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Pair potentials for fcc metals
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Long-range pair potentials are presented for the fcc metals Ni, Au, Ag, Pt, Pd, Cu, and Al.

Experimental data considered in deriving the potentials include the sublimination energies and
stacking-fault energies as well as the lattice parameters, elastic constants, and vacancy-formation
and -migration energies. A volume-dependent energy term has been included in the potentials.

By scaling the potentials with respect to lattice spacing and a characteristic binding energy, a

striking similarity can be seen between the various potentials. These potentials have been used

to calculate a variety of point-defect properties including self-interstitial geometries and migra-

tion energies. In addition the migration energy of helium and its binding energy to a vacancy
have been calculated.

I. INTRODUCTION

Problems such as radiation damage in solids (e.g. ,
impurities and implanted atomic species interacting
with vacancies, self-interstitials, and dislocations)
have been treated in the past using the lattice-defect
method. ' The treatment of extended defects in fcc
metals (e.g. , dislocations) requires pair potentials
which include stacking-fault energies. A large
number of diverse pair potentials have been proposed
in the literature for use in various fcc metals. ' The
major purpose of this paper is to derive new pair po-
tentials for a number of fcc materials which are con-
sistent with experimental data (including stacking-
fault energies as well as sublimation energies) and
which also properly take into account the volume-
dependent energy term.

In Sec. II the pair-potential formalism is presented,
awhile in Sec. III the calculation of the potentials is
presented. A discussion of. these potentials and a
comparison with previously published potentials ap-
pears in Sec. IV. Also in Sec. IV, the new potentials'
are used to calculate a number of simple point-defect
properties. , Conclusions are presented in Sec. V.

II. THEORY

undeformed lattice sites. The bond energy is given
by a simple sum over all other atoms

Ep = (—,
'

) Xy( r~)

where $(r ) is the pair potential between two atoms
separated by a distance r . A general form for the
volume-dependent term has previously been pro-
posed

E„=Op X Pq ( V/ Vp) q

~here Qp is the undeformed atomic volume, the P~
are constants, Vis the deformed volume, and Vp is
the undeformed volume. In this work a more specif-
ic volume-dependent term is used. , i.e.,

E„=Qp( V/ Vp) (pp+ 2 P2(& V/ Vp) ]

where 4 V= V —Vo is the volume change due to de-
formation and pp and p2 are constants. A complete
discussion of the volume-dependent term is found in

Appendix A.
Using the previously derived equations for a cen-

tral potential in an fcc material, ' the following expres-
sions for the elastic constants C11, C12, and C44 are
obtained

Various methods for obtaining pair potentials and
their subsequent use in point-defect calculations have
recently been reviewed by Johnson. ' In general it is
assumed6 that the energy E of a monatomic crystal
per unit undeformed volume may be expressed as
a sum of two terms

E =NgEb+NLE„

where Eb is the bond energy per atom, N& is the
number of atoms, E„ is a volume-dependent energy
per undeformed lattice site, and NL is the number of
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Using the above formalism, it is possible to obtain
expressions for additional experimental quantities.
The vacancy-formation energy E~y, i.e., the energy
required to move an atom from inside the lattice to
the surface (keeping the total number of lattice atoms
fixed), is given by

E)v = —Eb+ppAp —AE) y

The first term represents the bond energy required to
form the vacancy by removing an atom from an
internal lattice site and placing that atom at a newly
created lattice site on the surface. The second term
arises from the increase in the number of lattice sites
by one required by this process, while the third term
represents the reduction in energy due to lattice re-
laxations. The small change in volume due to lattice
relaxation contributes an additional small volume-
dependent energy correction to this third term which
has been neglected.

In similar fashion, the sublimation energy E, i.e.,
the energy required to remove a surface atom to in-
finity (leaving no vacancies or surface rearrange-
ment), is given by

E, =—Es —pp Qo (9)

As in Eq. (8), the first term represents the change in
bond energy and the second results from the required
volume change. Note that no lattice relaxation term
exists in Eq. (9) since there are no lattice defects
created by this process.

The energy required to remove a bulk atom to in-

finity Eo (leaving a vacancy in the lattice) is simply
the sum of the vacancy-formation energy and the
sublimation energy

Ep =El v+Es = 2Eb ~El v (10)

%hile this quantity is not directly observable by ex-
periment it plays an important theoretical role in the
scaling relationships discussed in Sec. III.

The stacking-fault energy y can be calculated by
simple bond counting at the (111) interface between
a fcc and hcp material, and is given by

2b —6@(J2 b) +12'(j6 b)

The summation is over all atoms a distance a from
the origin, a~ and a2 are the projections of this dis-
tance in the directions defined by 1 and 2, and @„
and $ are the appropriate first and second deriva-
tives of the potential at this distance. In addition,
equilibrium requires that

I

po =— X (~P)1 4m

20p ~ g

~here b is the lattice constant. This expression as-
sumes a potential interaction range of less than
fourth neighbors (v2 lattice constants).

Using these relationships [Eqs. (1)—(11)],one can
obtain a two-body metal-metal potential fit to the
corresponding experimental data. The procedure is
discussed in Sec. III.

III. CALCULATION OF THE PAIR POTENTIALS

The basic method used to calculate the pair poten-
tials involves (i) the selection of a functional form
(with a number of free parameters) for the potential,
and (ii) the variation of the parameters so that the
various calculated quantities agree(in a least-squares
sense) with the corresponding experimental data.
The functional form used here is simply a cubic
spline between a number of fixed-node points. This
form assures continuity of the potential and its first
two derivatives. The free parameters are the values
of the pair potential at the node points. Since the po-
tential is to be used in lattice-defect calculations, a
smooth, finite range potential is required. The dis-
tance r, at which the potential goes smoothly to zero
is a free parameter. Since stacking-fault energies are
to be included in the potential fit, r, must extend to
at least third nearest neighbors. An important addi-
tional constraint which has been imposed upon the
parameters is that the pair potential be as smooth as
possible (in a semiquantitative sense); that is, that
the number of changes in sign of the derivatives of
the potential (or "wiggles" ) must be kept to a
minimum, and no arbitrary barriers (or humps)
should occur in the potential-energy curve. This con-
straint avoids the creation of spurious minima. in the
lattice-defect calculations.

The experimental data that is used in the fitting
procedure is shown in Table I. Consistent values of
the lattice parameter b, the elastic constants C~~,
C~2, and C44, and the sublimation energy E„' are
easily found in the literature. On the contrary,
values of the vacancy-formation energy E~ y and
-migration energy E~ y are not easily measured and
considerable variation in these values may be found
in the literature. " Reasonable estimates of the avail-
able data are used knowing full well that controversy
resulting from these choices may result. A similar si-
tuation exists for stacking-fault energy data y.
Again, reasonable estimates are made from the many
values found in the literature. '2 In the past the ex-
perimental phonon-dispersion curves have been used
to determine potentials. Since the elastic constants
are simply the long-wavelength limit of the data, the
dominant aspects of the phonon dispersion curves are
already incorporated into the pair potentials through
the fitting of the elastic constants.

None of the data considered thus far concerns the
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TABLE I. Quantities used for the determination of the potentials. The lattice parameter b, the elastic constants, C&&, C&2,
and C44, the sublimation energy E„ the vacancy-formation and -migration energies E~.y and E~ i, the surface energy y, the
free-electron potential slope e, and the scaling parameter Eo = E, +E~ y are given for each of the fcc metals.

Ni Au Ag Pt Pd CU Al

b (A)
C (10 dynes/cm )

&2 (10 dynes/cm )"
C44 (10 dynes/cm )b

E, (eV)'
E) y (eV)
E~ (eV)
y (ergs/cm )'
~ (ev/A)
Eo (eV)

'Reference 4.
bReference 5.
'Reference 6.

3.52
2.465
1.473
1.247
4,45
1.4
1.4

125
—3.62

5.85

4.07
1.86
1.57
0.42
3.93
1.0
0.&5

55
—5.45

4.93

4.08
1.240
0.934
0.461
2.85
1.1
0.8

20
—2,96

3.95

3.92
3.467
2.507
0.765
5,77
1.5
1.35

110
—5.92

7.27

dReference 7.
'Reference 8.

3.89
2.341
1.761
0.712
3.91
1.4
1.3

100
—5.0

5.31

3.62
1.700
1.225
0'.758
3.54
1 ~ 15
0.9

73
—2.34

4.69

4.05
1,12
0.66
0.279
3 ~ 58
0.75
0.7

160
—3.0

4.31

behavior of the potential at distances less than the
nearest-neighbor (0.707 lattice spacings) distance, yet
such information is needed to determine the forma-
tion and migration energy of self-interstitials, whose
interactions involve distances from 0.6 to 0.7 lattice
spacings. Therefore free-electron two-body interac-
tions' have been used to help determine the potential
at short range. Specifically the slope of the potential
(at a distance of 0.60 lattice spacings) is constrained
to equal that obtained in a free-electron calculation.
The slopes o,, are included in Table I. The slope,
rather than the function itself, is used since it has
been shown previously' that while free-electron cal-
culations (ignoring the conduction electrons) have an
undetermined zero shift in the energy, the slope
agrees well with a complete quantum-mechanical cal-
culation. For each of the transition-metal atoms, an

atomic core (corresponding to a charge state of +1)
was used for the free-electron calculation. For alumi-
num (a nontransition metal) it is not obvious what
core to use. Our calculations using Al'+, Al+, and
Alo states yielded calculated self-interstitial configura-
tions which were in disagreement with experiment.
To obtain agreement with the experimental data a
has been chosen to be —3.0 eV/A, which is a larger
value than those calculated for any of the above
charge states. As is shown below, the use of this
value of e results in an Al pair potential quite similar
in shape to the transition-metal pair potentials.

Atomic relaxations are considered when calculating
the vacancy-formation and -migration energies. In
addition, it is shown in Appendix B that the volume-
dependent energy term E„[see Eq. (3)] introduces a
minor ((0.001 eV) change in the vacancy-formation

TABLE II. Parameters used to define the potentials. The coefficients in the volume-dependent energy term, po and p2, the
potential values at the spline knots $, the cutoff distance I'„and the slope of the potential at this distance $'(r, ) are given for
each of the fcc metals.

Pp

p 8

@(06b)b
y(0.7b)b
@(0.&b) b

$(0.9b) b

@(I,Db) b

@(1.1b)b

@(1.2b)b
C

rc

@(;)b
@'(0 6b)
@'(r )d

0
'Units are eV/A .
"Units are eV.

Ni

-0.1394
0.4202
0.0504

—0.4138
—0.3078
—0.1415
—0.0715
—0.0455
—0.0245

4.841
0.0

-3.620
0.0

Au

—0.0&70

0.8983
0.2793

—0.3534
—0.2738
-0.1478
—0.0733
—0.0334
—0,0141

5.511
0.0

-5.463
0.0742

Ag

—0.0523
0.4015
0,0660

—0.2858
—0.2195
-0.1181
—0.0592
—0.0269
—0,0091

5.524
0.0

-2.684
0.0285

Pt

-0.1418
1.3725
0.5443

—0.4944
—0.3979
—0.2257
-0.1307
—0.0639
—0.0295

5.407
0.0

-5.921
0.0

0
'Units are A.

0
Units are eV/A,

Pd

—0.0856
0,8401
0.1416

—0.3879
—0.2901
.—0.1290
—0.0563
—0.0278
—0.0160

5.270
0.0

—4.516
0.1494

Cu

—0.1003
0.4926
0.0444

—0.32&5
—0.2614
-0.1397
—0.0709
—0.0371
—0.0175

4.988
0.0

—2.340
0.0

Al

—0.0846
0.4073
0.1271

—0.2548
—0.2350
—0.1301
—0.0882
—0.0636
—0.0367

5.548
0.0

-3.000
0.0
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similarity with the scaled minima all having about the
same magnitude and scaled position. This minimum
position occurs at about the first-neighbor position
(—,J2 lattice spacings). The pair potential for Al (the

only nontransition element considered here) differs
somewhat from the other potentials. Part of the
difference, particularly at long range, can be attribut-
ed to the relatively large stacking-fault energy found
for Al. Changing the slope u (discussed in Sec. III)
does not significantly affect the shape of the potential
beyond the nearest-neighbor distance.

S. Point defects

In order to further compare the new pote'ntials with

previous results, a number of point-defect calcula-
tions have been performed. The general procedure
used for these calculations is the lattice-defect
method. ' A spherical movable region of -680 atoms
with fixed boundary atoms has been used. A com-
plete discussion of the effect of volume changes is

given in Appendix B where it is shown that a fixed
boundary calculation is able to give an accurate ener-

gy. The relaxed energy for a vacancy needed in Sec.
III has been calculated in the same manner discussed
here. The helium-metal pair potentials (except for
Ni) are obtained from a free-electron calculation and
are shown in Fig. 3. The He-Ni potential is obtained
from a more exact nickel cluster calculation. " Due
to the inclusion of electronic effects this more realis-
tic He-Ni potential is "softer" than the free-electron
potentials. Note that the He-Al potential (Al being a

nontransition metal) differs considerably from the
transition-metal potentials.

The results for a large number of point-defect cal-
culations are summarized in Table III. As with the

experimental vacancy-formation and -migration ener-
gy data used in determining the pair potentials, con-
siderable variation and interpretation of the experi-
mental data in Table III exists in the literature.
While reasonable estimates of the available data are
given it is to be emphasized that differences between
theoretical and experimental values may be due to
experimental uncertainty or interpretation as well as
to limitations of the pair potentials. Overall agree-
ment between theory and experiments is quite satis-
fying, with differences of several tenths of an eV be-
ing within the accuracy of the pair potential model.

The self-interstitial formation energy E&1 ranges
from a high of 6.42 eV for Pt to a low of 2.50 eV for
Al, while the interstitial migration energy E1I is small
((0.25 eV) in all cases. Formation energies are not
experimentally accessible, but the low values of the
migration energy are in agreement with the experi-
mental measurements and current models of low-

temperature resistivity recovery. " The orientation of
the split interstitial is calculated to be along the (100)
direction for all of the fcc metals considered. Experi-
mental measurements of interstitial orientation have
been made for Cu, ' and Al, ' and are in agreement
with the calculated direction. Calculated values of
the anisotropy of the interstitial dipole tensor
P11 —P1q using the method of Hardy" are also given
in Table III. Agreement is within the experimental
error for Al (1.1 +0.3 eV). 'e Frenkel-pair formation
energies EFp have been calculated to lie in the range
of 7.90 eV for Pt to 3.21 eV for Al. Reliable experi-
mental Frenkel-pair formation energies have not
been found for comparison.

First-neighbor divacancy binding energies Eq~ are
calculated to be about the strength of one first-
neighbor bond. Agreement with the experimental

~e4
He-Ni

+
e-AU

He-Pt

1.0
e I I I

1 2 1 .4 1 .6
e I I I I I

1.8 2.0 2.2
OI STANCE ( A )

I

2 4

He-Ag+

e % ~ ~l w Q I

2 6 2.8 3.0

FIG. 3. Free-electron helium-metal pair potentials.
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TABLE III. Calculated point-defect energies. ' The self-interstitial formation energy, anisotropy, and migration energy, E1f,
P11 —P12, and E&&, Frenkel-pair formation energy EFp, divacancy binding and migration energy, E2v and E2v, and helium for-
mation, migration, and binding energy to a vacancy, EH„EH„and EH, v are given for each of the fcc metals.

Ni Au Pt Pd CU Al

EF

P11 P12

EM

EFP

E2V

E2VM

EHe
F

EHe V
B

4.90

5.15

0.24
(o.i5)'

6.31

0.44
(0 33)

1.17
(0.83)d

0.66

2.63
(2.1)"

3.70

2.93

0.08

4.68

0.43
(0.1)

0.78
(0.71)'

1.60

0.72

1,58

3.11

4.11

0.13

4.21

0.30
(0.38)f

0.61
(0.57)'

1.32

0.65

1.32

6.42

2.72

0.15
(0.06)'

7.90

0.55

(0.40)'

1.06
(i.i)'

2.60

1.13

2.48

4.93

4.69

0.19

6.34

0.40

1.05

2.18

0.94

2.10

3.46

3.54

0.13
(0 12)c

4.61

0.72

(0.71)

1.93

0.63

2.13

2.50

0.88
(i.i + 0.3)'

0.07
(012)'

3.21

0.28

(0.25)~

0.45

(0.42) f

1.32

0.33

1.22

(1.0)

'Units are eU. Experimental values in ( ).
Reference 16.

'Reference 14.

Reference 19.
"Reference 21.
Reference 18.

~Reference 20.
"Reference 24.
'Reference 25.

determinations for Pt, ' Ni, '9 Ag, ' and Al, is excel-
lent. Experimental divacancy binding energies for
Au, ' and Cu, ' are several tenths of an eV lower
than the calculated values. The activation energy for
divacancy migration E2v is calculated to be slightly
lower than that for monovacancy migration. Calcu-
lated values are in excellent agreement with the ex-
perimental measurements' for Au, Ag, Pt, Cu, and
Al. The experimental divacancy migration energy for
Ni is lower than the calculated value. '

A number of helium point-defect calculations have
been performed to compare with experiment and p're-

vious calculations. Formation energies for interstitial
(Oa site) helium E„,are found to range from 4.02
eV in Ni to 1.32 eV in Al and Ag. Previous calcula-
tions with a short-range potential give values of 4.02
eV in Ni, "and 1.97 eV in Cu, in excellent agree-
ment with the long-range potential. The higher for-
mation energy in nickel is due to the inclusion of
electronic effects in the He-Ni pair potential. Includ-
ing these effects for the other metals would raise the
calculated helium interstitial formation energy by-1—2 eV. Migration energies EH, show a wide range
from 1.13 eV for Pt to 0.33 eV for Al. The current
values for Cu and Ni are in good agreement ((0.2
eV higher) with those previously calculated with a
short-range metal-metal potential. " It has been
shown" that the inclusion of quantum-mechanical ef-
fects (rather than using a free-electron helium-metal
interaction) and the extrapolation to an infinite lat-

tice can lower the calculated helium migration ener-
gy in nickel by -0.2 eV. The He-Ni pair potential
used here compensates for more than half of this
lowering. Thus the present Ni-Ni pair potential
would predict a -0.6 eV activation energy compared
to -0.4 eV using the Johnson ¹iNipotential. '

Similarly the helium migration energies for the other
metals shown in Table III could be overestimates of
the actual values by as much as 0.2 eV. It is found
that the migration path for helium motion is along
(110) direction for all fcc metals considered except
Ag where a (111) path is found. No apparent reason
for this path change is evident but it should be noted
that for Ag the (111) and (110) paths are within
0.02 eV in migration energy. Binding energies for
helium to a vacancy EH, v are found to be quite large
for all the metals considered, in good agreement with
previous calculations for Cu, and Ni, and also
with experimental measurements for Ni of -2.1

eV,"and -1 eV for Al." This excellent agreement
for Ni and Al with significantly different binding en-
ergies gives an important indication that point-defect
properties can be accurately predicted by using the
pair potentials developed here.

U. CONCLUSIONS

A set of long-range pair potentials for various fcc
metals has been derived. These potentials are fit to
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many pieces of experimental data including the
' stacking-fault energy and sublimation energy, Two

volume-dependent terms have been included in order
to fit the experimental data. By using appropriate
scaling factors a striking similarity between the vari-
ous potentials is found. Various point-defect prop-
erties have been calculated, yielding good agreement
with available experimental data.
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APPENDIX A

By regrouping the terms in Eq. (3), an alternate
expression may be obtained for the volume-
dependent energy term

1 'I

V XPq dV
Vp q! Vp

(Al)

~here 6 V = V —Vp is the volume change and the p,
are constants that are easily related to the Pr of Eq. (3).

In using Eq. (A1) for. the case of point defects,
e.g. , a vacancy, the definition of the undeformed
volume Vp is ambiguous. For example, consider a
perfect lattice of -10 atoms. Starting with N~

atoms and NL = N& lattice sites one can create a va-
cancy by moving an atom from the bulk to the sur-
face thereby increasing the number of lattice sites by
one keeping the number of atoms fixed. For N&
atoms, VO=N„QO, V=(Nq+I) Qp, and the volume
contribution to the total energy is given by

(A2)

1 1
P1 PD+ 212 ~ ~2 f2~ ~3 ~ P2 ~ (A3)

APPENDIX 8

Some controversy exists in the literature regarding
the changes in the energy of point defect due to

1

N~+1
X

Pr 1

N~ q!

On the other hand, a vacancy may also be created by
removing an atom to infinity from a perfect lattice of
N& +1 atoms (NL =N& +1), thereby reducing N& by
one keeping NL fixed. In this case Vo= (N~ +1)Qo,
V = (N& +1)Qo, and the volume contribution to the
total energy is given by (N„+1)Qopo. Since the final
system in both cases is the same, the two energy ex-
pressions must be equal, yielding

(Ng + 1) Qo X—, = (Ng + 1) Qppo
Pq 1

q! Ng

Since N& is large (—10 ') terms of order I/N& or
greater (q ~2) vanish. The q =0 terms cancel iden-
tically, requiring only p~ =0 to satisfy Eq. (A2).
Since terms for q & 2 only appear in second order or
higher elastic constants, they are not needed here and
are set equal to zero. The resultant volume-
dependent term is given in Eq. (4). The P~ are given
by

O
CL
LaJ

X 100

-1.0 --8 --e -.4 ~ 2 ~ 2 ~ 4 .8 1.0 1.2

FIG. 4. Energy terms for a helium interstitial in nickel as a function of volume change. Note that the cancellation of the
bond energy (NzE~) and volume-dependent energy (NLE„) terms necessitates a 100 & magnification of the atomistic energy
curve (E =N„E&+N&E„) as well as the total energy curve (E+E,&) to show their details.
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volume change. This Appendix presents a de-
tailed study of the effect of volume change on defect
energy. For illustrative purposes the results of a sin-

gle defect, i.e., a helium interstitial in nickel is
presented here. A spherical region with 682 movable
atoms was used. -By varying the lattice constant, cal-
culations of the total bond energy (N&Eb) as a func-
tion of volume change are obtained. These energies
(relative to no volume change) are shown in Fig. 4.
In addition the volume-dependent energy term
(Nr. E„) is also shown. Note that the large volume
dependence of these two terms is nearly opposite and
tend to cancel out near the lattice equilibrium. The
total atomistic energy E = N& E& +NLE„(Fig. 4)
shows a very shallow minimum (only 0.0025 eV
below the energy for no volume change) at a lattice
expansion of 0.55 atomic volumes.

To obtain the energy lowering and volume expan-
sion in an infinite medium an additional elastic ener-

gy term must be added. This term represents the en-
ergy needed to compress the atomistic cluster used
above to its undeformed state, insert it in a hole in
an infinite medium, and then allow equilibrium. The
elastic energy E„req uire dfor these processes (as-

suming isotropic linear elastici&y) is given by
'

2p, (h V/Qp) Qp

3N(1 +4p, /38')
, where p, is the shear modulus of the infinite medi-
um, 8'is the bulk modulus of the atomistic cluster,
and W is the number of lattice atoms in the cluster.
Using a shear modulus of 0.779 eV/A and a bulk
modulus of 1.127 eV/A3 (consistent with the Ni elas-
tic constants), the elastic energy is added to the
atomistic energy. The resultant energy (also shown
in Fig. 4) has a minimum of 0.0016 eV below the un-
deforrned lattice and a volume expansion of 0.36
atomic volumes. Therefore it is seen that a fixed
volume calculation for clusters of this size are able to
give energies accurate to -0.002 eV with respect to
volume changes. Thus, it is not necessary and, in
fact, is incorrect to modify defect energies by the
volume-dependent energy (0.1—1.0 eV) as in Ref. 3
since this term is nearly canceled by the bond ener-
gy, the difference being &0.01 eV. Application of
this incorrect "correction" leads to the prediction of
the crowdion rather than the (100) split interstitial as
the stable interstitial configuration in nicke1.
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