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Spin-polarized band-structure calculations for Ni
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The electronic structure of nickel as a function of the lattice constant has been studied by the
self-consistent spin-polarized augmented-plane-wave method. The results confirm previous
findings by Wang and Callaway regarding the different forms of the local-exchange approxima-
tion. The present calculations have incorporated the mass-velocity and Darwin relativistic ef-
fects and lead to an ordering of the energy levels at L which is consistent with photoemission
measurements of Eastman et al. The computed changes in Fermi surface and magneton
number with pressure were in reasonable agreement with corresponding measurements of the
de Haas —van Alphen effect and magnetization

I. INTRODUCTION

We have performed augmented-plane-wave (APW)
calculations for nickel in order to examine the effects
of a change of lattice spacing on the band structure
and to compare with experimental studies of the
change of Fermi surface with pressure. " Previously
there have been several spin-polarized band-structure
calculations for nickel using different techniques in-

cluding an APW calculation by Connolly and the
more recent studies by Callaway and Wang, who
used a linear combination of Gaussian-type orbitals.
These studies have helped to determine the Fermi
surface of nickel, the density of states, and the
magneton number.

The present calculations were initiated because of a
difficulty in explaining the changes in the Fermi sur-
face with pressure as measured by the de Haas —van
Alphen (dHvA) effect." Two portions of the Fermi
surface have been measured, the majority-spin s-

p—like necks centered at L and the d-like minority
spin hole pockets centered at X In Table I the ex-
perimentally determined changes in cross-sectional
areas with pressure of these two pieces are presented
along with the corresponding estimates based simply
upon changes in volume and magnetic moment with
pressure. It can be noted that the measured changes
are comparable to or smaller than the compressibility
K. One might expect each cross-sectional area to in-

crease by —, K if the only effect of pressure is to

change the dimension of a unit cell. However, this is
not the whole story. If the result of Kondorskii and
Sedov' for the change in magnetic. moment per atom
with pressure (—2.9 x 10 4 kbar ') is used to estimate

TABLE I. Estimated changes in Fermi-surface cross-
sectional areas with pressure compared with experiment.

Orbit
dA

AdP
(units of 10~ kbar ')

Estimate Experiment'
Sc

Necks (electrons)
Ellipsoids (holes)

—36
—4

3.7
3.7

-6
—1

'Reference 1.
Change in area due to band repopulation based upon

change in magneton number with pressure.
'Compressibility scaling prediction.

the transfer of carriers from spin-up to spin-down
bands, and if all other changes associated with pres-
sure are ignored, then one would predict the rather
large decreases in cross-sectional area indicated in
Table I in contradiction to the experimental results.

Our band-structure calculations were used to deter-
mine changes, with pressure, of the Fermi-surface
cross-sectional areas and magnetic moment per atom
in order to explain these differences. We found that
the Fermi-surface changes were consistent with our
calculated transfer of electrons between spin-up and
spin-down bands and in reasonable agreement with
the measurements. " The computations were carried
out self-consistently for several models of exchange
and correlation as described below. The von
Barth —Hedin form seemed to give the best results, a
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fact also noted by Wang and Callaway. In the course
of our calculations we found it necessary to perform
many more iterations than were initially thought to
be required in order to obtain reasonably converged .

values for the small cross-sectional areas of the Fer-
mi surface. This seems to be a consequence of the
spin-polarized calculation and is discussed in Sec. III.

In Sec. II the experimental techniques, especially
the solid-helium phase-shift method, are summarized
and in Sec. III the different calculations are
described. The results and comparison with experi-
ment are given in Secs. IV and V and con'clusions are
presented in Sec. VI.
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II. EXPERIMENTAL TECHNIQUE

The de Haas —van Alphen frequencies were meas-
ured in single-crystal nickel spheres using the field
modulation technique described previously. ' The
changes with pressure were obtained by means of the
solid-helium phase-shift technique in order to obtain
a measurable effect. For this approach the sample is
mounted in a berylium-copper pressure cell and solid
helium is used to transmit the pressure. The cell is
pressurized while the helium remains fluid and then
the system is slowly cooled to 4 K so that the helium
solidifies. At an appropriate temperature near 4 K
the magnetic field is varied by a small amount rela- .

tive to a fixed value so that one or a small number of
dHvA oscillations can be displayed. Then the cell
and sample are warmed to a temperature such that
the helium melts, the pressure is changed, and the
system is slowly cooled to the same temperature as
before. Again one or a few cycles of the dHvA oscil-
lations are displayed by the same variation of the
magnetic field. From the shift of phase of the oscil-
lations with pressure the variation of the dHvA fre-
quency and correspondingly the variation of the ex-
tremal cross section of the Fermi surface can be
determined.

III. BAND-STRUCTURE CALCULATIONS

In Fig. 1 are shown schematically the portions of
the energy bands of nickel which produce the parts of
the Fermi surface most susceptible to observation by
means of the dHvA effect. The Fermi level for
"spin-up" t is shifted above the Fermi level for
"spin-down" ) by the exchange sphtting EE. The
spin-up d bands are thought to be filled which leaves
only the copperlike s-p sphere with necks for the
Fermi surface resulting from the spin-up bands.
(There is some hybridization of spin-up and spin-
down bands when spin-orbit coupling is included. )

FIG. 1. Energy bands of Ni, schematic (after Gold, Ref.
9). The spin-up bands near L form the necks and the spin-
down bands near X form two sets of hole pockets. 'the hole
pockets that have been studied with the dHvA effect are
formed from X5. The spin-down Fermi level EF) has been
shifted down relative to the spin-up level by a rigid ex-
change energy d.E The levels Lf and L f refer to the upper

and lower L3 levels, respectively.
5

The spin-down bands form a number of Fermi sur-
face pieces; those primarily relevant to the present
discussion are the d-like hole pockets centered at X.

A. Exchange and correlation

One of the purposes of this study was to determine
the contribution of exchange and correlation to these
calculations. Therefore, several. types of models of
exchange and correlation were examined. These in-

cluded:
(i) Nonrelativistic, frozen-core model with

Gaspar —Kohn —Shain p'~' exchange (a = —,), 'o which
2

we will refer to as NR.
(ii) Semirelativistic, soft-core model also with p'~3

exchange and a = 3, which we will refer to as SR.
For the soft-core calculations the 3s and 3p states as
well as the 3d and 4s levels were calculated as bands.
The lower levels were determined iteratively as atom-
ic levels using the computer code of Liberman" ap-

propriately modified to calculate charge densities
corresponding to the crystal potential. The semirela-
tivistic APW version included the Darwin and mass-
velocity corrections but neglected the spin-orbit in-

teraction. This approach, which avoids the complexi-
ty of the double group, was proposed by Mattheiss'
and recently improved by Koelling and Harmon. '

(iii) Semirelativistic, soft-core model with the ex-
change and correlation potential constructed accord-
ing to the von Barth —Hedin prescription for the local
density approximation. ' This model will be referred
to as vBH. In the present work the von Barth —Hedin
spin-polarized exchange and correlation potentials
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were taken to be

V+(r, ) = p,„(r,) + -'& (r,)

A (r,) =S(r,) Vxs(r, )

2
Here Vxs(r, ) is the Kohn —Sham a = —, exchange po-

tential.

and

p(r, ) = 1+C~x ln(1+1/x)

S(r,) = I + y ln(1+1/y)Cp

where

and

r, rsx=—,y=
r

' 24/3r
P P

r, =(3/4rrp)'

Following Janak, "we set C~ =0.045 and r~ =21.0.
(iv) Semirelativistic, soft-core calculation with dif-

ferent values for a for the spin-up and spin-down
bands, at =0.728 and ex] =0.708, as obtained from
the results of Gopinathan et al. ' This will be re-
ferred to as the GWB model.

B. Self-consistent AP% method

The APW method that we have used to calculate
spin-polarized energy bands and the Fermi surface
roughly follows the approach by Connolly. 3 All calcu-
lations were carried out self-consistently within the
muffin-tin approximation. The lattice constant
corresponding to normal spacing was taken to be

0
a =3.5235 A, which is also the value chosen by Con-
nolly. After each iteration the fractions of occupied
spin-up and spin-down states were determined as well
as the Fermi energy; these values were used in the
construction of the exchange potential for the
succeeding iteration.

In order to compare with pressure measurements,
calculations were also made for a lattice spacing re-

V (r,) =p, (r,)+—,'A(r, )
p

where p+ and p are the spin-up and spin-down elec-
tron charge densities, respectively, p is the total elec-
tron charge density,

p,„,(r,) = p(r, ) Vxs(r, )

and

duced by 2.5% with the NR model and by 2.5 and 5%
for the vBH form of exchange and correlation. If
one assumes the compressibility is constant
(5.5 x 10~ kbar '), " these values correspond to
pressures of 135 and 270 kbar, respectively, and were
thought to be large enough to give changes greater
than the errors of the calculation and small enough
that gross distortions in the energy bands were not
expected.

For the nonrelativistic calculations the initial con-
figurations for the spin-up and spin-down electrons
were chosen as 3d'4s' and 3d', respectively, while
for the relativistic calculations the initial configura-
tions were chosen somewhat arbitrarily as 3d4-'4so'
and 3d 4s' for spin-up and spin-down, respectively.
In all of our calculations for nickel a final spin-
polarized (magnetic) system was obtained. It would
be interesting to make a test of our method by carry-
ing out similar calculations for copper. (Wang and
Callaway, 5 using a nonrelativistic Hamiltonian and a
slightly different value for the lattice constant, appear
to have started with the same configuration for both
the spin-up and spin-down states and obtained final
values for the exchange splitting in nickel which were
similar to ours. )

Initially the calculations were carried out self-
consistently using about five iterations at six points in—

8
th of the Brillouin zone and subsequently four or

five more iterations at 20 points in —,th of the Bril-
louin zone. It was assumed that convergence had
been attained when the changes in energy levels in
successive iterations were approximately 2 mRy.
When we began calculating cross-sectional areas of
the Fermi surface and their changes with pressure,
however, we discovered inconsistencies in the values
calculated. We were finally able to conclude that
these errors were primarily the result of lack of con-
vergence in our calculation. In order to discuss this,
we must first describe our treatment of the constant
potential outside the muffin tins.

For the standard APW calculation the constant po-
tential outside the muffin-tin spheres is set equal to
zero and all the energy levels are shifted accordingly.
In the spin-polarized calculations, however, spin-up
and spin-down bands are calculated separately and, in
each case the potential outside the muffin tin is set
equal to zero. The energies of the two sets of bands,
corresponding to what we call Potential 1 and Poten-
tial 2, are shifted independently and these shifts must
be reconciled in order to properly position the Fermi
energy. We chose to leave the energy bands calculat-
ed from Potential 1 (spin-down bands for the von
Barth —Hedin form for exchange and correlation) un-
shifted and to shift the bands corresponding to Po-
tenttal 2 by an amount I Votl I Vol l

where Vot and
Vo) are the values of the constant potentials outside
the muffin tin for the spin-up and spin-down bands,
respectively. After each iteration this shift was made
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and then the Fermi level was determined.
The lack of convergence manifested itself particu-

larly in the amount of the shift. Therefore, although
the bands corresponding to Potential 1 appeared to be
converged to better than 1 mRy, this was not the
case for the Potential 2 bands. %e found it necessary
to iterate for the 20-point mesh a total of about 15
times in order to obtain satisfactory convergence, that
is changes in all energy levels of less than 0.5 mRy
for successive iterations.

After the energy bands had been converged from
the 20-point mesh, a final calculation was made at 89
points i6 48 of the Brillouin zone. The Fermi sur-

face was obtained by interpolation from this 89-point
mesh except for the two small pieces, the necks at L
and the hole pockets at X. In these cases the ener-
gies were calculated at k values appropriate to the
240-point mesh. Even after all this there remained
small discrepancies in the values of Fermi surface
areas due to numerical errors from integration and
interpolation. These were most notable for the
smaller cross sections and thus our results for the
changes in such Fermi-surface cross sections with lat-,
tice spacing are only semiquantitative.

C. Interpolation procedures —Fermi-surface calculations

Subsequent to the final iteration, energy values
were interpolated by the linear tetrahedron method, '

starting with 89 first-principles APW points in 48 of
the Brillouin zone, to determine the density of states
and its angular-momentum components, the magnet-

I

ic moment per atom, Fermi-surface cross-sectional

areas, and cyclotron masses. These quantities were
also calculated by a Slater —Koster (SK) fit to the
AP% energies and the results were essentially the
same as those obtained from the tetrahedron scheme.
Both schemes for interpolation are described below.

In the tetrahedron approach the Brillouin zone is
subdivided into tetrahedra, the corners of which
correspond to k vectors at which energies have been
determined from the AP% calculations. %'ithin each
tetrahedron each band is interpolated linearly. That
is, a~(k) = ejo+a& k, where e~(k) is the energy of
the j th band at point k, and ejo and the three com-
ponents of aj are parameters obtained from the
known values of a~(k) at the corners of the
tetrahedron. This form of interpolation is we11 suited
to the computation of densities of states and similar
functions because a single analytic expression exists
for the contribution from each tetrahedron. ' This
approach can also be conveniently used for deter-
mination of the shape of the Fermi surface. The
simple linear formula for each tetrahedron, together
with an appropriate scheme for selecting the correct
tetrahedron in the fundamental Brillouin zone
corresponding to an arbitrary k vector provides an ef-
ficient algorithm for specifying E(k) for all k. The
linear expressions for adjacent tetrahedra become
identical at their common cell boundaries, and there-
fore the interpolated band structure is continuous
from one cell to the next. Once e~(k) is determined

. for all bands j it is a straightforward matter to deter-
mine the extremal cross-sectional areas of the Fermi
surface and the corresponding cyclotron masses.

TABLE II. Density-of-states decomposition,

Calculation

N, (EF)
Densities of states (Ry spin) '

N (EF) Ng(EF) Nf (Ep) Ntotat(EF)

aoi NR'

go) NR

0.1695
0.0838

0,3107
0.1708

1.5262
19.1683

0.0006
0.0521

2.2191
19.688

apt SR'
Qp) SR

0.1832
0.1065

0,3942
0,2081

1.5955
20.0850

0.0070
0.0429

5.3379
20.6680

aot vBH'

aoi vBH'
0.1913
0.1017

0.4098
0.1983

1.7130
21.3050

0.0074
0.0430

2.5762
21.8732

aot vBHb

go) vBH
0.2751
0.2249

0.4396
0.2058

(1.1470'—2.542 )
(14.435'—6.080d)

2.116
20.940

0.975 apt vBH
0.975 aors vBH'

0.16,60
0.0924

0.2967
0.1844

1.785
19.420

0.0062
0.0419

2.4487
19.9543

0.950 aot vBH'
0.950 ao) vBH'

0.1321
0.0849

0.3119
0.1743

1.6735
17.490

0.0076
0.0414

2.3270
18.000

'Tetrahedron interpolation from 89-point mesh.
Slater —Koster interpolation from 20-point mesh.

'T2g symmetry.

Eg symmetry,
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The Slater —Koster interpolation method was also
applied in order to fit the APW energy bands from
the vBH calculation at the normal lattice spacing. As
parameters we used 32 interaction integrals, which in-

clude first- and second-neighbor interactions. The
first six bands as well as the high-energy values at
the symmetry points I ~5 and X5' were fitted. These
higher-energy states bring in the p character and their
inclusion in the fit was found to be crucial in obtain-
ing the correct angular-momentum decomposition of
the density of states. The SK density-of-states
decomposition is given in Table II to be compared
with the density of states generated by the
tetrahedron method. Note that the I components of
the SK density of states are given for the total unit
cell and not merely within the muffin-tin spheres.
The I components of the electronic charge have also
been calculated. The main difference between the
spin-up and spin-down electrons is found in the t2~-

symmetry electrons.

IV. RESULTS AT NORMAL LATTICE SPACINGS

A. Energy bands

Spin-up and spin-down energy bands have been
obtained for the models mentioned in Sec. III. In
Fig. 2 are shown energy bands along symmetry direc-
tions in the Brillouin zone for the vBH model for the
normal lattice spacing. The general features of these
energy bands are representative of all our calcula-
tions. One exception was the ordering of the levels
at L near the Fermi level for the spin-up bands

although necks were found in each case. For exam-
ple, in Fig. 3 spin-up energy levels in the vicinity of
L are shown schematically for both NR and SR calcu-
lations. (Note that the same exchange was used for
both these models. ) The ordering of the levels from
highest to lowest is L2'-L3-L3 for the NR model in
agreement with the calculations by Connolly and
Wang and Callaway while for the SR and vBH
models the ordering is L3-L2'-L3. Consequently, in
the NR case the necks are formed from the L2'

branch while in the SR and vBH cases the necks are
formed from the upper L3 branch. In Table III the
energy differences between spin-up bands at L and
the Fermi energy are compared for different models.
Here we see explicitly that the ordering of the levels
at L is different for our semirelativistic vBH calcula-
tion and the nonrelativistic vBH calculation of Wang
and Callaway. Our vBH calculation and that of Wang
and Cal!away, except for being performed by dif-
ferent methods, differ only in that we include the
Darwin and mass-velocity relativistic corrections. In
order to determine whether these differences could
account for the change in ordering, we continued
iterating our nonreiativistic, (a = —,), frozen-core cal-

culations with a soft core. The results are shown in
the second column of Table III. The ordering at L is
unchanged from our NR model and is the same as
that of Wang and Callaway. Thus we conclude that
the difference in ordering of L2' and L3 probably is
the result of inclusion of the Darwin and mass-
velocity terms in our calculations. This ordering of
the levels at L from our vBH model is the same as
that suggested by Eastman et al. ' although the L3
level is much closer to the Fermi energy in their

0, 7

12 12

.2

0.5 25' 25'

C9
lX
UJ

0. 3
LLJ

3, 2'

0. 1

X Z II~I Q L

FIG. 2. Energy bands of Ni for the vBH model at normal lattice constant. The dashed lines represent the spin-up bands and
the solid lines represent the spin-down bands,
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TABLE III. Energy levels at L (spin-up bands).

Energies (Ry) NR' NRb SR' GWB~ vBH' WCf EHK&

EF-EL
3

0.2027 0.1938 0.1896 0.2855 0, 1896 0.1709

EF-EL 0.0479 0,0298 0.0581 0.0587 0,0636 0.0278 0.062

EF-EL
3

0.0669 0.0589 0.0516 0, 1600 0.0511 0.0347 0.011

'Non-relativistic, 0. = 3, frozen core.

Results after eight more iterations of (a) using a soft core; nonrelativisitic, 0. = 3,
'Semirelativistic, 0. = 3, soft core.

Semirelativistic, soft core, at =0.728 and u) =0.708 (Ref. 16).
'Semirelativistic, soft-core, von Barth —Hedin model for exchange and correlation.
Wang and Callaway (Ref. 6); von Barth —Hedin form for exchange and correlation, nonrelativistic.

Interpretation of angle-resolved photoemission data, Eastman et at. (Ref. 19).

0.6—
Lp Q)

Q(

0.4—

J NR
-E Q L~

F I Q(

JSR

0.6—

0.4—

FIG. 3. Comparison of energy bands near L for the NR
and SR models.

model (EF EL =0.0—11 Ry). We return to a discus-
3

sion of this difference below.
The energy bands near X are shown schematically

in Fig. 1; the spin-down bands based on the X5( state
produce the hole pockets which give dHvA oscilla-
tions that are easily observable. Another set of hole

pockets resulting from the spin-down X2( level is

predicted by our calculations. Although these addi-
tional pockets have been found in all first-principles
band calculations as far as we know, they have not
been observed by direct experimental techniques
such as measurement of dHvA effect. Such dHvA
oscillations should be observable, although with diffi-

culty, since we have calculated the cyclotron mass ra-
tio to be about 1.9, a large value for such a small
area. (Gersdorf20 has suggested that measurements
of magnetocrystalline anisotropy provide evidence for
the existence of these X2) hole pockets and he esti-
mates a much larger mass ratio of about 197.) It
should be useful to search for these heavy hole pock-
ets directly.

In order to compare the different models we show
in Table IV energy differences which we associate
with s-p bandwidths, d bandwidths, and the s-d
separation. The s-d separation seems to be more sen-
sitive to the form of the exchange and correlation
than the widths of the d and s-p bands. The smallest
separation s-d is obtained for the NR calculation,
while the SR and vBH models give nearly equivalent
results. For decreasing lattice spacing (increasing
pressure) the bandwidths and s-d separation increase
for all models as shown in the table. The results ob-
tained by Wang and Callaway are also shown in the
table. Their bandwidths and s-d separation calcula-
ted with the von Barth —Hedin form for exchange and
corFelation are somewhat less than ours. This differ-
ence may be due to the fact that our calculation is
semirelativistic. The values from our NR calculation
and from the Wang and Callaway calculation (a = 3)=2
agree fairly well. (Both these calculations were non-
relativistic. )

The exchange splittings, energy differences
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TABLE IV. Comparison of energy differences (Ry).

Calculation EF I

s-d separation

~25 x, -r,
d width

X5 —X)
s-p width
X4' —I")

ap NRt
ap NR)

0.679
0.674

0.481
0;547

0.625
0.701

0.325
0.358

0.849
0.850

0.975ap NRt
0.975ap NR)

0.716
0,711

0.507
0.570

0.669
0.742

0.365
0.398

0.892
0.894

ap SRt
ap sRI

0.701
0.684

0.518
0.560

0.664
0.712

0.334
0.355

0.862
0.862

ap vBHt
ap vBH)

0.706
0.682

0.523
0.557

0.670
0.710

0.337
0.354

0.863
0.862

0.975ap vBH t
0.975ap vBH )

0.747
0.722

0.549
0.582

0.714
0.754

0.377
0.395

0.907
0.906

0.950ap vBH t
0.950ap vBH )

0.792
0.765

0.577
0.608

0.762
0.801

0.424
0.441

0.957
0.956

vBH (WC) t'
vBH (WC) )'

0,655
0.658

0.485
0.528

0.633
0.683

0.307
0.328

0.827
0.828

KS (WC) tb

KS (WC))
0.669
0.678

0.483
0.548

0.631
0.705

0,306
0.337

0.828
0.829

'Calculation of Wang and Callaway (Ref. 6) using the von Barth —Hedin form for exchange and
correlation.
Calculation of Wang and Callaway (Ref. 6) using the Kohn —Sham form for exchange.

between spin-down and spin-up bands, are also of in-

terest, In Table V these splittings are presented at
selected symmetry points for the NR, SR, and vBH
models and compared with the results of Wang and
Callaway. The splittings for the NR model are the
largest but these are reduced upon iteration with a
soft core as shown in the second row of Table V.
The SR and vBH splittings are approximately the
same and therefore we will once again discuss the
vBH model as representative of our calculations.
First it is clear that a rigid separation of the spin-up
and spin-down bands is an inadequate approximation,
Examining the points of d symmetry, L3, I 25', and

X5, we see that the splittings vary from 57 to 64
mRy. The s-d—like points, X~ and L~-, have a smaller
exchange splitting, approximately 44 mRy. There is
even a significant separation for the s- and p-like
states, I"~ and L2', of roughly 26 mRy.

The splittings we have calculated are somewhat
larger than those obtained by Wang and Callaway
who find a separation of about 44 mRy for the d
states. This may be due to the fact that our vBH cal-
culation is semirelativistic while theirs is not. Unfor-

tunately, this does not explain the larger splittings we
find for our NR model compared to Wang and
Callaway's calculation with Kohn —Sham exchange.
Our value for the lattice constant is larger since we
have chosen the room-temperature value used by
Connolly instead of a value obtained by extrapolation
to T =0 K. A smaller value for the lattice constant,
however, would increase the separations even more.

All the calculated splittings are significantly greater
than recent values obtained by Eastman et al. ' from
angle-resolved photoemission experiments. (They
estimate a splitting EL l

—EL 1=23 mRy. ) In addition,
3 3

they put the upper L3 level much closer to the Fermi
energy than we find from our studies. In order to in-

vestigate these points more fully, we considered the
effect of spin-orbit coupling on the energy levels at
the L point using the phenomenological approach of
Hodges et al. " We have considered only L3 states
which are d-like and assumed that the spin is quan-
tized along the [111]direction, which would be the
case for a dHvA measurement of the minimum
cross-sectional area corresponding to the necks at L.

From our Slater —Koster results we determined that
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TABLE E change

"il —r X, i Lil —L, I

Ener g»ifferences (R
2 l-L 21 13i —L a

3I L3l L I "25'l —r ~

25 I xsl-x5I

ap NR

~0 NR
0 975 Qp NR

&0 SR
~0 vBH

0 vBH

0~0»H
vBH (WC)d
KS (WC)e

o.0045
—0.0161

0.0059
0.0166
0,0239
0.p251
0.p268

—O.pp33
—o.0094

0.p468
0.p329
o.0458
0.0435
0.0466
0.p46p
0.0472
0,025p
0 0328

Q.Q436

0.0313
o.0434
0.0393
0.p422
o.042S
Q.{}432
0.{}225
o.0288

0.pp28
—0.02p6

0,0045
o.0177
o.0259
0.p273
0.p292

—0.p039
—0.0106

0.0692
0.Q602

o.0681
0.0569
O.p57p
O.p576
0.0576
0.p378
0.0522

0.p791
0.p71p
0.p78p
0.p637
0.0632
0.Q639
0,0641
o.0444
o.0617

o.0703
o.0616
0.p692
0.0573
o.0575
0.p579
0.p58p
0.04pp
0.0553

0.0799
0.0»s
0.{)792
o.0644
0.0639
0.Q646

0.0649
0.0463
o.0645

'Lowwer L3 level.
gher L3 level.

S«t core eiC, eight iterations
alculation of W» after 1p

'Calculation f
and Callaway

n o Wan ag and Callawaay

te t s fNR(
(Ref 6)

( «zen core)(fro

(Ref. 6) u
'

Barth —Hedinusing von
Koh —Sh

g o e
xc ange.

a ion.

the low

proximately —d
ow - y 3 stateower-energ L wave functionions were ap-

x -y and —'
t e form (3z' r'—

/ '"

th

and

j h Th
tates could b

wo funct"n' 'nd h
Td e exchange s 1'

'
e rom our vBH

s r p esented b
h o lirength of t

' gandLandS

g-p
ppen-

strength of theof th
co th'

e lt of fa fully relativistic

i i bo 50 yand E t
since our ca

man et al. ' ha
o give a much

m y. We h
c smaller v

lated the
alue of

'
g perturbation th

Boyer
eory as des

The upper L
pposite direct'di
ughly the sam

hb

unaffected b
no ogical resu

arne as ouru, which is

, ies atap r
ing in the fir

t 1

e icted b
e same

E t r I").

0.7

I i I I

Ener gy Levels at L

0.6

atomic

0.5—

OA—

0,02 0.04
«Ryi

0.06
I

0.08

FIGG. 4. Plot of L3 leve s as
p'n-orbit couplin

function of the str

ng (. The symbol L+,
r ouble- ro

'
at L

, even if the eoreo ver
db E

i ting at L
refers to th

interaction , our estimate of thi
o1 bo t8

d'ff Ks. leinman23 hahas suggested,



3180 ANDERSON, PAPACONSTANTOPOULOS, BOYER, AND SCHIRBER 20

TABLE VI. Core eigenvalues for vBH model. TABLE VII. q and A. determined by means of the theory
of Gaspari and Gyorffy (Ref. 20).

State
Spin down'

Energy (Ry)
Spin up Model g (eV/A2)

spin-up spin-down

A. total

1s
2$

2p 1/2

2p3/2

3s (r, )
3$(W )b

3p(L ')
3p (r)5)b

—600.9
—70.7
—61.6
—60.3
—6.871
—6.868
-3.980
—3.962

-6.940
—6.937
—4.047
—4.030

ap SR
ap vBH

0.975 ap vBH

0950ap v

0.05
0.06
0.07
0.11

2.17
2.44
2.85
3.38

0.21

0.24

'Energies are averaged for spin-down and spin-up potentials
for the four lowest states.
Values at selected symmetry points are given to indicate the

widths of these lower (semicore) bands.

however, another explanation, that the separation
between EF and L3t will be significantly reduced by
correlation effects not treated in vBH. He further
shows that these effects could be large enough to
reduce our calculated values for the exchange split-
ting to agree with the conclusions of Eastman et al. '

In Table VI for completeness we present the core
energy eigenvalues from the vBH calculation. For
the deepest levels the exchange splitting appears to
be smaller than the errors in our calculation and
therefore only the average of the spin-up and spin-
down energies is given. The semicore bands, 3s and
3p, are quite narrow, less than 20 mRy. The ex-
change splitting, however, is comparable to that for
the higher bands.

B. Densities of states

The densities of states for both spin-up and spin-
down bands have been obtained by interpolation us-

ing the tetrahedron and also the Slater —Koster
schemes. A plot of the densities of states for the
vBH model obtained from the 89-point mesh via the
tetrahedron scheme is shown in Fig. 5. The three
models, NR, SR, and vBH, give similar results. In
Table II we present the densities of states at the Fer-
mi energy broken up into separate angular momen-
tum components. These values are used as input for
the Gaspari —Gyorffy theory'4 for determination of X.

The total density of states at the Fermi level, 24.4
states per (atom Ry) for the vBH model, agrees with
the results of Wang and Callaway 22.92 states per
(atom Ry), but is significantly smaller than the ex-
perimental value of 40.4 states per (atom Ry).25

(Here we disagree with Connolly3 who obtained a
value close to the experimental result. Connolly's
densities-of-states calculations, however, were based

TABLE VIII. Magneton number and change with pressure.

Calculation Experiment
NR SR vBH' vBH"

0.69 0.67 0.63 0.66nt-nl
d ln(n t —n))

dP
(10~ kbar ~) —2.7 —2.8

0 56'

—2.94d

'Tetrahedron interpolation from 89-point mesh.
Slater —Koster interpolation from 20-point mesh.

'Reference 26.
Reference; 7.

upon only 20 first-principles APW points. ) From the
ratio of the experimental to calculated densities of
states, 1+t, we estimate an enhancement factor
A. =0.6. From the theory of Gaspari and Gyorffy
the electron-phonon interaction q has been calculated
using the angular momentum components of the
density of states and the scattering phase shifts, all
evaluated at the Fermi energy. Our values of q and
of the enhancement factor or coupling constant A.

(=g/M (oP), where M is the atomic mass and &o is an
appropriate phonon frequency) are presented in Table
VII. We have estimated (aP) from the expression
(co') = —, HD where OD =450 K, the experimental

1

value for the Debye temperature for nickel. 25 The
value of A. at normal lattice constant, 0.24 for vBH
and 0.21 for SR, is much lower than that deduced
from specific-heat measurements. We suggest that
the additional enhancement results from electron-
magnon interactions. We also note from Table VII
the expected increase of q with pressure and the fact
that the major contribution to the electron-phonon
interaction is due to the spin-down electrons.

From these densities-of-states calculation we have
also determined the magneton numbers, n t —n ), for
nickel. (See Table VIII.) These values are 0.69 arid
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C. Fermi surface

The calculated Fermi surface agrees with that
determined by Callaway and Wang. ' The surface
consists of: a spin-up copperlike I -centered. surface
with necks at L, two sets of spin-down hole pockets
centered at X, and two large spin-down pieces cen-
tered at I . Not all the large portions have been ob-
served experimentally.

Selected extremal cross-sectional areas A of the
Fermi surface have been calculated for several of our
models using the approach described in Sec. III and
these areas are compared with those of Wang and
Callaway' and with dHvA experimental values in
Table IX. The dHvA frequencies F have been con-
verted to cross-sectional areas by means of the rela-
tion

F(Gauss) = A (a.u. ') x 3.741 x 10'

From the table it can be noted that the agreement
between calculation and experiment is good for the

larger pieces of the Fermi surface. Even for the X-
centered hole pockets the models agree fairly well
with the dHvA results if one takes into consideration
the fact that the shapes of the pockets depend upon
the direction of the applied magnetic field used in
dHvA experiments. 2' For the smallest pieces, the
necks at L, the agreement is not very good. The NR
model gives especially poor values, but even the
cross-sectional area predicted by the vBH model is
about three times the experimental value. This
discrepancy is probably connected with the position of
the upper L3 level relative to EF. Since the addition
of the spin-orbit interaction does not significantly
shift L3 relative to EF, we do not expect that a fully
relativistic calculation would substantially improve the
agreement. As we mentioned earlier, Kleinman23 has
suggested that correlation effects will significantly de-
crease the separation between EL, and EF. We ~ould

expect a similar decrease in the neck cross-sectional
area and therefore we expect correlation effects to ac-
count for the discrepancy between calculation and ex-
periment, at least partially.

TABLE IX. Cross-sectional areas of the Fermi surface.

Orientation Center Band
WC~ NR

A {a.u. 2)

vBH vBH' Expt.
m'/mo
WC Expt.

Necks
Necks
Necks

Large Square
Pockets
Pockets
Pockets
Pockets
Pockets
Pockets
Pockets
Pockets

small square

[»1]
[11o]
[»2]
[oo1]
[oo1]
[1oo]
[»1]
[»0]
[1o1]
[oo1]
[1oo]
[»o]
[oo1]
[»o]
[»1]
[oo1]
[»o]
[»1]

L
L
L
r
X
X
X
X
X
X
X
X
r
r
I

r
r

6t
6t
6t
6t
3)
3l
3)
3)
3)
4)
4)
4)
5)
5)
5)
6t
6!
61

1.24
0.018
0.038

1.25
0.041 0.020
0.079 0.048

0.0294
0.073 0.045

0.089
0.144

2.20

0.84

0.059
0.101
0.086
1.96
1.56
2.03
0.84
1.00
0.79

0.0068 0.043 0.035 0.0236'
0.0402'
0 0313e
1.23
0.023'
0.049
0.028
0.034
0.028
0.050

. 0.086
0.070
2.04
1.59
2.08
0.80
0.96
0.71

0.0071
0.0102f

1.15g

0.0267
o,o66s'
0.0442f
O.OS8S'

0.17
0.29

1.95 2.22
0.90 0.66
1.41

1.69

8.84

4.75

1.59 1.97
2.24 .

1.51
9.53
8.06

».41
3.45
4.62
3.23

022fh
O.36f

0 77h, i

4,33'

'Reference 5.
Slater —Koster interpolation from 20-point mesh.

'Tetrahedron interpolation from 89-point mesh.
Callaway and Wang (Ref. 4). We have assumed that there is a misprint in this paper.

'Tetrahedron interpolation from equivalent of 240-point mesh.
fReference 28.
&Data obtained by R. W. Stark as reported in Ref. 5.
"Reference 27.
'Goy and Grimes, see Ref. 29.
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V. RESULTS AT REDUCED LATTICE SPACINGS

We have calculated the energy bands, Fermi-
surface cross sections, densities of states. and magne-
ton numbers for lattice spacings reduced by 2.5%
with the NR model and by 2.5 and 5% with the vBH
model. Changes with lattice spacing have been con-
verted to changes with pressure by using the experi-
rnental value for compressibility of nickel" and the
results are summarized in Tables VIII (magneton
number) and X (cross sections of the Fermi surface).
The pressure derivatives presented in Table X are the
average from calculations at 2.5 and 5% reduction in
lattice spacing. For the necks and the hole pockets
after five iterations with the 20-point mesh the
results for 2.5 and 5% reduced lattice constants were
inconsistent. It was necessary to make about ten
more iterations with the 20-point mesh at each lattice
spacing in order to obtain an approximately uniform
variation of cross-sectional area with lattice spacing as
described in Sec. III. The neck and hole pocket cross
sections were calculated from points corresponding to
a 240-point mesh while the larger pieces of the Fermi
surface were found from the 89-point mesh.

The calculated pressure- derivatives of the extremal
cross-sectional areas of the necks and hole pockets

(Table X) are small, in qualitative agreement with
the dHvA measurements. ' Our calculations suggest
that the experimental pressure derivative of the (001)
hole-pocket cross-sectional area of the Fermi surface
is positive in contradiction to the negative value re-
ported by Vinokurova et al. We believe that our
solid-helium phase-shift measurements for this piece
of Fermi surface are very reliable. (There are no
pressure data for the larger pieces. ) In addition there
is very good, possibly somewhat fortuitous, agree-
ment between our calculated change in the magneton
number with pressure (—2.8 x 10~ kbar ') and that
measured by Kondorskii and Sedov' (—2.94 x 10~
kbar ').

It does not seem to be possible to explain the
changes in these cross-sectional areas of the Fermi
surface with pressure on the basis of a simple model.
The simple model of Svechkarev et al.' based on
parameters for the relative shift of s-p and d bands
and the redistribution of electrons among the bands
does not fit the experimental results. However, from
our band calculations for the neck orbit and hole
pockets, we obtain magnitudes for the pressure
derivatives that are in agreement with experiment and
much smaller than one would expect based merely on
a shift of electrons from spin-up to spin-down bands

TABLE X. Pressure derivatives of cross-sectional areas of the Fermi surface.

Orbit Orientation Center Band
d lnA

(units of 10 kbar )

Cale. ' Expt.

Neck
Neck
Neck
Large Square
Pockets
Pockets
Pockets
Pockets
Pockets
Pockets
Ellipsoids

Small Square

[111]
f11o]
[112]
foo1]
[oo1]
[1oo]
[11o]
[1o1]
[112]
[111]
[oo1]
[1oo]
[11o]
foo1]
filo]
[111]
[oo1]
fl lo]
f111]

L
L
L
r
X
X
X
X
X
X
X
X
X
r
r
r

r
r

6t
6t
6t
3)
3)
3)
3l
3l
3l
4i
4l
4)
5).
5)
5)
6i
6i
6l

2.6b

1.5
2.3

2.6
3.1

2.6
2.5

2.7
—0.4

1.4
1.9
4.4
4.5
4.5
4.3
4.0
4,3

6 o (8.o )

{6,6d)

1.o (—o.8d)

(1.5d)

(6,6d)

'Calculated from the vBH model using tetrahedron interpolation from the 89-point mesh.
Calculated from equivalent of 240-point mesh.

'Solid-helium phase-shift technique.
Reference 2,
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Calculation

ap NR
0 975 ap NR

ap SR
ap vBH

0.975 ap vBH
0.950 ap vBH

0.0753
0.0903

0.0793
0.0789
0.0815
0.0838

TABLE XI, Separation of hole pocket and neck energy
levels,

change with the inclusion of the Darwin and mass-
velocity relativistic corrections to the Hamiltonian
although the effect is very small, That is, near the
Fermi level L2't ( L3t for calculations including the
relativistic terms and the order is reversed when
these terms are omitted.

We also have learned that particular attention must
be paid to convergence in spin-polarized calculations
to obtain the accuracy required for computation of
Fermi-surface changes. In order to explain measure-
ments of Fermi-surface changes with pressure it is
necessary to consider small details of the changes of
the energy bands and not merely an s-d shift and a
change in d-band width with pressure.

'Choice of L2' or L3 corresponding to the energy band
forming the necks.

as discussed in Sec. I.
In Table XI we show the energy differences, X3j-

L2't for NR and X3)-L3t for SR and vBH, for nor-
mal and reduced lattice spacings as a partial indication
of the shift of electrons between necks and ellipsoids.
We see that the difference actually increases with in-
creasing pressure. This result by itself might suggest
that there is a transfer from spin-down to spin-up
bands with increasing pressure or in other words that
the estimates based upon only the change in magne-
ton number with pressure are incorrect. Therefore
we see that the pressure effects are quite subtle. The
appropriate energy levels X3) and L3t (or L2 t for
NR) shift away from the Fermi energy with increas-
ing pressure, but the energy also changes more
quickly with wave vector (decrease in mass). Conse-
quently the bands cross the Fermi level at nearly the
same k values as in the normal pressure case and the
cross-sectional areas of the ellipsoids and necks are
little affected by pressure.

VI. CONCLUSIONS
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APPENDIX: SPIN-ORBIT INTERACTION
AT THE L POINT

Considering only the two L3 levels (since there is
no mixing with the L2' states), we write the appropri-
ate eight wave functions as

Ql 4'lxl i 42 4'2xl ~ 1CI3 lt'3xl i 1|74 $4xl

1173 dllx2 i 1176 42x2 i 1117 lt13x2 i 1178 d14x2

Here x~ and x2 are the up- and down-spin wave func-
tions quantized along [111],and the $ s, which form
representations of L3, are given by

We have compared several different treatments of
exchange and correlation in our spin-polarized APW
calculations for nickel. We have found that the von
Barth —Hedin model gives somewhat better results for
the magneton number and Fermi surface than the
A 3 model, a fact also noted by Wang and Calla-

2

way. A large enhancement in the density of states,
over and above that due to phonons, has been ob-
tained and we conjecture that electron-magnon in-
teractions contribute significantly to this enhance-
ment.

The ordering of the energy levels at L appears to

f( ) yz —xz
~ f( ) 2xy —yz —xz

2&/2
'

6&/2

and
7

3z —r
d'3 =f(r)(x' y'), lt4=f(r)—

Then the Hamiltonian becomes

Cx C+ g p
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where

hE,
2

0

I

2i/2

2

ig
2i/2

2

ig
2&/2

EEbEb—
2

I

21/2

0

AEb
b

2

I

2&/2

and

0

o
2 2

0
2 2

2 2
0 0

o o
2 2

2

0

I

2i/2

AE,
E, + —'

i$
21/2

b, EbEb+—

0

AEb
Eb+

Here E, and b,E, represent the energy and exchange
splitting, respectively, for the upper L3 level while Eb
and AEb represent the same quantities for the lower
L3 level. These exchange-split L3 levels, the eigen-
values of H, are plotted as a function of the strength
of the spin-orbit coupling ( in Fig. 4.
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