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The nonlocal conductivity tensor for a semi-infinite electron gas bounded by a finite-step po-

tential is studied, both numerically and analytically, within the random-phase approximation.

The tensor component normal to the surface is compared with the corresponding nonlocal con-

ductivity tensor of the bulk, or homogeneous, electron gas with a view to isolating the "optical"

surface region, i.e., the region near the surface in which the two functions differ. It is shown

that the slow asymptotic decay of the two functions makes it impossible to define an unambigu-

ous optical surface region at low frequencies below the photoemission threshold. It is also

shown by direct numerical comparison that the width of the surface region is strongly

frequency dependent. The significance of these conclusions in terms of theoretical approaches

to the study of optical reflectance from metal surfaces is discussed.

I. INTRODUCTION

The present interest in the dynamical behavior of
electrons close to the surface of a metal together with

the recent extensive use of optical probes to study
surfaces has stimulated interest in detailed calcula-
tions of the electromagnetic field associated with the
reflection and refraction of light at a metal surface.
Several of these calculations use the concept of a sur-
face region, and it is the purpose of this paper to dis-
cuss its meaning through the analysis of a particular
model.

The existence of a surface region in the calculation
of the reflection coefficient was originally considered
by Drude. ' This region was defined as a transition
layer where the local dielectric function varied con-
tinuously from its bulk value on one side of the in-

terface to its bulk value on the other side of it. In a
local model this will also be the region where the lo-
cal electron density varies correspondingly. . Drude's
results can be obtained by considering the transition
layer as characterized by the average value of the lo-
cal dielectric function in this region. An application
of these results to reflection spectroscopy from adsor-
bate layers leads directly to the formulas given by
McIntyre and. Aspnes, '

The determination of a surface region when a non-
local dielectric function is used to characterize the
system is a more complicated and rather enduring
problem. Pippard' was the first one to point out the
importance of the nonlocal nature of the electrical
conductivity in his treatment of the anomalous skin
effect. This problem was solved later by Reuter and

Sondheimer through the solution of the Boltzmann
equation in the relaxation-time approximation. They
obtained exact expressions for the fields associated
with electromagnetic waves in a metal by assuming
specular reflection of electrons at the surface and
normal incidence of light. It was also remarked' that
for this model and in a certain range of frequencies,
wavelike solutions do not exist in the bulk and only
the inclusion of the surface leads to well-behaved
results. This means that in this frequency range the
solutions in the metal are true surface excitations; in
other words, that the surface region is of infinite ex-
tent.

The microscopic theory of reflection of p-polarized
light from a semi-infinite electron gas was worked
out by Kliewer and Fuchs. They assumed that the
local electron density is uniform and terminates
sharply at the surface of the metal, and that the elec-
trons are specularly reflected from it, the so called
semi-classical infinite-barrier model (SCIB). Since
p-polarized light is able to induce charge fluctuations
in the system the main difference between this
theory and the theory of reflection of s-polarized light
is that for p-polarized light the reflectance as a func-
tion of frequency shows structure close to the plasma
frequency. The nonlocality was treated both classical-
ly through the solution of the Boltzmann equation
and quantum mechanically through the introduction
of the bulk nonlocal dielectric function. Attempts
were also subsequently made to take into account
electron lifetime effects in the Lindhard expression
for the dielectric function. ' as well as diffusive elec-
tron scattering from the surface.
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For the SCIB model a closed-form expression for
the electric field inside the metal for p-polarized light
has been discussed recently, ' " and detailed calcula-
tions" show that it approaches its bulk value as 1/z'
where z is the distance from the surface. This allows
us to distinguish between an "optical" surface region,
defined as a region beyond which the electric field as-
sumes its bulk value, from a "density" surface region,
which is the region over which the local electron den-
sity heals to its bulk value. It was in fact pointed out
by Apell' that in the SCIB model the extent of the
optical surface region was much larger than the den-
sity surface region, the latter being strictly zero in
this case. He also suggested that this feature might
persist in a model with a smooth density profile.

A general formalism to calculate the electromag-
netic field distribution for the reflection and refrac-
tion of light, in the case of more realistic models with
smooth electronic density profiles near the surface,
has been set up by Feibelman' and Mukhopadhyay
and Lundqvist. " For the calculation of the electric
field distribution, both formalisms define a surface
region across which the solutions in the vacuum side
are matched to those in the metal. In effect the sur-
face region is defined as a region beyond which the
dielectric response functions essentially assume their
bulk value. This is an alternative, equally acceptable
definition of the optical surface region which is the
definition we will use in the rest of the paper. Clear-

ly, this too is distinct from the density surface region
defined above. Up till now a detailed analysis of the
nature and extent of the optical surface region has
been lacking. In this paper we try to bridge the gap
by explicitly analyzing the behavior of the nonlocal
conductivity tensor for a simple quantum-mechanical
model of a semi-infinite electron gas.

We consider the electron gas to be bounded by a
finite-step potential in the region z (0, and transla-
tionally invariant in the x-y plane. The conductivity
tensor will depend on the x and y variables through
the difference while depending on the z coordinates
separately. In other words, if effects due to crystal-
linity can be ignored

o (r, r';co) = o (p —p', z z';re)

where p =xx +yy. Effecting a Fourier transformation

in the x-y plane, we can describe the system entirely

in terms of the Fourier-transformed conductivi-
ty" '3'4 o (Q, co,z,z'), where Q is a wave vector in

the x-y plane. It is adequate for most purposes to let

Q 0 because wave vectors associated with light are

typically much smaller than the Fermi wave vector kF

of electrons. In this paper, we use a combination of
numerical and analytical methods to study the spatial

dependence of the conductivity tensor within the
random-phase approximation (RPA). '~ We look in

particular at the zz component, i.e., cr (Q 0, cu;z, z'),

which is of importance in the interaction of p-polar-
ized light with the metal surface. Our main objective
is to determine the optical surface region, i.e., the
distance

~ g ~
such that for z,z' ( g (g (0),

o (0, co;z,z') ao (0, co;z,z'), where the
conductivity-tensor component with the subscript 0
refers to a uniform electron gas having the same
electron density as in the bulk of the metal. Our pro-
cedure here is to make an explicit determination of
the optical surface region by directly comparing the
conductivity tensors o'* and og as a function of posi-
tion for various frequencies. We find that within the
RPA and ignoring electronic lifetime effects, the two

functions approach each other asymptotically as one
goes into the metal; but the approach is rather slow,
and the width of the surface region turns out to be
strongly frequency dependent. Furthermore, as has
been pointed out already, " the optical surface region
is indeed larger than the density surface region. We
find this to be especially true for photon frequencies
below the threshold for photoemission, where it is

impossible to determine an optical surface region
unambiguously. In the high-frequency or photoemis-
sion regime, however, the conductivity tensor ap-

proaches its bulk value more rapidly, and an optical
surface region can be defined with greater confi-
dence. We conclude that below the photoemission
threshold, ~here surface reflectance spectroscopy"'
can be used, it is preferable to formulate a theory of
reflection which does not depend explicitly on isolat-

ing a particular surface region. "'
Since our results do not include a finite electron

lifetime, we would like to point out that the semiclas-
sical calculation of Reuter and Sondheimer4 has
shown that the range of nonlocality of the electrical
conductivity is governed by the electron mean free
path at low frequencies, but at high frequencies it is

governed by the distance traveled by an electron
during one complete oscillation of the electric field,
irrespective of the electron lifetime. Therefore the
argument of Melnyk and Harrison' that the metal
response is bulklike beyond an electron mean free
path is open to question although it might be valid in

the low-frequency regime. In fact, our quantum-
mechanical calculations for infinite electron lifetimes
show a frequency-dependent optical surface region
beyond which the range of nonlocality is essentially
governed by the singularities of Lindhard's dielectric
function. The inclusion of a finite electron lifetime
in our model might be the subject of further investi-

gation.
The organization of the paper is as follows. In Sec.

II we present our results for the RPA conductivity in

the homogeneous electron gas for various frequen-
cies. Particular emphasis is placed on the long-range
characteristics of og(0, cu;z, z'), including oscillations
and decay, as z -z' becomes large. In Sec. III we

first introduce our model of a semi-infinite electron
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gas confined by a finite-barrier step potential. We
select out several values of co, and for a given fre-
quency, we compare the conductivity-tensor com-
ponents o- and o-p' as functions of z' for various
choices of z. The comparison of these two functions
allows us to draw conclusions about the length ~g~ of
the optical surface region. In this section, we also go
analytically to the limit of an infinite barrier and
make contact with previous theoretical work. " Sec-
tion IV summarizes our conclusion and critically

evaluates some ideas for further study. Certain de-

tails of our calculation of the conductivity-tensor
components are contained in the Appendix.

II. RANDOM-PHASE APPROXIMATION
IN BULK JELLIUM

The general form of the nonlocal conductivity ten-
sor in the RPA, for an electron gas which is uniform
in the x-y plane, has been derived by previous au-

thors. "' '" Adopting the notation of Ref. 14, the zz

component of the tensor is given by

'2

(0 )
ie n (z) &(,) 2i e ir ) d K

X
eYi~ Kg' . ( )

. (,)
m pp pi 2mi " (2n) „„gpi+i q+ e„—e„

where e-„„(=O' K /2m + e„) is the energy of an electron in a state given by i}i-„„(r) = e'" ep„(z)/'L, f(e)
denotes the Fermi occupation function (at T =0), n (z) is the electron density on a plane defined by z, and

( ) ~
~ By„(z) 0@.(z)

(
8

For the uniform electron gas in three dimensions, $„(z)= e'"'/L'i', L being the normalization length, and
n(z) np=kF/3n' where kq is the Fermi wave vector. Substitution in Eqs. (1) and (2) shows after a little alge-
bra that the 5-function term drops out, and the conductivity-tensor component becomes

ie' 1 ~kF
ap(0, ip;z, z') = ' i I

—d~(kF2 —i~ )e '"*
m 8% kF

2 2
iq+(z —,z') iq (z'- r) K + q+ iq+I~ -g'I

~ e + O(z —z') —e + O(z' —z) + e
2g+

fakF

+i „dK (k —~ )e'"t'J kF F

(4a)

where Z =z —z', and op =inpe'/mru is the familiar long-wavelength conductivity of jellium in the random-phase
approximation. In fact it is easy to show by direct integration that

1 1
1

-iq (z —z') -iq (z' -z) K +9 -iq Iz-z'I
K e O(z —z') —e O(z' —z) + e, (3)

where q = (n'+q')' ', q' =2m pi/ t, and q = (K' —q')' ' if n ) q while q = i (q' —n'—)' ' if n & q . Equation
(3) shows that o.

p is a function only of z —z'. Inspection reveals that the conductivity depends on the magnitude
~z —z'} alone. Both these results follow immediately from the translational invariance and reflection symmetry of
the uniform electron gas.

It is convenient at this stage to introduce the dimensionless function

SP'(0, pi;Z) = o'p (0, a&', Z)/kFo p

goo
crp = dz ctp (0, Ql;z —z ) (4b)

(sa)

where

which is the expected result. The dimensionless conductivity tensor of Eq. (4a) can be easily written as a sum of
integrals over the dimensionless variable p, = K/kF. When q & kF, we obtain

s,"(0, ;z) = —,
' [[fp(z)+fp(z)+/p(z)]+i[/p(z)+/p(z)] },

pl
/,'(Z) = —

J di (1 —p, ') i sini }Z }cosi+Z—
0

2 2'
P, +|M+

cosp, z sinp, +~ Z
~

2 jx+
i

&m 2 '2

~,p(Z)= —J, di (I-i') &sinp}Z~+, cospZ e"
2p,

(sb)

(sc)
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t 1

If(Z) = —
„~ dy, (1 —p ) psinp, ( Z ~cosp, Z—

'2 2'
p +p

cosp, Z sinp,
~
Z

~

2p
(5d)

Il 2 2

140(Z) = —„dp(1 —p, ') psiny( Z ( sinp+( Z ) + " ' cospZcosp, ,Z
2p+

(Se)

l 1 2 2'
l50(Z) =„dy, (1 —p, ) p, sinp( Z

~
siny, ( Z )+ cosyZcosp, Z

IN 2p
(sf)

x)Q ~

-30 Qio

and p, +=(p,'+ p, ')'i', y,
' =(p, ' —p, ')'i', while

y~ =q~/kF =(t~/EF)' ', EF being the Fermi energy.
Also Z = kFZ = kF(z —z') is a dimensionless length
variable. When q„& kF (i.e., y, & 1), the terms 13

and I5 disappear while the upper limit of the integral
for li (Z) is replaced by unity. We have evaluated
Si' numerically by performing the integrations using
Simpson's rule. Figure 1 shows the real and ima-

ginary parts of Si'(0, 0~', z —z') plotted against

kF(z —z') for p, =0.8, i.e., hem=0. 64EF. As expect-
ed, the functions are symmetric, and they oscillate
and decay slowly as ~z

—z'~ increases. These oscilla-

tions are not the usual, static Friedel oscillations but
are rather their dynamical counterparts as we shall

explain below. The length of decay is, of course, a

measure of the range of nonlocality of the conduc-
tivity function.

In order to obtain physical insight into the behavior
of these functions, especially in the asymptotic re-

gion, we note that oo'(0, ao;Z) may be regarded as a
one-dimensional Fourier transform of the longitudi-

'

nal conductivity function a.~~(q =qz, co) of Lindhard20

for the free-electron gas. Since the real (dissipative).
part of cr~~(Q, ao) is necessarily positive, it follows

that the real part of oo'(0, ru', Z) must be positive
when Z =0. This expectation is borne out in Fig. 1

once we recognize that Eq. (4a) may be recast as

noe 2

og(0, a);Z) = kF [—linStt'(0, co; Z)

+i ReSp (0, c0;Z)] (6)

x[O

-- IO

Furthermore, the asymptotic (~Z~ ~) behavior of
oo (0, co;Z) is known to be controlled" by the singu-
larity structure of the Fourier transform function
o ~~(q, ru). The singularities of the latter are of the

type

(q —q;) 1n(q —q;),

- -lO

where q s are solutions of the equation
I

Iko + t'q z/2m + t2q;kF/m =. 0

In other words,

q;=+kF + (kF +2m~/ t)' '

(7a)

(7b)

FIG. 1. Real and imaginary parts of So~(0, ~;z —z'), the
dimensionless nonlocal conductivity function of a free-
electron gas as defined in Eq. (4) of the text, plotted against
kF{z —z'). Frequency of light is denoted by the parameter

p,~ = ( &~/EF)', where EF and kF are the Fermi energy
and the Fermi momentum, respectively.

The longest wavelength oscillations come from the
smallest q, , viz. , q; = q, = (kF +q~)'i' —kF with

q = (2m '/ t)'i', and this wave vector increases and
the corresponding wavelength of oscillations of cro in
real space decreases as the frequency co goes higher.
This feature is evident in Fig. 2 where we have plot-
ted the real and imaginary parts of So (0, co;z —z') vs

kF~z —z'~ for a range of values of p, lying between
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FIG. 2. Real and imaginary parts of the dimensionless, nonlocal conductivity function S"(0, ao, z —z') of the homogeneous

electron gas, plotted against kF!z —z'!, for a range. of frequencies denoted by the value of tz~ = ( Aru/FF }'iz in 'each panel. The

functions are symmetric in the argument z —z'.

0.2 and 2.0. Superimposed on these oscillations,
although not visible in the figure, are oscillations of
much smaller wavelengths which, as Eq. (7b) shows,
go over to the usual Friedel oscillations of wave vec-
tor 2kF in the static limit (ta =0). The singularity
structure of os(q, at) also ensureszt that Ss (0, ts;Z)
falls off asymptotically as!Z! z. This slow falloff,
which has been pointed out earlier, " is exhibited by
the curves of Fig. 2.

A feature of the spatial dependence of
tra (0, cs;z —z'), which is of interest and worth point-
ing out, is that the range of nonlocality of the func-
tion is quite large, in units of kF, although the range
decreases as the frequency co is increased. We turn
now to a comparison of the conductivity tensor of the
uniform electron gas with that of a semi-infinite sys-
tem.

III. RPA IN SEMI-INFINITE JELLIUM
WITH FINITE BARRIER

A. Numerical

To construct the model for a metal which is trans-
lationally invariant parallel to its surface, we consider
a semi-infinite electron gas confined to z & 0 by
means of the step potential V(r) =—Va8( —z). We
choose V0 =10.7 eV, and assume that the metal has a
work function $ =4.5 eV. This implies that the Fer-
mi energy is EF =6.2 eV, which corresponds to an r,
value of 2.92 and kF ——1.27 A '. The wave functions

in the potential are exactly known, and hence the
electron density near the surface is easily calculated.
We find that the actual electron density n(z) differs
from the bulk density no by less than one percent by
the time kFz & —7.5. This distance may then be tak-
en as a measure of the density surface region. The
conductivity-tensor component tr (0, tu;z, z') now

depends on z and z' separately, rather than simply on
z —z'. Let us, once again, define the dimensionless,
nonlocal function

S (0, ta;z, z') = o (0, ta;z, z')/kqtr&

As shown in the Appendix, this function may be
written as a sum of integrals I;(z,z') (i =1,..., 5]. In-
side the metal (z,z' (0), these integrals are of the
same type as Is(z —z') of Eqs. (Sa) —(Sf), but the in-

tegrands are considerably more complicated. The in-

tegrals can be evaluated using Simpson's rule. The
numerical calculation, however, becomes time con-
suming for large and negative values of z and z' be-
cause of the presence of oscillatory terms in the in-

tegrands.
To show the results of our computation for the

conductivity tensor, we first choose a photon energy
of has =4.0 eV which corresponds to p, =0.803.
This photon energy is below the threshold' for pho-
toemission, and is a typical one used in studies on
surface reflectarice. "' We select a set of values of z,
and for each z, compute S (0, ta;z, z') as a function of
z'. Figure 3 shows the real part of S"(0,«t;z, z') as a
function of z' for several values of z inside the metal
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FIG. 3. Real part of the dimensionless, nonlocal conduc-
tivity function S~(0, co,z, z') of a semi-infinite electron gas,
confined'to the region z (0 by means of a step potential of
magnitude Vp =10.I eV, shown as full lines plotted against
kFz' for a range of values of z.' (a) z =0.0, (b) z = -Sky ',
(c) z = —10k~, (d) z —15kF ', (e) z = —20k~, (f)
z =—40kF '. The graphs are drawn for a photon energy of
tee =4.0 eV, and the Fermi energy is chosen to be
EF 6.2 eV, corresponding to an r, value of 2.92. The
parameter p~ stands for (k~/EF)'~ . (See Eq. (8) of the
text for definition. ] The dashed curve in each panel stands
for the real part of SIW'(0, oI;z,z'), the dimensionless conduc-
tivity appropriate to the uniform electron gas. The latter
function depends only on the magnitude of the difference

Iz z.

-20-20 .

FIG. 4. Imaginary part of the dimensionless, nonlocal
conductivity function S~(0, co,z, z ) of a semi-infinite electron
gas bounded by the potential V(r) = —VpO( —z) with

&p = 10,7 eV, shown as full curves when plotted vs kFz' for
a range of values of z: (a) z =0.0, (b) z = —5kF ', (c)
z = —

10kF ', (d) z = —
15kF ', (e) z= —20kF ', (f)

z = —40kF '. The light frequency and Fermi energy used in

the numerical calculations are given in the caption to Fig. 3.
The dashed curve in each panel represents the imaginary
part of Sf (0, oI;(z —z'(), the dimensionless conductivity
function appropriate to the bulk, i.e., homogeneous, elec-
tron gas.

(z (0). For purposes of comparison, we have also
plotted the uniform-electron-gas conductivity
Re[SII'(0, to;z, z')], which is, naturally, independent of
z, as a dashed curve in each panel. %e have taken z
to range between 0 and —40 (in units of kF '). A
similar comparison of the imaginary parts of S and
Stl* as functions of z' for selected values of z is shown
in Fig. 4.

From a study of Figs. 3 and 4, it appears that the
conductivity tensor for the semi-infinite metal does
indeed approach its bulk counterpart as one goes into
the metal. But the convergence is rather slow, at
least at p, =0.803. At this frequency, differences in
the conductivity of the semi-infinite metal and the
uniform electron gas seemingly persist as we go into
the bulk of the metal (z' ( z) even for kFz = —40.
On the other hand, as we approach the surface
(z & z' 0), the conductivity in the semi-infinite
case shows rapid oscillations. These rapid oscillations
arise from quantum-mechanical interference effects
o~ing to the presence of the surface, and are natural-
ly absent in the uniform electron system. It is safe to
conclude that at this frequency, the optical surface re-

gion has an extent
~ g~ & 40kF '. Later on in this sec-

tion, we shall try to make more precise the criterion
for determining the length ~(~.

As the frequency co is increased, we find that the
functions S (0, oI;z,z') and Sa (0, al;z, z') converge
more rapidly for z' & z as z goes into the metal.
Since the range of nonlocality also decreases with fre-
quency, and the quantum-mechanical interference ef-
fects become much less pronounced, the functions
appear to converge for z' & z as well. The point is
made clearly in Fig. 5 where we have plotted the real
and imaginary parts of S (0, to;z, z') as functions of z'
for two choices of z, viz. , kFz =—5.0 and —20.0, with
a photon energy in the photoemission regime, viz. ,

=2%v =4EF =24.8 eV. For comparison purposes,
we have also shown the real and imaginary parts of
Sf (0, al;z —z') on the same figure. The conductivity
curves for z -20kF ' are very close to (but not
identical with) the curves for the uniform electron
gas over the relevant range of nonlocality. The
agreement between S and SI)'is even better at
k~ —20 at higher frequency, as is shown in Fig. 6
where we have chosen p, =3 so that

CONDUCTIVITY OF A SEMI-INFINITE EI,ECTRON GAS:. . .
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above equation for a fixed z and (z —z') ~. This
feature prevents us from arriving at an unambiguous
length scale ~g~, based on the criterion of Eq. (9) for
the optical surface region. In fact, combining Eqs.
(9) and (10), one finds that the criterion for finding

is now

)S (0, m, z,z') —S~(0, ~;iz —z'))
)

=ISg(0, ~;lz+z'I)l « . (»)

when z, z' & (. Since )z+z'( )2(g[ for z,z' & g, one
can always find a g for a given e to meet the above
criterion. Such a length scale ~g~, however, will be

strongly a dependent, going as a power of I/e. Con-
sequently it would be impossible to assign an unam-

biguous optical surface region to the semiclassical
infinite-barrier model. Since the curves for S"ap-

pearing in Figs. 3 and 4 show qualitatively the same
power-law behavior in the asymptotic region, we can
extrapolate our argument and conclude that an

unambiguous optical surface region cannot be defined
in the finite-barrier case also for photon energies
below the photoemission threshold. Above the pho-
toemission threshold, the conductivity tensors in

RPA still fall off asymptotically as ~z'( ' for a fixed z.

However the range of nonlocality shrinks rapidly with

co, so that S and S0 appear to converge quickly over
their nonlocality range as z goes into the metal, thus

making the definition of the optical surface region
less equivocal. It must be pointed out that the inclu-

sion of finite lifetime effects for the excited electrons

may allow us to circumvent this uncertainty, as the
correlation functions would then fall off exponentially
in the asymptotic region (z —z' ~). In that case,
the width of the optical surface region based on Eq.
(9) would depend only weakly (i.e. , logarithmically)

on the parameter e.
Another feature of our calculations is that no

matter what criterion we choose to adopt for the

length of the optical surface region, the results of
Figs. 3—6 show conclusively that ~g~ depends on the

frequency cv, a fact that has not been discussed be-

fore. Since we find that the length is quite large at
the frequencies which are of importance in surface
reflectance spectroscopy, "' the correction to the
usual Fresnel formulas would be more important at
lower frequencies. Furthermore the dependence of
the optical surface region on eo makes it impossible to
isolate a single-surface region (for all ao) across which

the solutions to Maxwe11's equations ought to be
matched. Instead it may be more fruitful to look for
solutions to the optical-reflectivity problem not
depending explicitly on a consideration of the optical
surface region. A formulation of the problem along

these lines has been reported recently. '

IV. CONCLUSIONS

We study in this paper a particular (i.e., zz) com-
ponent of the nonlocal conductivity tensor of a
semi-infinite electron gas within the RPA without
electronic lifetime effects. We compare the conduc-
tivity function of the semi-infinite problem with the
corresponding function for the uniform electron gas
within the same approximation. Our aim is to deter-
mine the optical surface region which is defined as
the distance into the metal beyond which the conduc-
tivity functions ~ould be identical. We find that
while the two functions approach each other as we go
from the surface of the metal into the bulk, the ap-

proach is rather slow at low frequencies, be1ow the
photoemission threshold, although it is more rapid at
higher frequencies which are of interest in photo-
emission. We also find that within the approximation
studied in this paper, the nonlocal conductivity func-
tions away from the central point z =z' do not ap-

proach each other faster than they deca& away to
zero. Thus the difference between the conductivity
functions persist even at large distances, making it

difficult to arrive at an unambiguous definition of the
optical surface region.

A second point to emerge from our study is that

any sensible definition of the optical surface region
shows that its length depends sensitively on the fre-

quency of light, as was noted briefly by Mukho-

padhyay and Lundqvist. ' Thus we feel that it is

more reasonable to study optical reflectance from a
semi-infinite, nonlocal dielectric medium by regard-

ing the surface response as a perturbation on a bulk

response function which can be specified on physical

grounds without any ambiguity. Such an approach is

concerned only with the difference of the conductivi-

ty functions o-" and 0-0', and its space integral, so that
the need for defining an optical surface region never
arises. The solution to the reflectance problem based
on this approach has been investigated by us and

partly reported '8

We finally note that even though our model does
not apply to a realistic metallic system, the results we

have presented in this paper are important in a limit-

ing sense since they will serve as guides to approxi-
mations for the realistic case of an inhomogeneous
electron gas including, e.g. , lattice effects. Therein
lies a major significance of the RPA results for the
conductivity tensor discussed here.
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APPENDIX

In this Appendix, we present the formulas for
S"(0,4», z,z') used in our numerical calculations. The
starting point is Eq. (1), and the wave functions in

the finite-barrier potential V(r) = —VOO( —z) are ex-
actly known. After a modest amount of algebraic
manipulations, it is possible to write it as a sum of

single-variable integrals over the Green's functions of
the problem for various energies. The integral ex-
pressions for the conductivity tensor have different
forms in different regions of frequency, viz. , llr» & @,
P & tee & EF, and t4» )Eq. The expressions are also
different in four regions of space, viz. , z, z' & 0;
z (0, z' &0; z &0, z' &0; and z,z' &0. %e shall
explicitly present our result here below the photo-
emission threshold ( tc» & $) for both z and z' lying
within the metal. Other frequency regions can be
easily reached by appropriate analytic continuation,
while similar formulas can be worked out without
much difficulty for other regions of space.

Let us define the dirnensionless variables z = kFz
and z

' = kFz'. For lit» & @ and z, z' & 0, we may write

S (0, 4»;z z ') = —, ( [I( ( z z
' ) + I, ( z z

' ) + I, ( z z ' ) ] + i [I4( z z
' ) + 15( z z ' ) ] ] (Al)

where

lt(z, z ') =„dp, (1 —p, ) —p, sinp~ z —z '
~
cosp+(z —z ') + p, sin[p, (z + z ') +28]

t

2

x [a|cosp+(z+z') +azsinp4(z+z')]+ cos(pz+8) cos(pz'+8)
july

x [sinp+~ z —z '
~
+azcosp+(z+z ') —al sinp4(z +z ')] + p,,sin(p z+ 8)

x sin(p z + 8) [sinp+~ z —z
'

~

—a, cosp+(z +z ') + a~ sinp+(z + z ')] (A2)

t ~ t f

lq(z, z ') = I dp, (1 —p, )' —psinp,
~

z —z
'

~e +p, sin[p, (z+z ') +28]a3e

I

p 2p, 2p, P p, (i+i ) -p ~z-! )+, cos(pz+8) cos(p, z'+8)
~

+1 —
~

e —e
jx p,o P,o

I
I ~ ~ ~

-& [z-z [ & (z+z )
+p, sin(p, z+8) sin(p, z'+8)(e —a3e ) (A3)

pl
13(z z ') =„dp (1 —p, ) —psinp~ z —z '

~
cosp, (z —z ') +psin[p(z+z ') +28]

2
x [a4cosp, (z+z') —a5sinp, (z+z')]+ p cos(pz+8) cos(pz'+8)

p

& [sinp,
~
z —z'

~

—a5cosp, (z+z ') —a4sinp, (z+z')]+p, sin(p z+8)

't

x sin(p z '+8) [sinp, ( z —z '
~
+ascosp, (z+z ') +a4sinp, (z+z ')] (A4)
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14(z z ') =
~ dp(1 —p, ) —p sinp(z —z ') sinp+(z —z ') +p sin[p(z+z ') +28]
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2
x [a2cosp+(Z+Z') —a~ sin@+(Z+Z')] — cos(p z+ 5) cos(p z '+8)

jx+

x [cosp+(z —z ') +a~ cosp+(z+z ') +az sin@4(Z+z ')] —p4. sin(p z +5)

and

x sin(p z '+8) [cosp+(Z —z ') —at cosp+(z +z ') —a2sinp+(z +z ')] (AS)

f1
I5(zz') =„dp (1 —p, ) p sinp(z —z') sinp, (z —z') + p sin[p(z+z') +28]

2

x [a5cosp, (z+z') +a4sinp, (z+z')]+ cos(p, z+5) cos(p, z'+5)
jx

x [cosp, (z —z ') +a4cosp, (z+z ') —a5sinp, (z+z ')]+p, sin(p z +5)

x sin(p z '+ 8) [cosp (z —z ') —
a4 cosy, (z +i ') + a5 sinp, (z + z ')]

In these expressions, the following definitions have been used:

[(E+ y )/E ]t/2. ( V /E )1/2. ( 8- /E )1/2. 2 2 4. 2. '2 2 2.

v = (p0 —p ); v+ = v + p, ', Ql =2p+/p0 —1; 422 = 2p+v+/p0,

a2 = (p,
' —v )/(p,

' + v ); a4 = 2p, /p0 —1; a5 = 2p, v /p0', and tan5 = p/v

(A6)

The extension of these integrals to the other regions of frequency is quite simple. For t44 & $, we must analyt-
ically continue v4. to i(p2+—p, —pa)' for p, & (p02 —p, 2)'i2, if p, ( p0, or for all values of p, if p &)40. On
the other hand, when p, & 1 (i.e., fa4 & EF) the integrals 12 and Iq disappear, while the upper limit of the in-

tegral I2 is replaced by unity. The generalization of these formulas to other regions of space, although straight-
forward, leads to forms that are cumbersome and not very illuminating. They will not be presented here since
the behavior we have analyzed in the text occurs for z and z' & 0.

An interesting special case arises in Eqs. (A2) —(A6) on going to the infinite-barrier limit VD ~. Then

p0 ~, v, P+ jtlp, and a& —1, a2 0, a3 —1, a4 —1, and a5 0. Also the phase shift 8 approaches n.
An analysis of the integrals appearing in Eqs. (A2) —(A6) in this limit, and comparing them with the integrals of
Eqs. (Sb)—(Sf), shows that

S (0, cu;Z, Z') SP(0, co;Z —z') —Sg(0, co', Z+z') +S;„,(0, ro;z, z')
~,~'&0

where the last term on the right is the quantum-mechanical interference term given by (z & z')

2 cosp(z —z')sinp+(z+z')+sinp+(z —z')cosp(z+z')
S;„, 0 co'z)z' =

i dp, 1 —p,

(A7)

)
-p, [z+z'/ ) -y, (s -Z')

+O( ) cosp(z —Z')e —cosp(z+Z ')e+" gm
jx

cosp(Z —z ')sinp, (z + z ') +sinp, (z —z ')cosp(z +z ')
+Op pm P-

COSP(Z Z ) COSP+(Z+2 ) COSP(Z +Z ) COSP4(Z Z )
I

cosp(z+z') cosp, (z —z') —cosp(z —z') cosp, (z+z')+ I 0~ p p, pg

The quantum-mechanical interference term drops out and we approach the semiclassical infinite-barrier
model" as fee 0.

(Ag)
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