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Starting from a formula relating the exchange-correlation (XC) energy of the Kohn-Sham density-
functional formalism to the XC hole, we discuss some general but approximate descriptions of XC effects in
inhomogeneous electron systems, in particular valence electrons, using homogeneous-electron-gas data as
input. The new descriptions have all the virtues of the local-density (LD) approximation, including the
computational simplicity of a local XC potential, and it reduces to the latter in the proper limit. In
addition, they have a physically motivated nonloca1 dependence on the electron density, which results in
such desirable features as an asymptotical r ' behavior far away from, e.g., atoms and a z ' behavior of the
potential outside solid surfaces. %'e present two explicit forms of the XC energy functional, one which is
exact for a system with almost constant density but with possibly spatially rapid variations, and another
which is exact in some simple limits. Illustrations on atoms show them to reduce the error in the total
energy by about one order of magnitude compared with the LD approximation. Applications to surfaces
show a reasonable modeling of the image-potential effect but also illustrate shortcomings of the
approximations. %e also point out shortcomings of two earlier methods to extend the LD approximation,
the gradient expansion, and the expansion to second order in the density variations, when they are applied
to inhomogeneous systems.

I. INTRODUCTION

A quantitative understanding of many-particle
systems requires a knowledge of the correlations
(or intera, ctions) between the particles. A power-
ful and practical scheme to describe such corre-
lation effects has been developed by Kohn and
Sham' on the basis of the density-functional for-
malism of Hohenberg and Kohn. ' The essence of
the scheme is that the many-body problem is for-
mulated within a single-particle framework, where
the many-body nature of the problem enters via an
exchange-correlation (XC) potential i)zc(r). This
potential is defined as a functional derivative of
an XC ')energy functional Ezc(}i)of the density )i(r).

In view of the increasingly efficient and accurate
methods to solve the Schrodinger equation, the
central issue in the study of the elect;ronic struc-
ture of atoms, molecules, and solids is the con-
struction of the potential. In this perspective it is
a virtue of the Kohn-Sham scheme to provide a
basis for a single-particle potential vzc(r) and for
the functional

z„,( }--fn(r)~„, ( )d'~;

where ezc(r) is the XC energy density.
Another reason for the broad use of the Kohn-

Sham scheme is that even a fairly crude appioxi-
mation for the XC energy functional can give a

good description of a large class of properties.
To be specific, a local-density (LD) approxima-
tion

&„( }=I (p)e (i~))d„,

where ezc(n) is the XC energy Per electron of a
homogeneous electron liquid with density n has
been employed in most applications of the scheme,
in spite of the fact that the true XC interaction is
manifestly nonlocaE. This local. approximation,
generalized in order to describe spin polariza-
tions, has provided a remarkably successful de-
scription of quite a number of atomic, molecular,
and solid-state systems and properties. ' For
many of these systems, however, there is no p
priori justification for using a LD approximation.
In some applications, the LD approximation is
known to give an insufficient accuracy and to fail
to account for certain features; for instance, it
gives exponentially decaying ezc(r) and vzc(r) for
neutral atoms' and metal surf', ces' rather than the
proper power-law behavior, r' and -1/—4z, re-
spectively. Therefore, a considerable amount of
activity has been devoted to ygonlocgl approxima-
tions to the XC energy functional.

One of the most used nonlocal approximations
includes the lowest-order density-gradient cor-
rections. ""The XC energy functional is given
by
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d (n)= fn(r)n'„r(n(r)) d'r

i&n(r) l'
+ c n r 4(3 d ry

n (r) (2)

—4 K„c r —r', n

&& [n(r) -n(r')]'d'rd'r', (3)

where K„c is directly related to the dielectric
function of the homogeneous electron liquid of
density n. The density parameter n in Zxc(r —r', n)
is well defined in the proper limit of almost-con-
stant density, where it is n, . When E(I. (3) is used
for inhomogeneous systems, however there are
several plausible choices for the argument n, and
we will show in Sec. II that this ambiguity leads to
results ranging from finite to infinite values for
XC energies of atoms and metal surfaces.

Neither of these nonlocal approximations seems
to provide any systematic improvement on the
local-density approximation for real physical sys-
tems. In order to successfully extend the LD ap-
proximation to include nonlocalr effects, it is im-
portant to understand why, in practice, the local
approximation works at all for systems with rela-
tively rapid density variations. We believe the
main reason to be that the LD approximation sat-
isfies the criterion of charge conservation, start-
ing that the XC hole should contain exactly one
electr on. '

In this paper we propose two approximations to
the XC energy functional with nonlocal density de-
pendence that retains this essential property: The
first one, for later reference called the aeerage-
density (AD) approximation, is obtained by writing

Exc as

d (n) fn(r)r„(n„gr))=d'r. (4)

The nonlocal-density dependence is introduced
through n(r), which is a weighted average of the

where c(n(r)) is a function of the density. In the
simple case of weak density variations, however,
the gradient corrections do not seem to improve
upon the LD approximation. ' The expansion (2) is
aimed at systems of slowly varying density, i.e. ,
of the form n(r) = v(r/ro) with r,-~, where v(x) is
a continuous function.

A different class of systems is characterized by
an almost-constant density, i.e. , n(r) = n, + hn(r)
with

~

&n(r)/n,
~

« I and n, constant. Summation of
a subseries of gradient terms in this limit gives
tp the lpwest prder in Ln '

d„,(n) fn(F)r=„,(n(r)) d'r

density in the neighborhood of the point r. The
weighting automatically corrects some of the exag-
gerations of the LD approximation [E(I. (1)], such
as the magnitude of axLcn(r) for atoms being an
overestimate close to the nucleus and an underes-
timate in the outskirts of the atom. ' The weighting
is obtained by re(luiring that E(l. (3) should be re-
produced in the proper limit. Whereas the LD ap-
proximation is exact in the limit of almost-con-
stant density with spatially slow variations, this
prescription for n(r) makes the nonlocal approxi-
mation (4) exact in the limits of almost constant
density without any restrictions on the rapidness
of the spatial variations.

The second prescription, called the weighted-
density (WD) approximation, is similar in spirit,
in that it extends the I D approximation to one that
depends on densities in a neighborhood. The
weighting is different, however, and the details
will be described in Sec. II.

It should be stressed that our main interestis the
description of the valence electrons, due to their
great importance for the behavior pf molecules
and solids. Further, the model system behind the
functional for the description of the XC effects
should be most appropriate for valence electrons
or, more generally, for intrashell exchange and
correlation. To avoid an inaccurate description
of intershell effects, a scheme for subdivision of
the density is proposed (Sec. III) and used (Sec.
IV).

The input parameters for expansion (4), for the
prescription for n(r) and for the WD approxima-
tion come from homogeneous-electron-liquid cal-
culations. We give in this paper numerical results
to be used as input in the prescriptions (Sec. III),
and as illustrations of the methods, we apply them
to the calculation of the total energy of a number
of atoms (Sec. IV) and for some surface properties
of metals in a simple model (Sec. V). These sys-
tems have been used in earlier studies of the LD
approximation and attempts to improve it.

Compared with the LD approximation, the error
in the exchange energy of a series of light atoms
is reduced by almost one order of magnitude in
both the AD and WD schemes. This essentially
holds also for the XC energies in the AD scheme,
whereas in this case the WD scheme hardly im-
proves upon the results of the LD approximation.
In addition, our methods model the -r ' behavior
of exc(r) in the outskirts of a neutral atom and the
g ' behavior of the potential outside a metal sur-
face. Unfortunately, the surface energies come
out wrong in the two approximations, the AD re-
sult being much too large and the WD result being
too small.

The virtues and the shortcomings of the AD and



3138 O. GUNNARSSON, M. JONSON, AND B. I. LUNDQVIST 20

WD approximations are summarized and discussed
in Sec. VI.

II. FUNCTIONALS WITH A NONLOCAL-DENSITY
DEPENDENCE

For later reference we give a few formulas of
the density-functional formalism. ' A basic quantity
in this approach is the exchange-correlation energy
functional Ezc(nj, which is defined by

e' n (r)n (r')
Ir -r'I

where E„fn}is the functional for the total energy
of an interacting system with the density n(r) in an
external potential v(r) and T, Lnk is the functional
for the kinetic energy of a rioninteracting system
with the same density. In this formalism the elec-
tron density is obtained from

(6)

where g„(r) are solutions of a Schrodinger-like
equation

[-h 'V'(2m+ v(r) + V„(r)+ v„,(r) j y„(r)
= &„e„(r).

The Hartree potential Ve(r) is calculated from

gent gxc in the tail region should be present also
for metallic surfaces. In recent calculations""
of ihe surface energy and work function, however,
it has been avoided by using the method of potential
variation, "which minimizes the energy functional
directly, ' or by using model densities in the func-
tional.

Difficulties of the gradient expansion can also be
illustrated by considering a simple system with
an almost constant density but with possibly rapid
variations, for which the expression (4) is cor-
rect. In this limit a gradient expansion is equiva-
lent to a power expansion of the Fourier transform
K„,(q) of the kernel Zzc(r) in Eq. (3).' We shall
therefore study the expansion of Xzc((I). In Fig. 1
we show the Kzc(q) obtained from the dielectric
function calculated by Geldart and Taylor" together
with the curves for the power expansions corre-
sponding to the local-density approximation and the
two low'est-order gradient corrections. For real
physical systems the density has important Fourier
components for wave vectors of the order of Fermi
wave vectors. Fig. 1 shows important deviations
in this range. It is questionable, if the first gradi-
ent correction gives any improvement of the I D
approxj. mation, and the second-lowest correction
worsens the result drastically.

The expansion to second order in the density
variations (3) is correct for weak but possibly

and the XC potential v„c(r) is defined

(9)

LO

The main problem in this approach is to determine
Ezc(n). Once a functional form for Ezc jn) is as-
sumed, Eqs. (6)-(9) can be solved self-consistent-
ly, giving the density of the system and through
Eq. (5) the total energy. In this way ground-state
properties of the system can be obtained.

We will first discuss the two approaches (2) and

(3) to go beyond the local-density (I D) approxima-
tion (1) by using a nonlocal dependence on the den-
sity. In doing so we will point out some difficul-
ties, and show the need for a new functional.

The gradient expansion' ' has in particular been
applied to atoms, e.g. , by Herman et al. ' They
pointed out that in this case the potential (9) is
divergent both at the nucleus and in the density
tail far from the nucleus. Therefore they intro-
duced a convergence factor in the potential, which
makes it finite over all space. However, Schwartz'
has shown that the results are sensitive to the form
of the convergence factor. The problem of a diver-

C)
IJ
X

0
X

FIG. 1. Fourier transform of the kernel Xxc (r, n) in
Kq. (3} for r~=2, compared with the results of using the
local-density approximation (marked LD) and adding the
lowest and two lowest-order gradient corrections, res-
pectively (q =—0/k~. ,).
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rapid variations. Equation (3) is thus derived"
assuming that the density of the system is

n(r) = g, + &n(r),

with

hn(r) d'r= 0 .

0— [n t K„,(r-r', n )(n(r)-n(r') ) I

I
I
I

r+r
I «. = ( 2 ) bulk Cu

1

Then the XC energy functional Exc is expressed
in terms of a kernel Kxc(r —r', n, ), which is re-
lated to the dielectric function of a homogeneous
medium with the density n, (see Appendix A}. For
extrapolations to real systems with strong density
variations, however, the theory does not provide
a satisfactory prescription for how to calculate the
density argument n of Eq. (3}. Hohenberg and
Kohn' have suggested the form

n(r'(r+ r'}).

A second plausible argument is

2 nr+nr'

(12a)

(12b)

but there are many other reasonable choices, for
instance some weighted average of ~(r). Sham'~

proposed

~(-'(Ir I+ I" I)) (12c)

for atoms, where Ir I
is the distance to the nu-

cleus. All these forms would give the same result
for a system with weak density variations. In the
following we shall show, however, that for a real
physical system the result is sensitive to the
choice of the density argument, and that the lack of
a theory on this point therefore is crucial.

We first present in Fig. 2 the integrand of Eq.
(3) for bulk copper. The figure shows that the
two density arguments (12a) and (12b) above give
results that typically differ by one order of mag-
nitude. This difference is due to the different
ranges of the kernel in the two cases. The kernel
becomes small if rkgn)»1, where k~ is the Fer-
mi wave vector. Assume that r'is at the Wigner-
Seitz radius and r' in the core region. As —,'(r+ r'}
then lies in the valence region, (12a) gives only a
moderately large density argument. Although the
kernel is small in this situation, it is not negli-
gible and together with the very large factor [s(r)
—n(r')]' it gives an important contribution. If, on
the other hand, (12b) is used, the corresponding
k~(2 [n(r)+ s(r')] } is so large that the kernel al-
most cuts off the contributions from the core re-
gion. To show that the discrepancy between (12a),
(12b), and (12c) remains also after the integra-
tions have been performed, we give in Appendixes
A and B some results for atoms and surfaces.

In Appendix A we have applied the expression (3)
to atoms. We find that using (12b) above, the XC

n~= 2 (n(r )+n(r'))
-5—

1

r/ao

FIG. 2. Absolute value of the integrand of Eq. (3) for
bulk copper. The vectors r and r ' are assumed to be
parallel and r is fixed at the signer-Seitz radius. The
figure shows the difference between the choice (i)
a(s(r+r')} (dashed curve) and (ii) z[n(r)+n(r')] (full
curve) for the density argument. Observe the logarith-
mic scale.

III. DERIVATION OF NEW NONLOCAL FUNCTIONALS

A. Exchange-correlation hole

The LD functional (1) and the gradient-corrected
ones in Sec. II have been derived assuming slow
density variations, i.e. , for densities fulfilling the
criteria'

Ivs(r)/n(r)
I
«k, (~(r)}

and

I v,v,~(r)/vs(r}
I
"ks(.(r))

where kgn) =(3v'n)'i' is the "local" Fermi wave
vector Figure 3 show. s that the density gradients
of bulk Cu and for the jellium model of a metal
surface ought to be about one order of magnitude
smaller to make the use of these functionals well
justified according to criterion (13). Considering

(13)

energy is finite. On the other hand, application of
(12a) or (12c) makes the integral in (3) divergent,
i.e. , the energy is infinite and positive.

The application of Eq. (3) to a metal surface is
discussed in Appendix B. Again, we find that (12b)
gives a finite surface energy, while the energy is
infinite if (12a) is used. It should be noted that for
the gradient expansion the divergencies appear in
the XC potential, while they occur already in the
XC energy for the second-order expansion (3).
In the latter case there is obviously no sensible
way of using convergence factors, if one is inter-
ested in the energy of the system.
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id density variations, the failures of the
nonlocal functionals discussed in Sec.
surpris ing.

On the other an,h d the LD approximation has
been successfully applied gto a lar e number of
systems and properties. This indicates that val-
uable features of eth LD approximation have been

t in the generalization to these o
~ ~ nonlocal func-

tionals. In the rest of this section we will there-
fore discuss w y es wh the LD approximation is so suc-
cessful an use id th's experience to construct new
nonlocal functionals.

The XC energy can convenient yl be viewed as
b tw en an electron and the chargethe interaction e een

s howr'& of its XC hole. The hole describes ownxc(r, r' o s s
r' ivenrobability of finding an electron at r, g'

u ressed due ton electron is present at r, is suppaneecr
the Pauli principle and the Coulom ilomb interaction.
An exact expression for the XC energy can be
written""

r r')Exc n =2q I=— d'rn(r)
)r —r

1

I

5

ct

r '/ao

FIG. 4. Exchange-correlation xchole n (r, r')
atom. The full curve shows(Eq. 15) for a hydrogen atom.

de ict the holehe exact hole, while the dashed curves depict t e o e

of the electron (,
the dielectric function of Singwi et al Re .
x-axis gives eth distance from the nucleus.

-5 0
Z /a VacuumMetal 0

. 3. (a) Typical values for the density gradientFIG. 3. (a) ~ pica v
a function of the di. stance[Eq. ( ) i13 ] in metallic copper as a unc i

The same quantity in thefrom the closest nucleus. T e same
for a surface. The z coordinate is per-

pendicular to the surface. The curve mar e n x s
the electron density.

with

1

n (r r')=n(r') [g„(r, r';X) —1]dhXC

=-n(r')G(r, r'),
the pair correlation functionwhere g„r, r; is

of a system wi a e'th d nsity n(r) and the coupling
constant Xe'. The density n(r') is evaluated for

mation means a weth t use the pair correlation
'X) for the homogeneous elec-function g„&-,&

r —r;
tron liquid of density n(r) and write

n r r -n "- — 'X-1 & (16)(r r')=n(r) [g &-&(r —r;A. —
0

Fi ure 4 shows the exact and the LD result for ygxcFigure 4 s ows e
f h drogen atom, illustrating e rthe drastic differ-

ence between the exact and the approxim ate holes.
roton and its sizeTh f rmer is centered on the pro oe or

ent of the electron position. The ahe latteris independen o e
ize which variesfollows the electron and has a size, w ic v

ith the electron coordinate. Figure 5
n atomgives an illustration for a many-electron a om,

neon. To be a e o cbl t compare with exact results,
we have inc u e ol ded only exchange effects, which

16 trivia .makes the integral over X in Eq. (16) ' ' . e
b tween the exact result and the LDdisagreement e ee

of theimation is not unexpected in view o eapproxima ion
'

he LD a roxima-lackin formal justification for the appr
ion ' ms. That the LD ap-tion for inhomogeneous systems.

proximation still can give ge ood results, can be
3.understood as follows:
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'" (r' -r)/a, 0.1

0,0
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0.1 02 „/ 03 0.4

2.0—
Ne

0.10

1.0
0.05

-0.5 (r r j/Q
0.0 0.5

FIG. 5. Exchange hole n„(r, r') for a neon atom. The
full curves show exact results and the dashed curves
show the results in the LD approximation. The curves
in (a) and (b) are for two different values of r.

0.50.0 r" /a

FIG. 7. Spherical average of the neon exch+ange

hole [Eq. (17)] times r" for (a) r= 0.09 a. u. and (b)
~=0.4 a.u. The full curves give the exact results and
the dashed curves are obtained in the LD approxima-
tion.

1.0

First, only the spherical average

=(4~) ' J d'r'n. „,(r, r'),
Ir-r' I = r"

of the hole influences the energy. Figure 6 shows

004 H

this average for the hydrogen atom, with ~r
~

= 1
and 2 a.u. , and Fig. 7 is a similar plot for neon.
It illustrates the partial cancellation of errors
that will generally occur, when calculating the av-
erage.

Secondly, the. LD approximation satisfies charge
conservation. This can be expressed as a sum
rule'

0.03
s
I

fI

ci „0.02
III X

C
I

0.01

.01

.005

rx2

or

d'r' n„c(r, r') = -1,

J r"'dr'n„"(r, r")= -1,
0

(18a)

(18b)

0 1 2 3 0 1 2 3 4 5
r"lao r "lao

FIG. 6. Spherical average of the hydrogen XC hole
I, Eq. (16)] times r" for z= 1 and 2 a.u. as a function of
r". The full curves give the exact results and the
dashed curves are calculated in t&e LD approximation.

stating that the XC hole corresponds to the removal
of one electron charge. E(luation (18b) implies that
if nsxAc(r, r") has positive errors for some values of
r, it is bound to have negative errors for other
values, implying a systematic partial cancellation
of errors. This is illustrated for the hydrogen
atom in Fig. 8, which shows the XC energy density
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-1r0

I

1
rya.

nzc(r, r') is described as well as possible over the
major range of the XC hole, i.e. , for ~r —r'

~

S k~'(n(r)). A suitable average of the density, n(r),
could be such a prefactor approximation. In addi-
tion, due to the nonzero range of the XC forces,
&zc(r) [Eq. (19)] should not only depend on the den-
sity in the point r, as it does in the LD approxi-
mation, but on the density in all points within a
distance of the order of k„'(n(r)) from r.

These features can be incorporated by assuming
the following form of the XC hole:

FIG. 8. Exchange-correlation energy density for
hydrogen I Eq. (19)] as a function of the distance from the
nucleus. The curves show the exact result and the result
in the LD approximation, respectively.

l
~zc(r, r') =n (r) [g",.)(r —r', X) —1]dX, (20)

0

with

[derived from Eqs. (14) and (17)]
n(r)= Jw(r —.r', n(r))n(r')d'r', (21)

0
(19)

resulting after the r" integration is performed.
We note that for ~r

~

= 2 the error of typically a
factor of 2 in yP„~(r, v") is reduced to about 3(P/p

for &zc(r). (The numerical results can be further
improved by using a spin-dependent formalism. ')
Figure 12(b) shows the corresponding result for
neon. The conclusions of this analysis are there-
fore that in order to improve upon E„c, (a) we
should concentrate on improving the description
of the spherical part nxc of the hole, as the non-
spherical parts do not contribute to Ezc) and (b)
the approximate functional should satisfy the sum-
rule (18).

B. Average-density approximation

In looking for improved approximations, we ob-
serve that nzc(r, r') in Eq. (15) is the product of a
density prefactor n(r') and the integrated pair cor-
relation function g. Because of the limited know-
ledge about g for inhomogeneous systems, it is
natural to start by using the pair correlation func-
tion of the homogeneous electron liquid g"„(r;X),
where r is the relative distance between the elec-
trons in the considered pair. Then it remains to
make a choice of an approximate density prefactor
and a suitable density argument n.

In the LD approximation (16) the prefactor ~(r')
is replaced by n(r) for all values of r'. This is ob-
viously a good approximation only for r =r', a re-
gion which is unimportant in Eq. (1), due to the
volume element d'r'. If the prefactor should be
approximated, the replacement should assure that

where gg is a weight function to be determined be-
low.

In this average density (A-D) approximation" the
XC energy functional becomes

d„n(n) =fn(r)rn, (n(r)) d'r. (22)

The functional satisfies both criteria (a) and (b)
above; the latter is fulfilled because the pair cor-
relation function of the homogeneous medium
automatically gives a hole containing one unit
charge. Below, we will choose gv(r —r', n(r)), so
that it is large for ~r —r'

~

S kz(n(r)) ', implying
that the density is sampled over a physically rea-
sonable region. Finally, the use of p(r) instead
of a g(r) in front of the bracket in Eq. (20) means
that the region, where the exact and approximate
nzAc(r, r") are close to each other, tends to be dis-
placed from the point jr

~

= r Because .the sizes
of the hole and the weight function gg are of the
same order of magnitude, this displacement has
a physical size.

The weight function gg could be chosen in several
ways. The one that we propose is constructed by
making maximal use of the present knowledge of
the weakly inhomogeneous electron liquid. In par-
ticular, we require that in the limit of weak varia-
tions in the density, i.e. , for ~hnln,

~

«Ir our
functional should reduce to the expression (3),
whichin this limit is exact. Together with some
physically motivated additional conditions, this re-
quirement uniquely determines a)(r', n(r)), as is
discussed in Appendix C. To calculate w, we apply
Eqs. (20) and (21) to a system with the density giv-
en by Eqs. (10) and (11). Requiring that the weight
function is normalized,
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JI gv(r', n(r)) d'r'=1, (23)
~ ~XC2» {n)=fdr» r n(n)+ f drn . nd(F)

~n

E(luation (21) can be written + d'r '"'~nr-~n r-

n(r)=n, + fw(r —F', n( F))nn(F) dr' 92
+F~n,

n
", {nd(F))'),0 8 2 (25)

—=n()+ &n(r) . (24)

Expanding E(l. (20) to second order in hn(r) gives

where the derivatives are taken at the density np.
Using Eels. (11) and (23), we find to second order
in b.n(r)

d'rr»n(F) = f d'r fd'r' f d r"—(r —r', n )n (r —r", n )r(F»)nr(Fr')n.

Identifying with E(I. (3) gives

(26)

—,
' K„c(r- r', Fg,) = n, " d'r" (r' —r, n, )w(r" —r', n, )+ " (n, )w(» - r', n, )0 0

2

+ —n, " (n, )f d'r "w(r —r, n, )w(r" —r', n, ) .
&n

(2'1)

Re(luiring gv(r) = gv( —r), we get after Fourier trans-
formation (0 ) 2

S~xc S ~xc(n)
xc

—,'K„,(k, n, )=n, *' ' w(k, n, )
s&„(n,) &w(k, n, )

en 0

& ~„,(n, ) (k )en

Q2

(28)
w(q, r, ) = gv (qk ~(r,), r,) (32)

which follows from the compressibility sum rule.
The properties and the solution of E(I. (30) are

discussed in Appendix C. To represent the solu-
tion, it is convenient to use the dimensionless
variable q= k/kz(r, ), as

This equation relates gg to parameters of the homo-
geneous electron liquid, as Exc can be directly ex-
pressed in the dielectric function a(k) of that sys-
tem, '

K„(k,n, ) = (4FFe'/k')([e(k, n, ) —1] '

—[e„p„(k,n,)-1] '], (29)

where &»„(k,n) is the dielectric function of the
homogeneous electron gas in the random-phase
approximation.

We rewrite Eg. (28) as

for given q has a smooth dependence on x,. %e
present data for gv(q, r,) in Fig. 9 and Table I.
The weight function gv(q, r,) has a range -2, which
can be trs, ced to the range -2k' of Kxc(k, r,) As.
should be expected for physical reasons, this

[gv(k, r,)]'+ 2di(r, )w(k, r, ) i
1--r,! 1 Sw(k, r, )

—[1+2A(r, ) ]f(k, r,) = 0,
where

f(k, r,)= Kxc(k, r,)/Kxc(0, r,),
se„,( )/e

ns'~„, (n)/sn' „
and

%e have used the relation

(30)

0
0 I 2 3

FIG. 9. Fourier transform of the sampling function
gv(r —r'; n(r')} (Eq. (21}l (full curves) aud the correla-
tion function GRpA(q, n) [Eq. (38)] (dashed curve), (q
=k/k'~).
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TABLK I. Solution w(q, r, ) of the differential equation (28) tabulated as a function of @=k/kz and ~, .

0.0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20
2.25
2.30
2.35
2.40
2.45
2.50
2.55
2.60
2.65
2.70
2.75
2.80
2.85
2.90
2.95

0.0

1.000
1.044
1.081
1.112
1.138
1.160
1.179
1.195
1.208
1.220
1.230
1.237
1.244
1.248
1.251
1.253
1.253
1.252
1.250
1.246
1.241
1.235
1.227
1.218
1.207
1.194
1.179
1.163
1.144
1.123
1.099
1.072
1.041
1.005
0.965
0.918
0.863
0.798
0.719
0.620
0.507
0.428
0.378
0.342
0.317
0.291
0.269
0.250
0.232
0.217
0.203
0.192
0.183
0.175
0.167
0.159
0.152
0.145
0.139
0.133

0.5

1.000
0.993
0.989
0.986
0.982
0.980
0.978
0.976
0.974
0.973
0.972
G.970
0.968
0.965
0.964
0.964
0.964
0.964
0.964
0.963

0.959
0.956
0.952
0.946
0.940
0.932
0.923
0.911
0.897
0.882
0.865
0.843
0.819
0.793
0.763
0.722
0.682
0.632
0.574
0.523
0.464
0.432
0.399
0.378
0.355
0.336
0.318
0.302
0.287
0.274
0.261
0.250
0.24Q

0.231
0.221
0.213
0.205
0.197
0.190

1.0

1.000
0.991
0.985
0.981
0.977
0.973
0.969
0.964
0.959
0.955
0.950
0.945
0.941
0.936
0.930
0.925
0.919
0.913
0.906
0.899
0.891
0.882
0.872
0.861
0.849
0.836
0.821
0.807
0.794
0.780
0.765
0.749
0.732
0.713
0.692
0.669
0.643
0.616
0.585
0.552
0..519
0.490
0.464
0.441
0.421
0.401
0.384
0.367
0.352
0.337
0.324
0.311
0.299
0.288
0.278
0.268
0.258
0.249
0.241
0.233

1.000
0.991
0.984
0.979
0.974
0.969
0.966
0.962
0.957
0.953
0.947
0.942
0.937
0.931
0.925
0.920
0.913
0.907
0.900
0.893
0.886
0.878
0.870
0.861
0.851
0.841
0.830
0.818
0.805
0.791
0.776
0.760
0.742
0.723
0.702
0.679
0.653
0.626
0.597
0.565
0.535
0.510
0.487
0,467
0.447
0.429
0.412
0.396
0.381
0.367
0.354
0.342
0.330
0.319
0.308
0.298
0.288
0.279
0.270
0.262

2.0

1.000
0.991
0.983
0.977
0.972
0.966
0.962
0.958
0.954
0.950
0.945
0.940
0.934
0.928
0.922
0.916
0.909
0.902
0.895
0.888
0.880
0.872
0.863
0.854
0.844
0.834
0.823
0.811
0.799
0.786
0.771
0.756

0.721
0.702
0.682
0.659
0.635
0.610
0.582
0.555
0.531
0.510
0.490
0.471
0.454
0.438
0.423
0.408
0.394
0.381
0.369
0.357
0.346
0.336
0.325
0.315
0.305
0.296
0.287

2.5

1.000
0.990
0.983
0.977
0.970
0.965
0.959
0.954
0.950
0.946
0.941
0.937
0.932
0.927
0.921
0.915
0.908
0.901
0.893
0.886
0.878
O.F70
0.861
0.852
0.842
0.832
0.822
0.810
0.798
0.786
0.772
0.757
0.742
0.725
0.707
0.688
0.667
0.645
0.621
0.596
0.571
0.548
0.528
0.510
0.492
0.475
0.460
0.445
0.430
0.417
0.404
0.392
0.380
0.368
0.358
0.347
0.337
0.327
0.318
0.309

3.0

1.000
0.990
0.983
0.976
0.970
0,964
0.958
0.952
0.947
0.942
0.938
0.933
0.929
0.924
0.919
0.913
0.907
0.901
0.893
0.886
0.878
0.870
0.861
0.852
0.843
0.833
0.822
0.811
0.799
0.787
0.774
0.760
0.745
0.729
0.712
0.694
0.675
0.654
0.632
0.609
0.586
0.564
0.545
0.527
0.510
0.494
0.479
0.464
0.450
0.437
0.424
0.412
0.400
0.389
0.378
0.367
0.357
0.347
0.338
0.329

3.5

1.000
0.990
0.983
0.976
0.969
G.963
0.957
0.951
0.945
0.940
0.935
0.930
0.925
0.920
0.916
0.911
0.906
0.900
0.893
0.886
0.879
0.871
0.863
0.854
0.844
0.835
0.824
0.814
0.802
0.790
0.777
0.764
0.750
0.735
0.719
0.701
0.683
0.664
0.643
0.621
0.599
0.579
0.561
0.543
0.527
0.511
0.496
0.482
0.468
0.455
0.442
0.430
0.418
0.407
0.396
0.385
0.375
0.365
0.356
0.346

4.0

1.000
0.990
0.982
0.975
0.969
0.962
0.956

. 0.950
0.944
0.939
0.933
0.928
0.922
0.917
0.912
0.907
0.902
0.897
0.892
0.885
0.879
0.872
0.864
0.856
0.847
0.837
0.827
0.817
0.806
0.794
0.782
0.769
0.755
0.741
0.725
0.709
0.691
0.673
0.653
0.633
G.612
0.592
0.575
0.558
0.542
0.526
0.512
0.498
0.484
0.471
0.458
0.446
0.434
0.423
0.412
0.401
0.391
0.381
0.371
0.362

4.5

1.000
0.991
0.982
0.975
0.968
0.962
0.955
0.949
0.943
0.937
0.932
0.926
0.920
0.915
0.909
0.904
0.899
0.894
0.888
0.883
0.877
0.871
0.864
0.856
0.848
0.840
0.830
0.820
0.810
0.799
0.787
0.775
0.762
0.748
0.733
0.717
0.700
0.683
0.664
0.644
0.624
0.606
0.588
0.572
0.556
0.541
0.526
0.512
0.499
0.486
0.473
0.461
0.449
0.438
0.427
0.416
0.406
0.396
0.386
0.377

5.0

1.000
0.991
0.982
0.975
0.968
0.962
0.955
0.949
0.943
0.936
0.930
0.924
0.919
0.913
0.907
0.902
0.896
0.891
0.885
0.880
0.874
0.869
0.862
0.856
0.848
0.840
0.832
0.823
0.813
0.803
0.792
0.780
0.768
0.754
0.740
0.725
0.709
0.692
0.675
0.656
0.637
0.618
0.602
0.585
0.570
0.555
0.541
0.527
0.513
0.500
0.487
0.475
0.463
0.452
0.441
0.430
0.420
0.410
0.400
0.390

5.5

1.000
0.991
0.982
0.975
0.968
0.961
0.955
0.948
0.942
0.936
0.930
0.923
0.917
0.911
0.906
0.900
0.894
0.888
0.882
0.877
0.871
0.865
0.859
0.853
0.847
0.840
0.832
0.824
0.815
0.806
0.796
0.785

0.761
0.747
0.733
0.718
0.702
0.685
0.667
0.649
0.631
0.615
0.599
0.584
0.569
0.555
0.541
0.527
0.514
0.502
0.489
0.478
0.466
0.455
0.444
0.433
0.423
0.413
0.403

6.0

1.000
0.992
0.982
0.975
0.968
0.961
0.954
0.948
0.941
0.935
0.929
0.923
0.916
0.910
0.904
0.898
0.892
0.886
0.880
0.874
0.868
0.862
0.856
0.850
0.844
0.838
0.831
0.824
Q,816
0.807
0.798
0.788
0.777
0.766
0.753
0.740
0.726
0.711
0.695
0.678
0.660
0.644
0.628
0.612
0.597
0.583
0.568
0.555
0.541
0.528
0.516
0.504
0.492
0.480
0.469
0.458
0.447
0.437
0.427
0.417
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TABLE I. (Continged)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 6.0

3.00
3.05
3.10
3.15
3.20
3.25
3.30
3.35
3.40
3.45
3.50
3.55
3.60
3.65
3.70
3.75
3.80
3.85
3.90
3.95

0.127
0.124
0.120
0.116
0.111
0.107
0.102
0.098
0.094
0.090
0.086
0.082
0.077
0.074
0.071
0.068
0.066
0.063
0.061
0.060

0.183
0.177
0.171
0.161
0.160
0.154
0.150
0.145
0.139
0.135
0.131
0.127
0.123
0.119
0.115
0.112
0.109
0.106
0,102
0.099

0.225
0.218
0.211
0.204
0.198
0.192
0.186
0.181
0.175
0.170
0.166
0.161
0.157
0.152
0.148
0.143
0.139
0.135
0.132
0.128

0.254
0.246
0.239
0.231
0.224
0.218
0.212
0.206
0.200
0.195
0.189
0.184
0.179
0.175
0.170
0.165
0.161
0.157
0.153
0.149

0.279
0.271
0.263
0.256
0.248
0.242
0.235
0.229
0.223
0.217
0.211
0.205
0.200
0.195
0.190
0.185
0.180
0.176
0.172
0.167

0.300
0.292
0.284
0.276
0.269
0.262
0.255
0.248
0.242
0.236
0.230
0.224
0.218
0.213
0.208
0.203
0.198
0.193
0.188
0.184

0.320
0.311
0.303
0.295
0.288
0.280
0.273
0.266
0.260
0.253
0.247
0.241
0.235
0.229
0.224
0.218
0.213
0.208
0.203
0.198

0.337
0.329
0.320
0.312
0.304
0.297
0.290
0.282
0.275
0.269
0.262
0.256
0.250
0.244
0.238
0.232
0.226
0.221
0.216
0.210

0.353
0.344
0.336
0.328
0.320
0.312
0.304
0.297
0.290
0.283
0.276
0.270
0.263
0.257
0.251
0.245
0.239
0.233
0.228
0.222

0.367
0.358
0.350
0.341
0.333
0.325
0.318
0.310
0.303
0.296
0.289
0.282
0.276
0.269
0.263
0.257
0.251
0.245
0.239
0.233

0.381
0.372
0.363
0.355
0.346
0.338
0.330
0.323
0.315
0.308
0.301
0.294
0.287
0.281
0.274
0.268
0.261
0.255
0.249
0.243

0.394
0.385
0.376
0.367
0.359
0.351
0.343
0.335
0.327
0.320
0.312
0.305
0.298
0.291
0.285
0.278
0.272
0.265
0.259
0.253

0.407
0.398
0.389
0.380
0.371
0.363
0.355
0.347
0.339
0.331
0.324
0.316
0.309
0.302
0.295
0.289
0.282
0.275
0.269
0.262

range is thus of the same order as the inverse
size of the exchange-correlation hole.

Of interest is also the case when only exchange
effects are included. As discussed in Appendix C,
Eq. (30) then has an r;independent solution zu (q).
This solution is identical with the solution for y,
= 0 that includes both exchange ahd correlation ef-
fects. This simply reflects that effects due to cor-
relation are negligible compared to those of ex-
change for y, = 0.

According to Eqs. (9) and (22) the XC potential
in the AD approximation is

vvv(r)= (Hv( vv))+ Jvd'r'v(v')
n= n(r')

rule (18) and the dependence of the XC energy den-
sity ezc(r) not only on the density at r but on the
density at all points within a certain range from
r, can be included also in other schemes.

%e shall here describe one such scheme, which
we have called the N)ei ghted density (W-D) aPProxi
nzgtgoyz. "1' Like in the AD scheme, the exact pair
correlation function is replaced with that of a
homogeneous electron gas. The essential differ-
ence is that we keep the proper density prefactor
n(r') in expression (15) for the XC charge density,
l.e. ]

1

nzzcn(r, r') = n(r') dX[g"„-(.,)(r —r', X) - 1] . (35)
0

„&n(r'}
6n(r) ' (33)

The density argument n(r) in Eq. (35} is determined
from the sum rule (18):

where the functional derivative can be evaluated
from Eq. (21),

&n(r')
5n(r)

= tv (r r', n (r))—
f Pl /II

d3~II ~ r II

a~

)~1

ne n(r' )f

(34}

C. Weighted-density approximation

The fundamental features built into the AD ap-
proximation, i.e. , the charge-conservation sum

J
1

d'r' dX[gl(„)(r —r', x) —l]n(r') = -1. (36)
0

In the %D approximation then, for each point r
we determine an n(r) that satisfies the sum rule
(36). This is then used in Eqs. (35) and (14) to
calculate the XC energy Ex~.

The major qualitative difference between the AD
and %D approximations is that due to the prefactor
n(r') of Eq. (35) the XC hole nzwco(r, r') may be
asymmetric with respect to r. In practice, how-
ever, this apparent improvement compared with
the spherical AD hole has no influence on E„,.
Equation (19) shows that only the spherical average
of the XC hole enters the expression for the XC en-
ergy. Another difference concerns the limit of
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1

G"(q;n)=- d~[I-S(q, ~;&)].
p

(3'I)

Although S(q) is not known exactly, several ap-
proximate schemes of varying sophistication are
available in the literature. " For illustrational
purpose we shall here content ourselves with the

'

simplest one that includes correlation effects, the
random-phase approximation (HPA). Here the
integration over the coupling constant A. in Eq. (36)
can be performed analytically

weak density variations, where the AD approxima-
tion, unlike the WD one, is exact. As both approx-
imation schemes reduce to the exact form when the
density is precisely constant, however, only nu-
merical tests can tell whether for real systems
this difference is significant.

The WD scheme requires as input the pair cor-
relation function@"(r) of a homogeneous electron
gas, or equivalently its Fourier transform, the
static structure factor S(q). It is convenient to
introduce a correlation function G~(r —r', n), de-
fined by Eqs. (15) and (35), with the Fourier trans-
form

»A(q& +

1 dco 1
in[1 —v(q)X'(q, i(u)]+ 1

n n. , ~ v(q)

(38)

where X' is the Lindhard density response function
and v(q) = 4~e'/q'. In Table II G~»„ is tabulated as
a function of q -=k/kz and yg. The comparison with

w(q) in Fig. 9 shows that G(q) decays much faster
than gu(q). This means that in real space w(r, n)
samples a smaller volume than nG(r, n)-provided
that yg and g are comparable.

The implications of this and the previously men-
tioned differences between the two schemes have
to be tested by numerical calculations for real
systems. This is the scope of the following sec-
tions.

According to Eqs. (14), (15), and (35) the XC en-
ergy density of the WD approximation is

EzcD(r) =
2

d'x'v(r —r')n(r')G"(r —r', n(r)), (39)

where v(r)= e'/y. The functional derivative (9)
gives the following expression for the correspond-
ing XC potential:

vwD(~r)

=E„"(r)+—f dr'v(r —P)n(r )(;"(T—r', n'(r'))

BG"'r" —r'n+- d'r"n(r") d'r'v(r" —r')n(r') 5n(r')
„-„(-,,

&
Op)(r)

' (40)

where the functional derivative can be evaluated from Eq. (36):
~j eG@r'-r" pgG)((PI r. (~+I)) d3 II (Pll) ( t

bs(r
(41)

Thus vxwcD may be expressed entirely in G" and BG"/

D. Shell partitioning

As will be illustrated in Secs. IV and V the AD
and WD approximations give good accounts for the
XC properties of different systems. Being approx-
imate, however, it is certainly worthwhile to ex-

. plore the possibility of further improved proce-
dures of comparable simplicity. Here we will pro-
pose one such procedure which improves the mod-
eling of intershell correlations.

The above approach to the description of inhomo-
geneous electron systems is based on a philosophy
that views the inhomogeneous system as formed by
a gradual deformation of an originally homogen-
eous electron liquid. The deformation is supposed
not to alter the qualitative XC characteristics of
the electrons. To be more specific, the replace-

ment of the true pair correlation function g in Eq.
(15) by the one for the homogeneous liquid g" in
the AD and WD approximations involves basically
two assumptions: (a) The only forces that keep
electrons apart are due to exchange and correla-
tion, and (b) the effects of these forces are the
same as in the homogeneous electron liquid with
the appropriate density. Other mechanisms that
keep electrons apart, e.g. , external potentials
that in an essential way break the continuous
translational symmetry of the homogeneous liquid
and localize the electrons to certain regions, can-
not formally be modeled in this manner.

An important example of such a mechanism is
the electron-shell formation in atoms, molecules,
and solids, which is due to the dominance of the
spherical nuclear potential close to the nuclei.
The electrons within a particular shell are ener-
getically and spatially distinguished from those of
another shell, so distinctly that they may be thought
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of as forming a one-liquid system. The zntxa-
shell XC effects. should therefore be covered by
the above philosophy. The intershell correlations,
on the other hand, should not, as they involve at
least two different liquids.

These aspects are relevant also for the LD ap-
proximation, ' but they are emphasized by the den-
sity-sampling procedure in the AD and WD
schemes. The problems are most clearly spelled
out in the regions with very strong density varia-
tions between the electron shells. For- instance,
the very high density in the core region would have
a substantial influence on the XC energy density in
the valence region via the integrations over
go(r —r', n(r)) in Eq. (21) and over g"(r —r'; X, n(r))
in E(I. (36). The result would be that n(r) and n(r)
would be exaggerated in the valence region, and
the intershell contribution to the XC energy would
be overestimated. More explicit arguments may
be given if only exchange effects are available: It
is illuminating to consider the following exact ex-
pression for the exchange-energy density (here
given for a spin-compensated system)

As is clear from E(l. (42) both g„(r) and e,,(r)
have to be nonzero in order to give a finite contri-
bution to «„(r) .It follows that intershell contribu-
tions, i.e. , when, say, 4„ is a core orbital and

+&, is a valence orbital, vanish outside the core
region, while the AD and WD approximations give
a nonzero contribution. On the other hand, the LD
approximation correctly leads to zero intershell
exchange-energy density outside the core region as
it only uses the local density. Bather than using
the total density, the above arguments suggest that
the averaging should be performed only within each
shell and that a LD-type approximation should be
used for the intershell effects.

In the average-density shell-partitioned (ADS)
scheme the average density of shell z at point r is
defined by

ggg(r)= egg(r)+ f d'r'n(r —r', n(r))ng( )

The corresponding energy functional is

e' n(r, r')
2 )r r'l

4 „(r)4„(r)
n(r)

"
d, , e;.(r ') eg,(r')

(42)

E„(nj= P fd'rng(r)r„(n, (r)).

Similarly, in the WDS approximation

(44)

Er (n)= —Jd'rn(r) fd'r'v(r —r') (r )G (ngr', ngg(rr)')r P ng(r)G(r —F'; n(r))),
f

(45)

where n,(r) should be chosen so that the charge-
conserving sum rule is satisfied. This mill now

take the form

-1= d'g' n, r' G" r —r';n, r

+ P n, (r)G"(r —r';n(r))) .
jAf

(46)

The usual shell division should be used: 1s; 2s,
2p; 3s, 3p; 4s, 4p, 3d; etc. From an inspection of
Eqs. (43)-(46) it is clear that the shell partition-
ing that we propose mill cut off most of the unphys-
ical inter-shell contributions to the AD and WD re-
sults.

IV. APPLICATIONS TO ATOMS

Calculations of various atomic properties have
been performed in the local-density and local-spin-
density (LSD) approximations by several auth-
ors." '"" These calculations show that, in partic-
ular, the LSD approximation gives rather good re-
sults for valence-electron properties like ioniza-

I

tion potentials and electron affinities. On the other
hand, the description of the core electrons is less
adequate, and therefore the total energy results are
not equally satisfactory. For instance, the error
in the total exchange energy varies from about 14%
for light atoms to about 5/q for heavy atoms. The
total energy of atoms is therefore a relevant prop-
erty to calculate in order to illustrate the im-
provements brought about by the new nonlocal en-
ergy functionals.

We shall start by deriving some analytical re-
sults and then proceed to applying the AD and WD
schemes to the exchange energy of atoms. We
shall also illustrate the effects of the shell parti-
tioning proposed in Sec. IIID. The exchange energy
depends solely on the wave functions and is there-
fore more directly related to the electron density
than is the correlation energy, mhicb in addition
depends on dynamic properties like the excitation
spectrum. " One might anticipate therefore that
the AD and WD schemes are particularly mell
suited for describing the exchange energy, whereas
the correlation energy of atoms may be more dif-
ficult to improve upon. The above qualitative argu-
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ments are borne out by numerical calculations,
which will also be discussed. Finally, results for
the total energy for a number of atoms, are pre-
sented, and the XC potential is discussed.

As the aim of t;hese atomic applications is merely
to illustrate the virtues of the new approximations,
complete self-consistent calculationh have not been
attempted. Rather, all calculations discussed here
have been limited to evaluating the approximate
XC functional in question using a density derived
from the parametrized Hartree-Fock (HF) wave
functions calculated by C lementi. "

A. Exact and asymptotic behaviors

The exact expressions for the XC energy density
ezc(r) and potential vzc(r) simplify in the region
far away from the nucleus. From Eqs. (15) and
(17)-(19) it immediately follows that

czc(r) = - 2(e'/r) . -

This is due to the fact that when r is large the r'
dependence of the factor ~r —r'

~

' of Eq. (14) may
be neglected. [By large r is meant points r that
lie outside the region, where n(r ) is appreciable. ]
The sum rule of Eq. (18) then directly leads to
Eq. (47).

Similarly, the exact XC potential as given by Eq.
(9) has the asymptote

to zero exponentially for large r values.
The AD approximation [Eq. (20)] has a prefactor

which through the averaging procedure of Eq. (21)
has an indirect dependence on r . This is suffi-
cient to produce the limiting x ' dependence of
ezc(r) and vzc(r), but their actual magnitude varies
from atom to atom. This is illustrated for the XC
energy density in Fig. 10, where we observe that
for large r, c"z(Dcr)/( e'/-2x) falls within 20%%up of the
correct limiting value, which is unity.

The WD approximation [Eq. (35}] is defined with
the correct density prefactor and obeys the sum
rule [Eq. (18)], which ensures that the proper
asymptotic limit for the exchange energy is ob-
tained exactly" (cf. Fig. 10). We observe, how-
ever, that the WD, as well as the AD approxima-
tion, gives incorrect limits for the XC potentials.
In both schemes gzc(r) - azc(r) rather than 2czc(r)
for large r.

B. Exchange effects

The simplest system for illustrating exchange ef-
fects is the ground state of helium with just one
electron of each spin. The exact exchange-energy

1.5—

= -(e'/r) . (48)
Ar~
Ne

Here we have in addition used the fact that
5g(r', r, X)/5~(r) is zero in the above limit. This
merely reflects the fact that an infinitesimal
change of the density far from the nucleus cannot
affect the pair correlations in the interior of the
atom. We emphasize that the relation vzc(r)
= 2e (r) implied by Eqs. (45) and (46) only holds
for large values of x.

There is one application, for which one of the
approximate functionals is the exact one: the hy-
drogen atom in the WD approximation. As

J d'r'n(r') = 1 in this one-electron system, and as
the pair correlation function is non-negative, the
sum rule Eq. (18) can be satisfied, only if
g"-„&-,&(r —r', X) —= 0 in Eq. (35}, which gives nwzcn(r, r')
= -n(r'), i.e. , the exact result. This can be
achieved by choosing z(r) —= 0, i.e. , the hydrogen
atom is properly described by taking the pair cor-
relation function from the homogeneous electron
liquid in the Wigner-lattice limits

Turning to the asymtotic behavior of the XC en-
ergy density and potential, it is clear that the LD
approximation, due to its improper local-density
prefactor in Eq. (16), is unable to produce the cor-
rect r ' limit. Instead, both ezLco(r) and vzLcn(r) go

Be

Ne
N WD

He
Be~~
Li~-

Ne

0.5—

3
r/ao

FIG. 10. Quantity &„,(r)/(- e l2r) for a number of
atoms as a function of r in the AD and WD approxima-
tions. In a correct theory this quantity should tend to
unity for large r. In the LD approximation it decays
exponentially.
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He

0 1 2
FIG. 11. Exchange-energy density e „(x) of helium

as defined in Eq. (19) in the LD and AD approximations
compared with the exact result Eq. (49). The WD
approximation is exact in this case.

density for this system is

e,(r)= ——', e' f ter m(r') ~F'—r' ~.

In this particular case the exchange energy

(49)

E„= d'rye r &„r, (50)

can thus be expressed as a simple integral over
the density.

We emphasize that we are using the term "ex-
change energy" as it is defined in the density-func-
tional formalism. If we define the exchange energy
as the difference between a Hartree-Fock (HF) and
a Hartree calculation, it is clear that this is zero
for the ground state of helium, as there is only one
electron of each spin. However, in the density-
functiona, l formalism the exchange energy has to
cancel an electrostatic term caused by the inter-
action of the electron with itself. It is this self-
interaction that is cancelled exactly by Eq. (50) in
the present case.

The helium atom in its ground state with only

exchange effects considered, happens to be another
case where the WD approximation is exact. The
reason is that in a spin-compensated two-electron
system there is no other electron to exchange with,
and the result follows from arguments analogous
to those used for the hydrogen atom in Sec. III.

The exact and approximate exchange-energy den-
sities &,(r), evaluated as described in the intro-
duction of this section are shown in Fig. 11. As
mentioned above, the WD approximation gives the
exact result in this particular case and requires
no further discussion. To appreciate the improve-
ments over the LD approximation furnished by the
AD scheme, consider first the point r=0. In the
LD approximation the surrounding density is as-
sumed eciual to the local one [yg(r= 0)], which is an
overestimate. The LD approximation therefore
gives too strong exchange effects, and e„(r= 0) is
too negative. The average density used in the AD
approximation has to be lower than yg(r= 0), and

e„(r=0) is therefore raised. This reduces the er-
ror for r= 0 by a factor of 3. For large r the sit-
uation is the opposite. The local density is smaller
than the density in the surroundings of the nucleus.
Thus, the LD result for E„(r) is not sufficiently
negative. In the AD scheme, however, the use of
an average density takes the higher density in the
neighborhood of the nucleus into account and it
brings the curve close to the exact one.

In Table III we give results for the exchange en-
ergy of some other atoms. Here we have used a
spin-polarized spin-density-functional ($DF) form
alism for the LD and WD calculations. In the AD
scheme we added the lowering of the energy due
to spin polarization that is obtained in the LD ap-
proximation. This is of little importance for the
total energies, except for the lightest atoms. The
generalization of the WD scheme to account for
spin polarization, when only exchange effects are
included, is straightforward, " and follows from
simply letting the shell indices in Eqs. (45) and
(46) also contain a spin index.

The improvements over the LD approximation
are striking, especially for light atoms. The less
drastic improvement for heavier atoms is mainly

TABIE III. Exchange energy in rydbergs of some spherically symmetric atoms using the LSD approximation and the
nonlocal functionals named AD, ADS, WD, and WDS (see text), compared with the exact HF result. The numbers in pa-
rentheses are errors in percent.

LSD AD Exact

He
Li
Be
N

Ne
Mg

-1.768 (13.8)
-3.08 (13.5)
-4.63(13.1)

-11.79(10.6)
-22.07 (8.9)
-29.22 (8.7)

-2.056(0.2)
-3.66 (2.8)
-5.53 (3.8)

-13.75(4.2)
-25.08 (3.6)
-33.14(3.6)

-2.056(0.2)
-3.55 (0.3)
-5.32(0.2)

-13.27 (0.6)
-24.55(1.4)
-32.29 (0.9)

-2.052 (0.0)
-3.57 (0.3)

5.38(0.9)
-13.68 (3.7)
-25.59(5.7)
-33.98(6.2)

-2.052(0.0)
-3.54(0.6)
-5.31(0.4)

-13.37(1.4)
-24.87 (2.7)
-32.72 (2.3)

-2.052
-3.56
-5.33

-13.19
-24.22
-31.99
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due to an overestimate in the AD and WD schemes
of the intershell contribution, as discussed in
Sec. IIID.

Table III indicates that the AD and WD approxi-
mations are of comparable accuracy. This might
at first be somewhat surprising, considering that
the XC hole should be substantially better repro-
duced in the WD approximation. In particular, if
only exchange effects are included, the WD approx-
imation gives the correct result for tz„(r, r') in the
limit r- r . Furthermore the WD approximation
incjudes some of the asymmetry of the XC hole.
For instance, even when the electron is far from
the nucleus, the hole remains in the atom, while
in the AD approximation the hole is always spher-
ically symmetric around the electron. These
points are, however, not very important for the
XC functional, which is the only quantity needed
in the solution of the SDF equations. There are at
least two reasons for this. First, the limit r-r
of nxc(r, r ) is of little importance in Eq. (14), due
to the volume element. Second, the functional (14)
depends only on the spherical average nexc(r, r")
[Eq. (17)), and therefore an improved description
of the nonspherical parts of nxc(r, r') does not im-
prove the functional.

Table III shows that there is a considerable im-
provement in the exchange energy, when including
the shell-partitioning procedure (ADS and WDS)."
That this is not due to some cancellation of errors
but entirely due to the mechanisms described in
Sec. IIID, can be illustrated by a detailed study
of the exchange-energy density e„(r) for a typical
atom. This is possible, as the exact c„(r) can be
calculated by using Clementi's" Hartree-Fock
spin orbitals 4„(r) in Eg. (42).

In Fig. 12, which shows the quotient e„(r)/e„'*~'(r)
for the neon atom, we observe (a) how the misrep-
resentation of the LD approximation is reduced
considerably by the AD and WD approximations not
only for small- and large-z values, in the same
way as discussed earlier for He, but also for most
intermediate-r values, (b) that the remaining er-
rors of the AD and WD are largest in the region
between the valence- and core-electron shells,
and (c) that the ADS and WDS approximations re-
duce these errors significantly. The shell parti-
tioning is thus a systematic way of improving the
description of the intershell exchange effects.

C. Exchange and correlation
In the Kohn-Sham scheme, the XC effects are

naturally treated together. Table IV gives the XC
energy of a few atoms as calculated in the AD and
WD schemes. Let us examine the AD results
first. We observe that the XC energy is again con-
siderably improved compared to the LD approxi-
mation. Thus the error in the LD approximation

exact

AD

WD

0.5

0,01 0.1 r/a, 1.0

1.0
WDS

ADS
WDS

0.5

0.1 r boa

FIG. 12. Quotient & „(r)/E'""'(r) for a neon atom,
where e &"&"(r) is calculated from Eq. (42) by using the
Hartree-Fock spin-orbitals of Clementi (Ref. 23). The
electron density in the core and valence shells are de-
noted by n~ (r) and n„(r), respectively. In (a) results
are given for the AD and WD approximations while in
(b) the shell partitioning described in Section III D has
been used to give the ADS and WDS curves. The dashed
curve shows the result in the LD approximation.

is about {5-8)%%uo, while in the AD approximation
it varies from about 2%%ua for light atoms to less
than 1'%%uo for heavy atoms. With the shell par-
titioning the error is on the average further re-
duced, but the reduction is not as significant as
when only the exchange energy was considered.

On closer inspection it is clear that this is due
to a rather poor account of the correlation energy
in the AD scheme. Still, the ADS scheme signifi-
cantly improves the exchange-correlation energy
for a large number of atoms, as is illustrated in
Fig. 13.

The WD r esults of Table IV are less encouraging. "
They overestimate the magnitude of Exc with al-
most the same amount as the LSD approximation
underestimates Exc. If we were to define the cor-
relation energy by simply subtracting the E„val-
ues of Sec. IVB; we would find that the magnitude
of the correlation energy is a factor of 2 to 3 too
small in the AD approximation, while in the LSD
and WD approximations it is roughly a factor of
2 to 3 too large.

Only a minor part of the overestimation of the
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TABLE pl. Exchange-correlation energies in rydbergs for some spherically symmetric
atoms. The "exact" experimental correlation energies were obtained by Clementi ~ by cor-
recting for estimated relativistic effects not included in our calculations. In the WDS approx-
imation the BPA has been used to calculate G(q, r, ) [Eq. (38)]. The numbers in parentheses
are the errors in percent.

LSD AD ADS Exact

He
Li
Be
N
Ne
Ar
K

-2.oo(6.5)
-3.37 (7.7)

5.O9(8.6)
-12.44(8.S)
-23.56(5.8)
-58.56(5.4)
-63.35 (5.4)

2.o6(s.v)
-3.59(1.6)

-1S.24(2.4)
-25.47(1.8)
-62.4V (O.9)
-67.52 (0.9)

-3.51(3.8)
-5.36(S.8)

-1S.1V(2.9)
-24.86 (0.6)
-61.S9(O.8)

66.sv(o.9)

-2.49(17)
-4.19(15)
-6.2S (12)

-14.54(V.1)
-26.94(V.V)

66.2O(6.9)
-71.60 (6.9)

-4.16(14)
-6.16(11)

-14.39(6.0)
-26.65(6.6)
-64.66(4.4)

-2.14
-3.65
-5.57

-13.57
-25,01
-61.91
-66.94

~Reference 24.

correlation energy in the WD scheme could be due
to the use of the RPA for G(q, r,) in Eq. (3V). The
local densities in atoms are Iluite high (r, & 1), and
in this regime the HPA should be a reasonable ap-
proximation. To support this argument we can
mention that using the Hubbard approximation
rather than the HPA reduced the XC energy of He
from -2.49 to -2.40 Hy and the error in Exc from
179o to 13%.

%e end this section by illustrating in Table V,

how the ADS results will improve the total energy
of a number of atoms. As the difference between
the XC energies calculated in the ADS and LSD

'approximations, respectively, is so small com-
pared to the total energy, first-order perturbation
theory may be used to calculated the total energy
in the ADS scheme. This means that we add the
difference in XC energy (E„"co~—E"„cD) to the total
energy E» calculated in a self-consistent LD cal-
culation. As for the spin polarization, we assume
this small effect to be similar in the LD and ADS
schemes and add a term (EXLcsn -EXLcn) to get

ADS LSD ( ADS L SD) ' (51)

0.80—

0.75

The above procedure obviously gives the exact re-
sult provided E „,—ELsD=E„Ds —ELD. As can be
seen from Table V, the ADS approximation reduces
the error in the total energy by a substantial frac-
tion, ranging from about 50/p for light atoms to
about 90%%uq for heavy atoms.

0.70

0.65

xci Z
3/2

TABLE V. Total energies in rydbergs for a number of
atoms. The exact results are taken from Clementi ~.
The difference between the exact result and the result of
a self-consistent LSD calculation is compared with the
difference between the exchange-correlation energy,
calculated in the ADS and LD schemes, respectively.

Eexact EIIf.act ELSD EADS ELD
XC XC

I I I I I

182
I I

4 6 8 10 12 14 16

Z

FIG. 13. Atomic XC energy in the ADS and LD
approximations compared to the quantity ELD+ (E;,„
—ELSD) which is here considered to be the "exact"
result. The experimental result

Equip

has been corrected
by Clementi (Ref. 24), for estimated relativistic effects
not included in the present calculations. The energies
have been divided by &3 to get a roughly S-independent
quantity (S is the charge of the nucleus).

He
Li
Be
B
C
N
0
F
Ne
Na
Mg

5.6798
14.7066
28.9088
48.7248
74.9598

108.2936
149.0682
198.2368
256.4691
322.8982
398.272

~Reference 24.

5.8076
14.9560
29.3348
49.308
75.6932

109.1778
150.1348
199.466
257.880
324.5238
400.1272

-0.13
-0.25
-0.43
-0.58
-0.73
-0.88
-1,07
-1.23
-1.41
-1.63
-1.86

-0.05
-0.14
-0,27
-0.41
-0.57
-0.73
-0.91
-1.10
-1.29
-1.46
-1.64
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D. Exchange-correlation potential

As described in the introduction of this section
nonlocal effects have only been evaluated for the
XC energy Exc. Although we believe this to be
the leading effect, the XC potentials are given by
well-defined expressions in the AD [Egs. (33) and

(34)] and WD approximations [Eels. (40) and (41)],
and may be readily. calculated. It is mainly our
desire to keep this article down to a reasonable
size that has made us postpone this task for a fu-
ture publication. The nonlocal aspects of vzc(r)
are certainly worth a study of their own.

In this context it is particularly interesting to
draw our attention to the conceptual problem en-
countered for the negative hydrogen atom H

treated in the LD approximation. ' Here the XC
potential far from the nucleus tends to zero expo-
nentially, and therefore, due to the electron self-
interaction, the potential far from the nucleus is
2(e'Ir)+(-e'Ir), i.e. , positive. In fact the energy
eigenvalue E,. in the Kohn-Sham equation is posi-
tive and the corresponding eigenfunction is not
normalizable. To remedy this unphysical result
a nonlocal XC potential is needed which has to can-
cel the term e'/r that is due to the electron self-
interaction. However, preliminary results" in-
dicate that with the present implementation of the
AD and WD approximations a positive eigenvalue
is retained. Improved XC potentials might be ob-
tained if the replacement of the pair-correlation
function, g-g", is made in the exact expression
for vzc(r) derived from Eqs. (9) and (14). With
this procedure the exact result vzc(r) = 2ezc(r) for
r far from the nucleus could be retained. "

When it comes to a practical computational
scheme, the scope of this article, however, the
improvements in v„c(r) and thus in the density ~(r)
are of secondary importance. This is due to the
demonstrated relative insensitivity of the total en-
ergy to density changes. '

AD and WD schemes to this model surface will be
found only partially successful. Outside the met-
al, the XC potential and energy density appear to
be considerably better described in these approxi-
mations than in the local density (I D) approxima-
tion. On the otner hand, inside the metal the
shape of the XC hole appears to be too approxi-
mate. To be specific, for an electron at a point g

in the metal, say, a few screening lengths from
the surface, the exact XC hole differs from the
bulk hole only in tke surface region, while the ap-
proximate AD and WD holes show small but signi-
ficant deviations also inside the metal. This i.s
only a slight misrepresentation and has no influ-
ence on Ezc(r) and vzc(r) which take the proper
bulk-limit values. However, for a semi-infinite
system the effect on integrated quantities such as
the XC part of the surface energy may be large.
A.s we shall see, this is indeed the case.

To illustrate these points, it suffices to calcu-
late the metal surface properties using the elec-
tron density of the so-called infinite-barrier mod-
el (IBM),"

( ) 1 3
cos(2kpz) sin(2k') '

( ) )(2k~)' (2k~)'

where kz=(3m~, )'~' is the Fermi wave vector cor-
responding to the bulk density ~,. The IBM has
well-known shortcomings. It contains, for in-
stance, only one length k~' and therefore the width
of the surface region is proportional to k~ rather
than to the screening length. For bulk densities
corresponding to z, = 4-5, however, the two lengths
are roughly equal, and the IBM models quite well"
the electron density obtained in more realistic cal-
culations. ' In addition, w'ith this procedure the
electron density will not be self-consistently cal-
culated. The XC energy density and potential have
therefore also been evaluated in the semiclassical
infinite-barrier model (SCIBM),"where

V. APPLICATON TO SURFACES
rs(z) = n,e(-z) . (53)

The surface region of metals has a strongly
varying electron density. At the same time, be-
cause the metal is an extended system, a surface
represents a very different kind of inhomogeneity
than does an atom. It is a demanding task for any
approximate description of exchange and correla-
tion to suit both systems equally well.

In this section we shall study the virtues and
limitations of the AD and WD approximations in
the semi-infinite jellium model of surfaces. In
this model, which has been used in a wide variety
of surface problems, "'"the valence electrons are
moving in the potential of a semi-infinite, uniform
positive background charge. The application of the

We have found that these quantities are remarkably
insensitive to even such a drastic change in the
density profile. The reason for this is, of course,
the averaging procedure inherent in the nonlocal
density dependence of the AD and WD approxima-
tions.

A. Exact and asymptotic behaviors.

At points far outside the surface (large s), the
exact XC energy density and potential go over
into the proper image-potential behavior,

azc(r) —-e'/4z for z —~

and
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vxc(r) —e /4z for z (55)

This can be seen from Eqs. (9), (14), (15) and (18)
by letting r=(x, y, z) grow large enough to make
the limiting case of a point charge outside a
grounded conductor applicable. Then the XC hole
is smeared out over the surface, or in the method
of images effectively localized at (z, y, -z), i.e. ,
at a distance of 2z from the electron at r = (x, y, z).
The pair-correlation function g„(r, r', A.) in Eq. (15)
expresses the conditioned probability to find an
electron at r', if there is one at r, and in the gen-
eral case these are correlations between indistin-
guishable electrons. For large z, however, the
electron at r acquires an identity and therefore
the correlations are the same as for a classical
point charge. Thus the classical image argument
applies. [The argument about g, the pair-corre-
lation function, becomes particularly apparent in
the Hartree-Fock approximation, where g„(r, r', X)
does not depend on the interaction between the
electrons. The coordinate r' of Eq. (14) will then
run over the whole semi-infinite metal, replacing
the limiting forms Eqs. (54) and (55) by zero to
order 1/z when only exchange effects are in-
cluded. ]

A major deficiency of the I D approximation is
that it is unable to give the image-force behavior.
Instead it gives an XC energy density and poten-
tial that decay exponentially outside the surface, '
as does the local density.

The imagelike form of gxc(r) in the WD approxi-
mation can be derived from Eqs. (39)-(41). The
first and second terms of Eq. (40) differ only by
their density arguments, being n(r) and pg(r'), re-
spectively. For points r far outside the surface,
however, this difference is crucial, as it implies
that wx~c(z) tends to exwcn(z) in this limit. This we
conclude by noting that the factor n(r')G" ( jr —r'

~;
n(r')) of the last two terms in Eq. (40) is nonzero
only for points r' inside the metal. . On the other
hand, for these r', the range of the function Q is
roughly equal to [n(r')]'~' where n(r') =n, Thus.
G"( )r —r'); pg(r')) tends to zero as )r —r'

(
gets

large, and therefore s„"c(z) and vxc(z) have the
limiting form -e'/2z. Apparently the WD potential
and energy density both come out twice too large
in this limit.

Actually, the -e'/2z form is obtained only if
g "(r) vanishes faster than any inverse power of r
for large r. Otherwise the center of gravity of the
XC hole will not remain in the surface region, and
the argument that allows us to replace zr(r —r') by
v(r) in Eq. (39) will not go through, which in turn
leads to a different limit. for pic. If, for instance,
we consider exchange effects only, i.e. , use the
Hartree-Fock version, g "r(r), of the pair corre-

lation function, which vanishes only as y" for
large r, 33 we find that ewxcn- —e'/6z.

By repeating the previous discussion about
n(r)G" (r —r', n(r')) for yg(r')gv(r —r', g(r')) in Eqs.
(33) and (34) one finds that also in the AD approxi-
mation vAxcD(z) - e~xcn(z) far outside the metal. As
we know su(r, n) only numerically, we cannot ex-
tract an exact analytical limit. However, as the
range of w(x, n) is approximately (kz) ' =-0 57„.
Eq. (21) implies that F, should roughly equal 2z.
On using, for instance, Wigner's formula for the
correlation energy of a low-density homogeneous
electron gas"

c"n(p) = [ 0.916/F —0.88/(r, + 7.8)]- „Ry;
in Eq. (22), one finds that

&"n- -1.8/2z Ry = —e /2z,

which is approximately the same limiting result
as in the WD scheme.

Qn the bulk side, i.e. , for z- — both the WD
and AD approximations give the correct bulk lim-
its for czc(z) and uxc(z). For points r far inside
the metal, namely, n(r) may be replaced by no, the
constant bulk density. It then foll.ows from Eqs.
(36) and (39)—(41) that yg(r) - yg„.

r

�2
~bulk

d'~'n(r —r')G"(r —r' )-
tip

According to Eqs. (39)—(41) then clearly e„"cn(z)- ~b"'" andxc

wn
Uxc~~~ &xc =

dip

for z- —. The AD approximation gives the prop-
er bulk limits in the same way, as Eq. (21) im-
plies that g (r) - no for z - —~.

B. Numerical results

In the surface region, the region of prime inter-
st &xc and "xc "ave to be calculated numerical-

ly. In the WD approximation this amounts to solv-
ing Eq. (36) for n(r), here using the electron den-
sity Eq. (52) and the RPA [Eq. (38)] for G. In the
AD scheme we have to solve Eq. (21) for Fi(r).
Once pg(r) or yg(r) is known, it is in principle
straightforward to calculate the XC energy density
arid potential from, respectively, Eqs. (39)-(41)
and (22), (33), and (34). For the semi-infinite
jellium problem, however, the fairly complicated
expressions for the potentials may be reasonably
approximated as follows (see Appendix D):
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vzcD(r) = zxwcD(r)+ —
It d'r'n(r')v(r —r')G"(r' —r;no)

2 J

+ Ex"ck no -no Ex"c" no
dno )

-0.2—

x
Jt

d'r'n(r')G"(r —r', n,), (56)
-0.4 =

and

IlAD(r) =a D(r)+ ( c~"'~(il ))
0

x
J

d'r'n(r')gu(r —r', n,). (5't)

-0.6—

~0.8—
IX

N

u 10X

C. Surface energy

The surface energy is an integral property that
expresses the energy cost upon creating a new
surface. The XC part of the surface energy, ox~,
is in the jellium model related to the XC energy
density in the following way

o'XC= dzn 8 6xc 8 —6 c no
~00

(58)

The integrand of Eq. (58) is shown in Fig. 16 for
the WD and LD approximations applied to the IBM
electron density Eq. (52}. Close to the surface we
find the expected result of the nonlocal density de-
pendence, i.e. , a raise compared to the LD result

These equations have the same limiting form as
the original expressions Eq. (33) and (40), re-
spectively, and are quite accurate also in the sur-
face region.

The XC potentials for three different bulk densi-
ties calculated in the above manner in the WD ap-
proximation ar'e displayed in Fig. 14. We note
that the potentials smoothly go over from the bulk
(RPA) potential to an imagelike behavior. In Fig.
15 we show the XC potential calculated in various
schemes, for a bulk density corresponding ap-
proximately to aluminum (x,= 2}. As is indicated
in Fig. 15, the AD approximation, too, gives an
XC potential that interpolates between the bulk
value and an imagelike limit. Apparently, the AD
curve reaches its asymptotic form rather close
to the surface, while the WD curve stays quite
close to the true image potential for intermediate-
s value. The LD approximation of course gives
an XC potential that is zero outside the infinite
barrier, where the electron density vanishes.

The WD scheme in connection with the SCIBM
electron density of Eq. (53) would have given a
curve in Fig. 15, hardly distinguishable from the
IBM one. It is interesting to note that even for
such a drastic difference in electron density pro-
file, the change in g„c is minute.

-1.2—

-14

-1.6-
I

OO

POSITION. OF THE
JELLIUM EDGE

I I

0 2
Z/Qp

I I I

6 8 10

FIG. 14. XC potential in the WD approximation for
the infinite-barrier model of a metal surface. Results
are given for three different bulk densities corres-
ponding to r~=1, 2, and 4. The image potential (—e /4a)
is given by the dashed curve.

outside the surface and a decrease just inside.
Further inside the metal, the LD curve oscillates
around zero, reflecting the oscillations in the elec-
tron density n(z) of Eq. (52). Although the WD
curve also oscillates, the mean value lies below
the g axis. This is a common feature of both the
XC energy density PcD(z) and potential v„"co(z) in
the WD approximation. The reason for this be-
havior can be understood as follows: Consider
the equation that determines n(r), i.e. , Eq. (36),
for a point r=(z, y, z) well inside the metal. Clear-
ly, the difference between the XC hole n„"cn(r, r')
and the bulk hole nbxc'"(r, r') is that a small amount
of charge from the region outside the surface is
removed and distributed over the rest of the hole.
In effect, a small amount of charge, -eon, is
moved from a distance ~z

~

to a distance rb"'"& (z
~

from the center of the XC bole. The contribution
to o„c from the point r will therefore be
e'n, &n(-1/rb"'"+ 1/ ~z ~) &0. Now, in an exact theo-
ry, we expect the XC hole centered around a point
well inside the metal to differ from the bulk hole
only in the surface region. The contribution to the
surface energy should accordingly be proportional
to no&n/ ~z ~. Several screening lengths inside the
metal hn will go to zero and so will therefore the
integrand of Eq. (58).
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FIG. 16. Surface XC energy density, i.e., the inte-
grand of Eq. (58) for the infinite-barrier model. The
jellium edge is at+ =0. and the position of the infinite
barrier is indicated by an arrow. The full curve shows
the result of the WD approximation, the dashed curve
gives the result in the LD approximation. The dash-
dotted curve indicates the electron density in the infinite
barrier model. The bulk density corresponds to r~= 2.

FIG. 15. XC potential for the infinite-barrier model
of a metal surface. The bulk density corresponds to
r~=2. Results are given for the WD (full curve) and LD
approximations (dashed curve) (these are calculated
using data for the homogeneous electron gas given by
the RPA) as well as for the AD approximation
(dashed-double-dotted curve). The dash-dotted
curve gives the image-potential (—e2/4g). To avoid
congestion of the figure we show the AD result only out-
side the surface. In the surface region the AD and WD
results are similar.

This point, however, requires a small digres-
sion: If only exchange effects (i.e. , the Pauli
principle) are included in the pair correlation
function g(x), hn vanishes only as 1/ Iz I

and ac.-
cordingly o~ diverges. As soon as correlations
are taken into account b,g vanishes faster and the
integral EIl. (58) converges. Still, even in this
case the deficiency of the WD approximation as
described above is of numerical importance and
leads to a poor value for the XC contribution to the
surface energy, as can be seen for the IBM in
Table VI."~"

In the AD approximation scheme the XC hole is
misrepresented in much the same way. In fact
eAcn(z) tends so slowly towards its bulk value that
the contributions from far inside the metal to o„c
is unreasonably large. We shall therefore not
quote any numerical results here but refer to Ap-
pendix E for a discussion.

D. Discussion

The surface applications illustrate several vir-
tues and vices of the AD and WD approximations.

For the XC energy density and potentials the
schemes give an overall very reasonable mod-
elling. Like the LD approximation the proper bulk
limits are retained deep inside the solid, but un-
like the LD approximation both the AD and WD
schemes in addition give an image behavior far
outside the surface. In approaching the bulk val-
ue, there is inside the surface a slight misrepre-
sentation of the XC hole. This has only minor ef-
fects of lowering the vxc(r) and c„c(r) values in-
side the surface. For certain quantities, like the
surface energy contribution o„c discussed in Sec.
VC, the misrepresentations might integrate up to
erroneous results. For the surface energy this
occurs because a difference between an infinite
and a semi-infinite system is taken.

To avoid such consequences, surface applica-
tions of the AD and WD approximations should be
limited to situations, where errors due to the
slight misrepresentation of the XC hole are not
summed up but rather cancel in a systematic way.
The schemes should be most useful in describing
differences in energies, for instance, in the
chemisorption problem, where only adsorbate-in-
duced effects are considered, or where energy
differences between various adsorption sites are
of interest.

VI. CONCLUSIONS

In this paper, which is devoted to extensions of
the Kohn-Sham density functional scheme beyond
the local-density (LD) approximation, we have
criticized the earlier proposed gradient expansion
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TABLE VI. Exchange-correlation surface energy in
ergs/cm2 in the BPA approximation to the IBM model.
WD denotes the result of the present work, LD the local-
density approximation and Exact is the Inglesfield-Wikborg
result as modified by Langreth and Perdew".

+s Exact

1
2.07
4

3520
585
102

10700
1240

184
1388
203

~Beference 35, b Beference 36.

[Eq. (2)] and density-response-kernel techniques
[Eq. (3)]. As alternatives, we propose two new
functional forms for the exchange-correlation (XC)
energy, "which both use data for the homogeneous
electron liquid as input but in a more intricate way
than the LD approximation. These "average-den-
sity" (AD) and 'weighted-density" (WD} approxi-
mations (a) go over into the LD approximation in
the homogeneous limit, (b) have a nonlocal depen-
dence on the electron density, through a physical
weighting of the densities in the surroundings, and

(c) satisfy a sum rule for the XC hole that ensures
charge conservation. The two approximations dif-
fer only in the way the averaging or weighting is
performed. In principle, the proposed functionals
generate XC potentials according to Eq. (9), and
then the density should be obtained by self-consis-
tantly solving Eqs. (5}-(9).

The practical procedure that we suggest for ap-
plications is the same as was followed here, i.e. ,
first to perform a self-consistent calculation of
the electron density n(r) in a simple scheme, e.g. ,
the LD approximation, and then to proceed to a
final evaluation of the total energy in the AD or
WD approximations using this density. In Compu-
tational programs for atoms, molecules, and sol-
ids based on local potentials, the additional
amount of programming as well as computing time
is then small as the self-consistency procedure
can be left unchanged and only the last part of the
Kohn-Sham calculation, the evaluation of the total
energy, has to be modified.

It is of course desirable that the approximate
XC functional is generally applicable. In explicit
applications on two widely different electron sys-
tems, atoms and metallic surfaces, we have ex-
amined the virtues and vices of the AD and WD
approximations. In several aspects there is a con-

I

siderable improvement upon the LD approxima-
tion: the r ' behavior of a„c(r) and v„c(r) in the
outskirts of atoms, the z ' behavior of the same
quantities far outside the metal surface, and the
substantially improved total-energy values of
atoms, particularly in the AD approximation. Qn
the other hand, the coefficients of the asymptotic
form are exact only in the WD approximation and
for exc(r) of atoms, and the improvement in total
energy values upon the LD approximation is not as
significant with both exchange and correlation ef-
fects included as when only exchange is consid-
ered.""This is a stringent test, however, as
the calculations include both core and valence
electrons. In a situation, where only valence elec-
trons are studied, the modeling of XC effects by
using data from the homogeneous electron liquid
should be much more appropriate. In particular,
this should be true for band-structure calculations
for metals where the excitation spectrum is al-
most as continuous as for the homogeneous elec-
tron liquid.

The greatest vice of the AD and WD approxima-
tions found so far is the bad result for the surface
energy of metals. This is due to a slight misrep-
resentation of the XC hole inside the surface,
which upon the integrated comparison with the bulk
hole sums up to an essential error. The lesson to
learn for other applications to semi-infinite sys-
tems is that they have to be arranged so that the
small systematic errors due to the XC hole mis-
representation cancel rather than add. Thus prop-
er differences should be calculated. For instance,
in a chemisorption calculation, the adsorbate-in-
duced effects should be calculated by subtracting
the result for the semi-infinite clean substrate
from that of the combined subtrate plus adsorbate.
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APPENDIX A

This appendix contains a discussion of the ex-
change-correlation (XC) energy of an atom as ob-
tained by employing the expansion of the XC en-
ergy functional to second order in the density
variations. For a spherically symmetric system
such an expansion yields [cf. Eq. (3)]

Ezs(s)= Jd rs(r)zzs(s(r)) —ss' f r*dr f r' dr' si ddSSzssS( ~r - r'
~, s) [s(r) -s(r') )', (A()

0 0 0

where 8 is the angle between r and r'.
We wish to demonstrate that the integral over the kernel K„c(r,nj in (Al) gives an infinite contribution

to, the XC energy, if the density argument n is chosen to be (a) n(2(r+ r')) or (c) n(&( ~r ~+ ~r' ~)} but a finite
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contribution 1f (b) n= 2 [n(r)+ n(r )] is used.
The substitution y= ~r —r'

~

in the second term, BEzc, of (A1) gives

goo r'+r
aEzc- 4~' jl rdr r'dr' y dy Kzc(y, n) [n(r) -n(r')]'.

C 0 l r'm I

The convergence of (A2) depends on the kernel
Kxc and it is useful at this stage to introduce the
approximation

K..b,.)=k.(.}fbk.(.)), (AS)

which is exact if only exchange effects are in-
cluded. However, numerical values of Kxc for
metallic densities suggest that this form is a good
approximation, even when correlation is included,
the small deviation certainly not affecting the con-
vergence properties.

We observe that the two density arguments (a)
and (c) above, make the kernel of (A2) approach
Kxc( y, n(,' r') ], -if r is fixed a dnr'»r As the. den-
sities n(&r') decays exponentially with r', so does
the corresponding k~(n) and therefore yk„ap-
proaches zero exponentially. From (AS) it is then
clear that the behavior of Kzc(y, n] as y-0 will
govern the convergenc of LED in these cases.

The Fourier transform of the kernel is

Kzc(r, n)=, d kKzc(k, n)e'"',xc y (2~)3 (A4)

-2m(r)'e'G(k -~, n) . (Aa)

As this quantity is independent of r', it is obvious

with Kzc(k, n) according to Eq. (29). With the com-
mon definition of the dielectric function e(k, n) in
terms of the local-field correction G(k, n)"

v(k))(,(k, n)
1+G(k, n) v(k)X,(k, n) '

where v(k) = 4ve'/k' and X,(k, n) is the polarizability
of the noninteracting electron gas, one obtains

K„,(k, n) = -v(k)G(k, n).

According to Eqs. (A4) and (A6) the small-r be-
havior of Kzc(r, n) relates to the large-k behavior
of G(k, n). It is known that G(k, n) goes to a con-
stant value as k approaches infinity. This constant
is 3 in the Hartree-Fock approximation, "and it is
estimated to be in the range from 3 to 3 when cor-
relation is included. 4' As the behavi. or of Kzc(k, n)
for large k/kz(n) dominates the form of K„c(r,n)
for small values rk~(n), we get

K„,(r,n), , G(k -—, n—)(e'/r) (A.v)

We may now return to (A2) and perform the y
integration, which for large values of g' attains
the value

that the y' integral is divergent, and therefore
bEzc goes towards plus infinity. This result is in
disagreement with a numerical calculation by
Sham, ' who has reported a finite result for ~«.

If, on the other hand, one uses the density argu-
ment (b), i.e. , —,

' [n(r) + n(r') J, which approaches a
constant value for growing x' but fixed r, yk~ goes
towards infinity instead of zero. In this limit K„c
behaves at worst as

K„c(y,n) ~ [sin(2k~y+ e)]ly'
pQ ps~ oo

(A9)

due to the logarithmic singularity of K„c(k,n) for
jz= 2k~, present at least in the approximate solu-
tion of Geldart and Taylor. " This decay is suffi-
ciently rapid to ensure that the integral (A2) is
convergent, as shown below. Because the density
is exponentially decaying, the factor [n(r) —n(r')]'
will cut off all contributions from large values of

A possible divergence would therefore appear
only if the integrand decays too slowly for fixed r
but large and growing r'. First, we therefore con-
sider the y integral. A partial integration gives
that

l
r'+r

y dy Kzc(y n)
Ir™rI

cos(2k~+ @) """
2 +O(r' '}. (A10)

From a similar partial integration over g, it fol-
lows that the integral over r' between a large val-
ue R' and infinity goes as 1/R'. Therefore no di-
vergence occurs in the limit r'- and the ex-
change-correlation energy is finite for the density
argument (b).

APPENDIX B

The second-order expansion Eq. (S) for the XC
energy functional involves a kernel Kzc(r —r', n)
with an incompletely specified density argument n.
In this appendix we will show that the choice (a)
n= n( ,'(r+ r')) lead—s to a divergent result for the
surface energy when this expansion of Ex~ is ap-
plied to the jellium model of a metal surface. "
We will also show that the choice (b) n
= —,

' [n(r)+ n(r')] gives a convergent result in the
same situation.

The electron density n(e} of this model depends
only on the distance z perpendicular to the surface.
On the vacuum side (e&0} of the surface the den-
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sity decays exponentially, while inside the sur-
face it has a Friedel oscillation decaying as 1/z,
i e. , .the density approaches a constant value n.

The surface energy is defined as one-half of the
energy difference between two separated half-in-
finite systems and an infinite system. For an in-
finite metal in the jellium model, the density is
constant, and. the second-order term in Eq. (3) is
zero. The second-order contribution to the sur-
face energy is therefore

I| oo oo

aEB„"cy = -- dz dz'[n(z) —n(z')]'
XC 4 J

x d'p d'p'Exc r —r', n,
where p is the coordinate parallel to the surface.
As the integrand depends on p and p' only through
the difference p- p', the surface energy per unit
area is

XC
—~E'""=-- t dz'[n(z}-n(z')]'

x pd pic([p'+(z -z')']'~', n}.
0

(B2)
If we now invoke the approximation Eq. (AS), i.e. ,

Kxc(r, n) =k~(n)f(rk~(n))

and make the variable substitutions R = —,'(z+z'),
r=z —z' and y'= p'+(z —z')', Eq. (B2) takes the
for m

gEIur f1
XC

The choice (a) gives the density argument n(R),
which goes exponentially to zero when R grows.
Thus we get

1(R) = ka(n(R)) f y dyf(y).

The integration over R is thus strongly divergent.
If instead the form (b) is applied, the density argu-
ment is pno and kF is a constant. Then the lower
limit of integration in Eq. (B4) grows with R and

f(y) may be replaced by the limiting form f(y)
= sin(2y+ P)/y', valid for large y (cf. Eq. A9).
Now it requires only two succesive partial inte-
grations of Eq. (B4) (or, indeed, of Eq. 13 directly)
to verify that to leading order I(R) c(:R B, which
makes the integration over R convergent in this
domain of the (r, R} plane.

We next consider the region where R& —a and
Br& ~B ~+a. Here it is still true that R+r/a&a
and —,R —r & —a, making the density difference in
Eq. (B3) close to -n, . Furthermore, botk choices
(a) and (b) yield constant density arguments, viz. ,
np and 2nD The arguments given above then apply
again and no divergencies occur.

In the domain where R&a and R —a&&r&R+a,
the inequalities R+ Br&a and —a&(R —',r) &a—also
holds, and therefore the density difference
n(R+ Br) -n(R Br) i—s of order n„For t. he density
argument (a), rkz(n) will approach zero as R
grows. The r integration in Eq. (BS) is then triv-
ial, the result being of order

4an„ka'(n(R)) f ydyf(y).
0

oo oo
1 1.= —v dR dr [n(R+ B'r) —n(—R B'r))'——

~oo 0 kF

x ydy y (BS)
gkF

When determining the convergence properties of
Eq. (BS) we shall adopt the strategy of performing
the integration over the variables r and R in a
number of separate regions of the (r, R) plane,
chosen so that in each region the integrand reduces
to a simple form.

We shall first treat the integration region R& —g
and

~Br�

& jR ~+ a, where a is chosen so that n(a)/n,
«1 and ~n(-a) -n, ~/n, «1. Then the density dif-
ference in the square brackets of (BS) is close to

np and it can be brought outs ide the r integral.
Reversing the order of the r and y integrations one
gets

The remaining integration over R obviously di-
verges With t.he choice (b) the density argument
will. again be constant, of order n„and it is easy
to verify that the contribution to Eq. (BS) from
this region is now convergent.

In the domain where R & a and 0 & &r &R —a, we
use again that for the density argument (a) rk„(n)
approaches zero for large R. Assuming that the
density for large distances z from the surface has
the behavior n(a)e~ ""~"we find that the R inte-
grand grows as

n(a) ['kk (n(R)))''f ydyf(y)

which makes the R integral diverging. For the
density argument (b) we use the estimate

oo
b

J '"'f"' (~k )'+d '
ykF

which is based on the facts that (B6) should be
finite for r= 0 and decay as (rkz} ' for large rkz
Using this estimate we have shown that (b) makes
the R integral convergent in this region.

(B6)

(B4)

y(R) -=f da f y dyf(y)ka'(n)
2(lz I+ e)

tB OO

ka'(n) ) y dy=k —4( IR i+a)) y(y).
'

2(le!I+ a)kF F
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There are two domains still to be considered,
first where R s and IR I

~ &r IR I+~' Both
prescriptions for choosing density argument lead
to ff (f0 as JR 2r& -a and 8+ &r & - a.
gral therefore converges due to arguments given
above.

In the final region R &-a and 0 &2r & IR I
—a again

both (a) and (b) give a constant density argument.
Due to Friedel oscillations the density difference
does not decay exponentially, but

[n(R+ 'r) --.-n(R lr-)7'&
)

)"', ), . (B7)
2

Using B6 we find that this is sufficient to ensure
convergence also in this region.

Before we conclude that the density argument (a)
gives a divergent contribution, we have to exclude
the possibility that the divergencies we have found
in two regions of the (r, R) plane cancel. . It suffices
to show that they have the same sign. This will be
the case if the integrals I, = J 0 y'dy f(y) and I,
= f,"y'dyf(y) have the same sign. After observing
that I, c(-f(k) and I, (k- f, dk f(k), where f(k) is the
Fourier transform of f(y), we may use the nu-
merical values of f(k) due to Geldart and Taylor"
to convince ourselves that I, and I, indeed have
the same sign.

To summarize, we have shown that use of the
density argument (a), n(a(r+ r')), gives a diver-
gent surface energy, while the argument (b),
, [n(r)+n(r')7, gives a finite result.

for Eq. (Cl). The differential equation is nonlin-
ear and it is singular in the sense that the coeffi-
cient in front of the derivative vanishes for r, = 0.
It has therefore unusual features and a careful in-
vestigation of its properties i.s necessary.

In Fig. 17 the (w, r,) plane is shown. The two
full curves mark where Bw/&r, changes sign ac
cording to Eq. (Cl). We shall first consider the
integration of Eq. (Cl) in the positive r, direction,
using Eq. (C3) as an initial condition. The gross
features of the solution can be understood by con-
sidering the sign of Bw/Br, . If, during the inte-
gration the solution gets below the lowest full
curve the derivative becomes negative and the so-
lution has a tendency to go towards the r, axis. At
the r, axis it becomes nonanalytic because of the
singularity in the differential equation for ze= 0. If
the solution gets above the lowest full curve (but
below the upper one) the derivative becomes posi-
ti.ve and the solution tends to join the upper full
curve. Thus the lower curve repels the solution
and the upper one attracts it. We now reverse this
procedure and integrate in the negative r, direction
starting at some initial value of w(k, r„) for a large

Now the full curves have the opposite proper-
ties and the solution aims at the lower one (pro-
vided that it is not above the upper curve). In par-
ticular, as r, -O the singularity in Eq. (18) forces
the solution to satisfy the condition (C3), i.e. ,
w(k, r, = 0) = 1. This is true for a large class of
solutions which start sufficiently far below the
upper full curve. This indicates that the boundary

AIIEXDIX C

This appendix is devoted to a discussion of the
differential equation in Eq. (30)

[w(k, ~)]'+2k(~, )w(k, ~,)(1 —]r, ' '
)8r

k =1.9 a

—[1+W(r, )]f(k, r,) = 0.

In Sec. III the normalization condition

w(k = 0, r,) = 1 (c2)

was imposed. This condition has to be trans-
formed to a boundary condition for the differential
equation Eq. (Cl). This is done by noting that the
only characteristic wave vector involved in the
problem is k~= 1/c(r, For k/k. ~= knr, «1,w(k, r,)
should therefore approach the limit w(k= O, r,). In
particular, for an arbitrary value of k

lim w(k, r, ) = w(k = 0, r,) = 1 .
0

(C3)

This result supplies the desired boundary condition

0
0

Wi

2

"s

FIG. 17. tMI, r~) plane for k=1.9ao~ of Eq. (C1). The
full curves show where Ba)/&r, changes sign and its
sign is indicated by the plus and minus signs in the fig-
ure. Depending on the slope of the solution at r~= 0 a
number of different solutions are obtained. These solu-
tions are shown schematically in this figure,
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condition in Eq. (C3) does not define a. unique solu-
tion. This will now be proven. Let wv(k, r, ) be a
solution to the differential equation Eq. (C1) sat-
isfying (C3). Assume further that

w(k, r,) =w,-(k, r,)+ u, (k, r, )

also satisfies Eqs. (Cl) and (C3). Eq. (Cl) may
then be rewritten as

2 w(k, r, ) w(k, r,) +w(k, r,)' +2A(r, ) w(k, r, ) 1--r, ' ' ' + ' ' ' —~A(r, )w,(k, r,)r, ' ' ' =0.
r$

(C4)

It is now assumed that w, (k, r, ) has a power ex-
pansion

This corresponds to

lim w(k, r,) = 2 IA(r, )
I

according to arguments of the same type as those
leading to Eq. (C3). In this case the real-space
weight function takes the form

w(r, r, ) = 2 IA(r, ) I5(r)+ w(r, r,)

where u(r, r, ) integrates up to 1 2 IA(r, ) I
0

Such a form for zg is unphysical. From Fig. 17 it
follows that the only remaining possibility is that
w(k, r,) goes towards «ro,

lim w(k, r, ) =0,
$

(c6)

which we impose as a second boundary condition.
That this condition defines a unique solution can

be seen in the following way. A coordinate trans-
formation x= 1/r, is made. The new differential
equation resulting from this transformation has
exactly the same singularity at &= 0 as the old one
has for r, = 0 and there will be an infinite number
of solutions starting at 2 IA(r, ) I. However, there
is just one solution starting from zero. To prove
this, assume that

u, (k, r,)= g a„r,"",
y= 1

with y&0. Inserting (C5) into (C4) reveals that g,
can have any value provided

y =3[1/A(0)+ 1]='1.

This means that there are an infinite number of
solutions satisfying Eqs. (Cl) and (C3) and an ad-
ditional condition is required. In connection with
Fig. 17 we observed that the solutions starting at
w(k, 0) = 1 tends to go towards either 2IA(r, ) I

or
the r, axis. In the latter case the solution is unde-
fined for large r, and not acceptable. Let us in-
stead assume that

lim w(k, r,) 2IA=(r, )
$

t

u(k, x) = w, (k, x)+u, (k, x),

w, (k, x)= Q a„x"",
p-1

and consider the equation for w, (k, x), which is
similar to Eq. (C4). We find that the terms which
are nonlinear in so do not contribute to lowest or-
der in g, and the contribution from the linear term
cannot be cancelled by any other term if w, (k, x)
t0. The difference compared to the case when the
solution starts from

GAIA

I
is that w(k, x=0)= 2IA I

allows the mixed term w, (k, x)w, (k, x) to contribute
to lowest order in ~.

We conclude, then, that the boundary conditions
w(k, 0)=1 and lim w(k, r,)=0 uniquely define a so-~ 00

lution to the differential equation of Eq. (C1).
In the numerical calculations we have used data

from Ref. 19 for e„(r,) to calculate A(r, ). [A(r,)
is defined below Eq. (30)]. Data for f(k, r,) have
been obtained from Ref. 13. There data is given
for the range 1&r, &6. For r, »6 we utilize the
fact that

f(q, r,) =f(qk, r, )

has a weak r, dependence if the dimensionless
variable q is kept fixed. We have used two differ-
ent procedures First .f(q, r, ) was assumed r, in-
dependent for r, & 6 and then a linear extrapolation
was used in the range 6&r, &9 together with the
assumption th tfa(q, )ris constant for r, & 9. For
r, &6 these two approaches gave essentially the
same result for w(k, r,). The numerical data for
w(k, r,) presented are calculated according to the
htter scheme. For r, =0 the correlation effects
are negligible and we can use the data only in-
cluding exchange effects as wil. l be discussed be-
low. In practice the integration of Eq. (Cl) is per-
formed by starting at some large value of r, so
that k & kz(r, ) = 1/or, . Then w(k, r, ) « I and Eq.
(Cl) reduces to a linear algebraic equation, which
provides a starting value. Eq. (Cl) is then inte-
grated in the negative r, direction.

It is convenient to present data for w(q, r, )
= w(qko, r, ) as w(q, r, ) has a weak r, dependence.
The numerical results are shown in Table I and
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Fig. 9.
In the case when only exchange effects are in-

cluded, A(y;) becomes r, independent [A(r,} =—1.5j.
For the function f(k, r,) we then use the same form
as Sham. " The polarizabi1. ity defined by

e(u) = I -~(a)x(I )

is expanded in powers of e': y(k) = yG+ y, + ~

The higher-order terms are approximated by geo-
metric progression starting with the first two
terms, which are obtained from a calculation of
Geldart and Taylor. " The function f(q, r,} is then
independent of y, . Expressed in terms of the di-
mensionless variable q, Eq. (Cl) thus also be-
comes y, independent. Therefore there exists a
solution nr, „(q) which has no r, dependence. In the
limit when y, tends to zero this solution agrees
with the solution to the differential equation that
includes correlation effects, as correlation effects
are negligible in this limit.

eous system has been used. Clearly, if r' is deep
inside the metal n, is unity and if r is at the sur-
face n, =0.5. Similarily, the numerator of Eq.
(D4) can be written

d 1.=An XC
np np

~bulk+ n ~bulk (D6)

bulk bulk

1 dnp

where we expect u, /o. , to be close to unity for all
values of r'. A reasonable approximation to v, (r)
is therefore

where again 0.5+ n, ~ 1, as r' has to be inside the
metal. Now, as

APPENDIX D
v,(r)= —fd'r'n(r')G(r —r'; n, )

e will. here derive simplified expressions for
the XC potentials for the metal surface system.
Starting with the WD approximation, we may ac-
cording to Eqs. (40) and (41) express v„"cn as a sum
of three terms.

vx, (r) = g,(r)+ g,(r)+ g,(r) .
In Eq. (40) r' has to be inside the metal to give a
contribution to the integral. It is therefore rea-
sonable in the second term v,(r) to replace the
density argument ~(r') of G" with the bulk density
np

(D1)

v,(r) =—f rd' (nr') (rv—r')G"(r —r', n, ) (G2)

The same argument may be applied to v,(r), which
may then be written. as

~bulk n + n ~bul k

dnp

For r' deep inside the metal this approximate form
of the potential. (D1) tends to the correct limit (d/
dnG) [nG a'„"c'"(n, ) ].

In the AD approximation the XC potential is giv-
en by Eqs. (33) and (34). As in the case of the WD
approximation we may replace the density argu-
ment R(r ) with the bulk density zG. This is a good
approximation, since r' has to be inside the metal
to contribute to the integral in Eq. (33). Further-
more the denominator in Eq. (34) may be written

n r' -np

G= ( —n n(n„) f d'r" rv(r' —r"":n,))dnp

v,(r)= —fd'r'n(r')Gr(r — r; n)E(r'), (D3) do.(n, )
np 0

dnp

where

~gg( ~&II

F(r') =- d'r "n(r")v(r' —r")
2 ~np

x d'xnx ' ' . D4
~np

The denominator D of Eq. (E3) may be written

sa"(x r', n,)—a= ~,np d'x
enp

In the SCIBM model, o'(n, ) = 1 if r' is deep inside
the metal, and o(z,) = 0.5 if r' is exactly at the sur-
face (thus independent of the density n,}. It is
therefore reasonable to assume that u is only
weakly density dependent ant let D be unity. Thus
the approximate form of v„c is

d~bglk (n

dnp

(D5)
d'x'n r se r —r'.np (D10)

where the sum rule Eq. (36) applied to a homogen-
which again tends to the correct limit far inside
the metal.
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APPENDIX E

This Appendix contains a discussion of the XC
part of the surface energy, o xcD, of a jellium sur-
face in the IBM. We shall find that Ox"c has unrea-
sonably large contributions from deep inside the
metal (large negative k value}. This result is a
deficiency of the AD approximation and indepen-

dent of the IBM per se. The surface energy in the
AD approximation is given by"

oxDc= dk n(z) [zxc(n(z)) —e'„"c'"(n,)],
. «OO

where n(z} is given by Eq. (21). The convergence
properties of the integral are best studied by add-
ing and subtracting terms to Eq. (El) to get

p p

o "xcn=n, "' dz[n, (z) -n, ]+ dk[n(z) -no(z)]
~

( p
d&xc

dznp 4 nz —&, np —nz -np d" + dznz np~ z 4 nz 4' np
np

(E2)

where we have introduced

m(z)= fd'r'e(r')w(r-r';m). (E3)

In all but the first integral in Eq. (E2} the den-
sity variation enters only in second order and con-
vergence is ensured. We shall therefore only con-
sider the integral

I

where

f(q) = 1 — 1 — ln[(q+ 2)/(q —2)]
~
.

3q' q'/4 -1
8 q )

(E'I)

The integration over z may be performed by
introducing a convergence factor exp(nz) in the
standard manner. We find that

I =np dz np z -np
«OQ

(E4)

TABLE VH. Sensitivity of Eq. {E2) for Oxc at r~= 2 to
a low cutoff q, introduced into the integral in Eq. {E9).
The local-density approximation gives Ox~c= 1350 ergs/
cm

qc (&s) 1/q (k~~) 0.&~c (ergs/cm2)

0.05
0.10
0.15
0.20
0.25
0.30
0.35

20
10
6.7
5.0
4.0
3.3
2.9

1760
1580
1450
1360
1280
1220
1160

whose convergence depends on the behavior of the
integrand as z - —~ )

In combining Eqs. (E3) and (E4) it is convenient
to express n(z) and w(r) as Fourier integrals. The
Fourier transform of n(z) [Eq. (52)] is readily cal-
culated as

n(q)/no= «(q) -(»/8~&)(1- q'/4~&)(2&~ -
~q ~)

+ i(P/q —3q/8k '), (E6)

and the integrand of Eq. (E4) is

3n.
no(z) -no = — '

dq w(q, n,}(1—+q' cos(qz)p

+"—' —q sin(qz)[l —w(q, nJf(q)],

(E6)

lim dz cos(qz) exp(o(z) = v6(z),
e~p p

fy P
lim dz sin(qz) exp(c(z) = --.
o~p

(E8)

On combining Eqs. (E4), (E6) and (E8) we get

1 dI= ———v ' —[1 —w(q, n )f(q)].2 y p

Now as f(q) tends to unity, as q tends to zero, w(q)
must tend to unity at least as q"" for the integral
in Eq. (E9) to be finite. The function w(q) was ob-
tained by numerically solving a differential equa-
tion (see Appendix C) and therefore we have no
analytical expression for w(q) at small-q values.
From the tabulated values (Table I) or from Fig.
9 it is clear, however, that w(q) —1 rather than
being quadratic in q seems to be linear in q for
small-q values. If w(q) indeed had a linear term
in q at small q, then Eq. (E2) would diverge. Even
if for very-small-q values the linear term would
no longer be there, the contribution from the
small-q region (corresponding to the large- ~z

~

region} would be unreasonably large, as can be
seen from Table VQ where a cutoff q, has been
introduced into Eq. (E9). The accuracy in our
numerical solution for w(q) does not permit a
definite answer to the question, whether 0 „"CD di-
verges, or if it is just too large.
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