note that terms of the order of
I ' cancel exactly with each other.

It is then natural to neglect the inhomogeneous
term (i.e., the second term) in Eq. (A6) in the self-
consistent equation for m, but to include it in defin-
ing the normalized potential;

m =m+0(L ') (A7)
but

2

(m")'cos[g($, +@)]= m'exp g F(x)
4m

x N [cos[g(P, +P)]I, (Ag)

where

F(x) = [1+2m ft(Pm)] sech2mx (A9)
Since this inhomogeneous correction is of the order
of g', its effect can be treated perturbationally. In
fact, expanding the thermodynamic potential thus ob-
tained in powers of g, we can show that the leading
terms in (g2/4rr) F (x) are exactly cancelled out and
we obtain Eq. (26).
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APPENDIX B: HIGH-TEMPERATURE BEHAVIORS OF fo, fi, AND fg

First let us consider fp defined in Eq. (9)

1f (z) . d 8(&r coshl I)—1 (Bl)

where z =i3m. Here we have changed the integral variable to 8 by k = m sinhe. Equation (Bl) is transformed as
t

fp(z) = J de coth —coshe —1 =
&

de (z/2) coshe
(B2)

where the summation is over integer v. In order to evaluate two terms separately, we have to introduce a cutoff
in 8, although there should be no cutoff dependence in the final expression. Then Eq. (B2) is transformed as

e'p

j

OO
I I p

+4 X J de —8 = —+2m $ [(2mv) +z') ' ' —8o
z coshe „1 o (2n v)z+ (z coshe)' 2n

t B3)
with vp = (z/2m) coshep.

In the second term of Eq. (B3), we have transferred the cutoff in Hp to the cutoff in v, as in commonly done in
the theory of superconductivity. In general, where the divergence is logarithmic this procedure is justified. Fi-
nally expanding the second term in powers of z we have

fp(z) =—+ X ——,+0(z )—1 1 1 z2
4

2z „ i (27rv) 2 (2%v)

r

yz ~(3)+ ln 3Z2z 2m 4m 2(2m)'

I I I ~(3) , 1
Hp =—+ ln(yvp) — z —

Hp
2m 2z 2m 2(2m)3 2m

(B4)

This is exactly Eq. (47) in the text. As expected the logarithmic divergence cancels out exactly.
The function f, (z) defined in Eq. (2S) can be analyzed similarly. First we write

f ( ) 1," de hge 2 +4 zcoshe
2vr "o zcoshe „ i (27rv)'+(zcoshe)'

1 m 1 z—+2~Z Y -- 1— —1
2m 2z „ i (2mv)' [(2wv)'+z']'i'

t

+ —— z—I I ~ g(3) z +0(z) .
4z 2n 12 (2m) z (BS)

Finally fq(z) defined in Eq. (32) is evaluated as follows:
P 1

fq(z) = ——„I desecheln 2e t'i')"'"'sinh —coshe
m 4p 2

r

deseche ln(z coshe) ——coshe+ g ln 1+z z cosh 8
m 2 (2mv)'

r

1 n. z
' [(2n v)'+z'j'i'+z—ln(2z) ——Hp+ m X ln

7r 2 2 vpv
(B6)

where we have introduced a cutoff Hp as before and in the last term the cutoff is transferred to that on v with

z
vp = cosh&p

2m
Then expanding the last term in powers of z, we obtain

r

fz(z) = ——ln(2z) — ln +z yz ((3) z2 4n 6(2m)'
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