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Relativistic linear-muffin-tin-orbital calculations of the fcc cesium 0-K pressure-volume iso-
therm are reported which indicate that the isostructural transition in this material is a more
complicated phenomenon than has been thought to be the case. It is shown that the effect of
relativistic shifts on the electron bands serves to eliminate the possibility of obtaining such a
transition in the 7 =0 isotherm for the static lattice. Thermal effects must therefore play an
essential role in the observed isostructural transition at room temperature. In particular, it is
suggested on the basis of simple model calculations that an anomaly in the lattice vibrational
contribution to the pressure, which is in fact intimately connected with the electronic transition
in cesium, is a possible mechanism for the observed transition.

I. INTRODUCTION

Room-temperature (298 K) cesium metal exhibits
an unusual first-order phase transition, from an fcc
to an fcc lattice, under 4.22 GPa (42.2 kbar) of pres-
sure.'™® Fermi’ originally suggested that the cause of
this isostructural transition was the collapse of the
outermost 6s ¢électrons in the Cs atoms into more lo-
calized 5d orbitals. Indeed, early Wigner-Seitz calcu-
lations by Sternheimer® and others® showed a Van
der Waals loop in the pressure-volume isotherm, i.e.,
a first-order transition, due to the empty Sd band
passing down through the initially half filled 6s band.
Subsequent more rigorous band-structure calcula-
tions!®™!* show the situation to be more complicated,
although they still appear to verify the essential elec-
tronic nature of the isostructural transition. The evo-
lution of valence electrons from 6s to 5d states occurs
over a rather extended range in pressure, from zero
up to about 10 GPa. McMahan'’ has argued that
only one aspect of this prolonged change in electronic
structure leads to the isostructural transition, namely,
that due to a small pocket of 5d states including that
of X3 symmetry. These states are incapable of hybrid-
izing with the 6s band and thus pass down through
the Fermi level in much the abrupt manner described
by Sternheimer. Elsewhere the effects of the elec-
tronic s-d transition appear to be considerably
softened due to hybridization between the two bands.
McWhan et al.® have suggested that this milder form
of electronic transition may explain the abnormal
softness observed in the low-pressure Cs isotherm.!®

It would seem that the isostructural transition in Cs
is now understood. However, all of the calculations
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described above have been nonrelativistic, and yet it
is known that such effects on the band structure can
be important for the heavier elements in the Periodic
Table. We report here relativistic calculations of the
T =0, fcc Cs pressure-volume isotherm using
Andersen’s linear-muffin-tin-orbital (LMTO)
method.!"'® These calculations indicate that relativis-
tic shifts of the bands have totally removed the possi-
bility of a Van der Waals loop in the T =0 isotherm,
as obtained for the static lattice.'! The effect of the
X; pocket of 5d states is still significant, but it is not
now sufficient to drive the bulk modulus negative,
and thus yield a Van der Waals loop. The important
implication of these results is that the 298-K isostruc-
tural transition in Cs must then arise at least partially
from thermal effects, either lattice vibrational or of
electronic character.

The most likely source of interesting thermal ef-
fects at 298 K is from the lattice vibrational or pho-
non excitations. The electronic density of states is
devoid of sufficiently dramatic structure to permit
very significant effects from electronic excitation at
such a low temperature. On the other hand, Fermi’s
idea of a collapsing Cs atom is suggestive of a tem-
porary decrease with compression in the lattice vibra-
tional frequencies in the vicinity of the collapse. This
would imply a negative phonon contribution to the
total pressure in this volume range, which might con-
ceivably induce a Van der Waals loop into the total
pressure. Essentially this same idea is implicit in ex-
planations?°~2? of the dramatic decrease observed®* in
the Cs melting temperature in the vicinity of the iso-
structural transition. The decreasing phonon fre-
quencies near the collapse lead to larger amplitude
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thermal vibrations, which according to the Lin-
demann criteria will depress the melting temperature.
To lend some credence to the suggestion that the
isostructural transition in Cs might be caused by an
anomally in the phonon contribution to the pressure,
we report a simple Griineisen model calculation of
298-K isotherm. In the high-temperature limit, the
phonon contribution to the total pressure may be ex-
pressed in terms of the lattice Griineisen parameter.
There are approximate expressions for this parameter
which involve derivatives of the static lattice
pressure-volume curve.”> These expressions do in
fact yield a Griineisen parameter which is consistent
with both the existence of a Van der Waals loop in
the 298-K pressure, and also with the melting curve
anomaly. Furthermore, this behavior is related to
the s-d transition in Cs. The important structure in
the Griineisen parameter comes from a region of
negative curvature in the 7 =0 static lattice
pressure-volume curve, which is the reduced effect of
the X; pocket of 5d states in the new relativistic cal-
culations. Although suggestive, these Griineisen
parameter calculations are still far too approximate to
be conclusive. A rigorous calculation of the phonon
frequencies will be needed to substantiate these ideas
about the Cs isostructural transition. Direct calcula-
tion of phonon frequencies from first-principles band
theory is at present a relatively new and difficult area
of research. It is hoped that the present work will
stimulate further effort in this area for the case of Cs.

II. RELATIVISTIC LMTO CALCULATION

To calculate the band structure, we have used the
linear-muffin-tin-orbital (LMTO) method of Ander-
sen!”!8 in the atomic-sphere approximation (ASA).
In this approximation the LMTO method is some
hundred times faster than conventional augmented-
plane-wave (APW) or Korringa-Kohn-Rostocker
(KKR) techniques, with little loss of accuracy. Thus
we were able to calculate the band structure self-
consistently on a rather fine grid of K points (715 in
the irreducible wedge of the fcc Brillouin zone) and
avoid the convergency problems encountered in re-
cent APW calculations for Cs.!S The rigid core ap-
proximation was used for all inner shells, including
the 5s. The 5p states were treated self-consistently as
bands. Their bandwidth was found to be strongly
volume dependent, and at about 8 GPa, when Cs is
compressed to one third of its equilibrium volume, it
amounts to 3 eV. This is within 5% of the result
found in nonrelativistic APW calculations,!® which
also showed the 5s band at this volume to be 1 eV
wide and located 21 and 9 eV, respectively, below the
bottoms of the 6s and 5p bands. The 5s bandwidth
should get rapidly smaller at the larger volumes of
principal concern here, and as will be argued short-

ly, we anticipate no significant effect of our non-self-
consistent treatment of the Ss states on the conclu-
sions reached in this paper. .

In the angular momentum expansions of the
muffin-tin orbitals, we included terms up to / =3 in
the two- and three-center terms, for 5p and conduc-
tion bands. Relativistic effects, apart from spin-orbit
coupling, have been treated in a scalar relativistic
equation?* which keeps the Darwin and the mass-
velocity term to all orders in 1/¢. For exchange and
correlation, we applied the local-density (LD) approx-
imation and the prescription of Hedin and
Lundqvist.”® Previously, this approximation has been
shown to account for the cohesive properties of sim-
ple and transition metals?® and, therefore, seems ade-
quate also for the near transition metal Cs.

The electronic pressure may be expressed as a sur-
face integral over the unit cell, and in the ASA?’

. ,
3pv =3 [ " dE N(E)soH(E.s)
]
x (D =D (D +1+1)
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where N,(E) is the projected density of states (DOS)
of angular momentum /and ¢,(E,s) is the amplitude
at the sphere radius s of the normalized radial func-
tion at energy E. The logarithmic derivative is de-
fined by D,(E) =s¢,(E,s)/$;(E,s), and €x(n,(s)) is
the density of exchange-correlation energy at the
sphere radius in the local approximation. To evaluate
Eq. (1), we need only the self-consistent electron po-
tential and density at a given volume. This avoids
the calculation and numerical differentiation of large
numbers and, at the same time, provides a bonding
analysis in local angular momentum.

The intercellular Coulomb interaction beyond the
ASA may be included as a muffin-tin correction to
the total energy, namely, AU/atom = ag;?/s, where a
is a constant and equals 8.25, 8.14, and 8.34 mRy for
the fcc, bee, and hep lattice, and g is the charge per
atom corresponding to a constant density ns(s) in the
unit cell. The resulting pressure correction is

aq,z(s) a- 2sq,'/q,)

AP = 3Vs

0)]

A derivation of this correction term may be found in
Ref. 28, and, there, it has been shown that it consid-
erably improves the calculated cohesive properties of
simple and transition metals over their ASA values.
In Fig. 1, we compare the present relativistic
results (solid line) for the T =0 static lattice
pressure-volume isotherm of fcc Cs to the recent
nonrelativistic calculation of McMahan!® (dashed
line), which has been smoothed. The muffin-tin
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correction, Eq. (2), has been included. It increases
from 0.1 GPa at V/V,=0.7, where V;=745 a.u’is
the low-temperature equilibrium volume of Cs, to 1.4
GPa at V/Vy=0.3. On the whole, the relativistic cal-
culation is much steeper, and the Van der Waals
loop, which may or may not exist in the nonrelativis-
tic calculation near V/Vy=0.4, is reduced to a neg-
ative curvature in this region. To make sure that this
drastic difference is not an artifact of the approxima-
tions inherent in either band-structure program, we
also performed nonrelativistic LMTO calculations
over the important region, V/V,=0.35-0.5, and
confirmed McMahan’s results to within a few kbar.
Since this test, nonrelativistic LMTO calculation
treated the 5s states in the same non-self-consistent
manner as the present relativistic calculation, the
difference between the two curves reflects only the
effects of relativity, and not possible inaccuracies
caused by treatment of the core. We expect such
inaccuracies to be quite small for ¥/Vy > 0.35. They
should be most notable in the case of the larger non-
relativistic core, and yet as noted there is good agree-
ment in this region between the test LMTO calcula-
tion and McMahan’s nonrelativistic APW work which
not.only treated all core states self-consistently, but
also included the 5s states amongst the bands. While
core corrections will eventually be needed at smaller
volumes, this is beyond the range of interest in this
paper.

In Fig. 2, the pressure is analyzed into angular
momentum components according to Eq. (1). The
dominant bonding contribution (P < 0) derives from
5d partial waves, and even at equilibrium the now
only hybridized 5d contribution is responsible for
bonding. The theoretical equilibrium atomic distance
(P =0) is about 3.4% too small; similar agreement
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FIG. 1. Calculated static lattice pressure-volume isotherm
of fcc Cs at T=0. Solid line: relativistic calculation, apply-
ing Eq. (1) and muffin-tin correction, Eq. (2). Dashed line:
smoothed nonrelativistic calculation of Ref. 15. V=745

a.u.3.
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FIG. 2. Electronic pressure of fcc Cs decomposed with
respect to angular momentum [Eq. (1)] as function of
volume. Solid lines: relativistic calculation for conduction
electrons (6s, 6p, and 5d) and the outermost core electrons
(5p). Dashed line: nonrelativistic 5p pressure.

has been found in LMTO-ASA calculations for sim-
ple and transition metals.?® The 6s and 6p conduction
electrons are increasingly repulsive under compres-
sion and, after the anomaly, the hard Sp core deter-
mines the slope of the pressure isotherm. The Sp-
bonding contribution is grossly overestimated in the
nonrelativistic calculation (dashed line in Fig. 2) and
accounts for part of the discrepancy in Fig. 1. The
remaining difference is due to the continuous s-d
transition, which occurs much slower in the relativis-
tic case.

The relativistic s -d transition is shown in detail in
Figs. 3 and 4. The amount of 6s and 6p charge
within the atomic sphere, n; + n, (solid lines in Fig.
3), decreases from 0.8 electrons at V/Vy=0.8 to 0.2
at ¥/Vy=0.3. The 5d electrons predominate at this
relative volume with n; =0.76, the missing few per-
cent of charge being f-like. These features are ac-
companied by rapid increases (van Hove singulari-
ties) in the d-like density of states at the Fermi ener-
gy, N; (dashed line in Fig. 3), as first the X;—and
then the X;—subbands of the 54 band near X pass
below the Fermi level (see also Fig. 4). Finally, at
V/V,=0.38, the top of the I';-X; band rises above
the Fermi energy, so that the [100] necks of the Fer-
mi surface disrupt. This yields a negative square-root
contribution to the s- and p-like density of states, N;
and N, (dashed lines in Fig. 3), thereby accelerating
the depopulation of the s band. In Fig. 4, we show
various band energies, the Fermi energy, and the po-
tential at the atomic sphere as functions of volume,
all with respect to the Coulomb potential at the
sphere radius. All levels move up under compression
due to increasing kinetic energy, especially T'; and Xa,
the bottoms of the 6s band and of the unoccupied 6p
band. The Fermi energy moves almost parallel to
Csq, the center of gravity of the 54 band. One could
extrapolate the volume V/¥V(=0.25, where the s
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FIG. 3. Projected numbers of state (solid) and densities
of state (dashed) at Ef for 6s, 6p, and 5d electrons as func-
tion of volume. Note the van Hove singularities crossing
the Fermi energy at V/V,=0.73 and V/V;=0.48, respec-
tively (see Fig. 4).

band is compeltely empty, but due to numerical diffi-
culties, we were not yet able to further investigate
the low-volume region.

The main features of the continuous s-d transition
in fcc Cs, as analyzed by McMahan, !’ are confirmed
by the present relativistic calculation; yet the s-d
transfer happens much more gradually in the rela-
tivistic case. This is due to the smaller size of the re-
lativistic atom core and the 6s orbital, and therefore
the difference in volume between the occupation of
the X; level and the disruption of the Fermi-surface
necks (marked by arrows in Fig. 1) is much larger in
the relativistic case. The nonrelativistic calculation
gets rid of the antibonding 6s electrons much faster
and, with the aid of overestimated Sp bonding, can
almost produce a Van der Waals loop for the T =0
static lattice.

>
x
>
ol
(V]
[t
wi
-05r 1
o9 T——— %%
03 VIV, 08

FIG. 4. Band energies of fcc Cs as function of volume.
Csp and Csg are the centers of gravity of the 5p and 54
band, and I'; the bottom of the conduction band. The 54
levels of symmetry X, and X; successively cross the Fermi
energy under compression. The accompanying van Hove
singularities produce a dramatic increase in 5d character at
Ep (see Fig. 3).

IlI. GRUNEISEN MODEL CALCULATION

We suggest here that the s-d transition in Cs may
lead to an anomaly in the phonon contribution to the
total pressure, and that this phenomenon may be
responsible for the isostructural transition at 298 K.
To best understand this possibility, consider the fol-
lowing expression for the pressure, neglecting elec-
tronic excitation and electron-phonon coupling:

PV, T)=Py(V) +3NkgTy(V)/V . 3)

Po(V) is the T =0 static lattice pressure calculated in
Sec. II. The second term is the contribution from
quasiharmonic phonons»29 evaluated in the high-
temperature limit, which should be adequate at 298 K
given the very low Debye temperature in Cs.>® Note
that the Griineisen parameter depends on the volume
derivatives of the phonon frequencies, wy,, accord-
ing to

dlnwp,

-1 ¢ |20%0
y(V) = 3N% Y™ @

T=0

Thus while Py(V) does not exhibit a Van der Waals
loop, the total pressure may exhibit such a loop
should the phonon frequencies dramatically change
their volume dependence in some particular volume
range.

An approximation to the Griineisen parameter may
be obtained from derivatives of the static lattice pres-
sure. Three expressions are commonly used, based
on a Debye model and different assumptions about
the volume dependence of Poisson’s ratio.?> They
may be summarized by a single equation

d2

—lp_2_ 1
YN =3n-3 szVz

(Po(V) Vil/L Po() v

O]

where =0, % and % Any dependence of y on

may be taken as a measure of the uncertainty in this
approach. The function Po(V) calculated in Sec. 11
has been analytically fit,>! and the results for y(V)
taking n = % are shown in Fig. 5. In spite of the

large dependence on m shown by the error bars, these
results are sufficient for the qualitative observations
intended here. Note that y actually becomes neg-
ative in the vicinity of V/V,=0.43, signifying pho-
non frequencies which are decreasing with compres-
sion. This feature is due to the region of negative
curvature in Py(V), which as mentioned earlier arises
from the passing of the X; pocket of 5d states below
the Fermi energy. The peak of y for V/V,~0.35

3
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follows from the relatively large positive curvature in
Py(V) as this curve stiffens in response to the contri-
bution from the 5p core. Both this peak and the neg-
ative minimum in y are consistent with the observed
minimum in the Cs melting temperature. The Lin-
demann law within the Debye approximation is2

dInT,

2

Ty 3 2y . )
Thus the overall oscillation in y corresponds, respec-
tively, to a rapid decrease and then subsequent in-
crease in the melting temperature as volume is de-
creased. Actual numerical integration of Eq. (6)
based on the values for vy in Fig. S yields a melting
temperature in qualitative, but only about factor of 2
agreement with experiment.

The 298-K isotherm calculated from Eq. (3) with
the 7 =% choice for y is shown in Fig. 6 (solid

curve). A Van der Waals loop does arise from the
negative region in y for this choice of 5, and is
shown in more detail in Fig. 7 along with the
Maxwell construction for the two-phase region (dot-
ted line). At and below the isostructural transition,
there is reasonable agreement between the calculated
isotherm (solid curve) and the experimental 298-K

Griineisen parameter
o

[
N

FIG. 5. Griineisen parameter, y, as a function of relative
volume, V/V,. Error bars show the uncertainties due to the
choice of n. Note that a negative value of v signifies a re-
gion in which the phonon frequencies are decreasing with
compression.

20

isotherm®® (dash-dot curve) shown in the figures.
The 0.2—0.4-GPa off set between the two curves is
consistent with the accuracy shown by other LMTO-
ASA calculations.?® Although the experimental
pressure-volume results shown above the isostructur-
al transition are not entirely reliable, the discrepan-
cy between theory and experiment in this region is
more likely due to the uncertainties in our simple
Griineisen parameter calculations. Even so, these
calculations suggest a region of negative curvature in
the 298-K isotherm, arising from the positive peak in
v, as can be seen near V/V;~0.39 in Fig. 6. The
onset of such behavior, i.e., bulk modulus decreasing
with compression, was observed by Bridgman! near 9
GPa.

An interesting consequence of the present
Griineisen model calculations is the possible disap-
pearance of the first-order fcc-fec transition below
some critical temperature. Given the n =% choice

for vy, this critical temperature is about 220 K, suffi-

Pressure (GPa)

L l .
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FIG. 6. Cs 298-K pressure as a function of relative
volume, V/V,. In qualitative agreement with experiment
(dash-dot curve, Refs. 3 and 6), the theoretical calculation
(solid curve) shows an isostructural transition, i.e., the Van
der Waals loop. The difference between the solid curve and
Py (V) (dashed curve) is proportional to y. Thus the Van
der Waals loop may be seen to originate from the negative
minimum in y shown in Fig. 5. The positive peak in y leads
to the region of negative curvature seen near V/V,~0.39
for the solid curve, i.e., a region of decreasing bulk modulus
with compression.
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FIG. 7. Cs298-K pressure as a function of relative
volume, V/V,. The region around the isostructural transi-
tion in Fig. 6 is shown in more detail. The Maxwell con-
struction for the two-phase region (dotted line) is shown for
the theoretical 298-K isotherm.

ciently larger than the 70—100-K Debye temperature
in the transition region® to still permit use of the
high-temperature expansion, Eq. (3), for an estimate.
Such an inverted critical point is unusual, but ther-
modynamically possible, and has an analogy in the
lower consolute temperatures of certain binary mix-
tures.>* It is known experimentally that below about
270 K, the isostructural transition in Cs is in fact
bypassed,’ with Cs transforming from the low-
pressure fcc phase directly to the high-pressure phase
referred to as Cs-1V.33 The critical temperature indi-
cated by the present simple model might have some
bearing on this behavior, and warrants further inves-
tigation based on more rigorous calculations of 1.
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occurs only slightly above the fcc-fee isostructural
transition at 4.22 GPa. The data above 4.27 GPa in the
figure are from Ref. 3, and presume Cs-IV to be
approximately close packed in order to get the volume
from the diffraction pattern.

Po(V) =la +exp(b +cV) —exp(d +eV + - - - +hVH]/V .

34W. J. Moore, Physical Chemistry, 3rd ed. (Prentice-Hall,
Eight parameters were chosen to fit 22 calculated values of

Englewood Cliffs, 1962), p. 144.



