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The relativistic Korringa-Kohn-Rostoker method is used to calculate the energy bands and Fermi surface of
lead. The bands are first calculated self-consistently, using a k-dependent muffin-tin potential. A non-muffin-
tin potential is then generated from the resulting crystal charge density and the difference between this
potential and final self-consistent muffin-tin potential is used in a perturbation calculation to correct the
muffin-tin energy bands. Both the self-consistent muffin-tin potential and the non-muffin-tin potential are
used to construct Fermi surfaces which are compared with measurements obtained from the de Haas-van
Alphen effect. The muffin-tin Fermi surface shows reasonable agreement with experiment. The non-muffin-
tin potential makes a significant change in the Fermi surface and improves the agreement.

INTRODUCTION

The first accurate quantitative description of the
Fermi surface of lead was given by Anderson and
Gold.* Using a four-parameter pseudopotential
model, they constructed a Fermi surface which
fits the existing data from the de Haas—van Alphen
effect. A systematic error was discovered in the
data they had used, and a second calculation was
made by Anderson, O’Sullivan, and Schirber
(AOS),? using the same least-squares method to
fit a Fermi surface to the corrected data. More
recent de Haas-van Alphen measurements® have
agreed with the AOS values. A more ambitious
pseudopotential calculation was done by van Dyke*
using 30 orthogonalized plane waves to fit the data,
instead of the four used by AOS. Van Dyke found
that at high pressures the AOS calculation was in-
adequate but that their normal-pressure Fermi
surface was correct. A more recent experiment®
measures the effective mass of the electrons on
the Fermi surface, and agrees with the effective
mass calculated from the AOS energy bands.

The earliest first-principles calculation of the
energy-band structure of lead was made by
Loucks,® who used the relativistic augmented-
plane-wave (APW) method. A second calculation
was made by Sommers, Juras, and Segall,” using
the relativistic form of the Korringa-Kohn-Rosto-
ker (KKR) method. These authors carried out the
calculations using two different exchange poten-
tials, one with a Kohn-Sham-like exchange poten-
tial with a coefficient of %, and the other with a
coefficient of 1. Only the first of these was found
to be satisfactory. A more recent band-structure
calculation for lead was carried out by Neto and
Ferreira,® who also used the relativistic form of
the KKR method. The potentials used in these
calculations were all of the usual muffin-tin form.

The calculation reported here used the rela-
tivistic KKR method®*° to calculate the energy

bands and the Fermi surface of lead, and includes
an investigation of the effects of a non-muffin-tin
potential. The first part of the calculation uses a
k-dependent potential of the usual muffin-tin form.
The potential and the electron wave functions are
calculated self-consistently, and the results are
compared with other calculations and with the
measured Fermi surface. In the second part of the
calculation the final self-consistent muffin-tin
wave functions are used to calculate a nonspherical
electron charge density and the resulting non-
spherical crystal potential throughout the entire
crystal cell. The non-muffin-tin part of this crys-
tal potential is used with first-order perturbation
theory to correct the muffin-tin energy bands and
Fermi surface.

SELF-CONSISTENT MUFFIN-TIN ENERGY BANDS

A very useful approximation for the KKR method
is the muffin-tin (MT) potential. The crystal cell
is divided into two parts. Inside a sphere of rad-
ius 7; the potential is spherically symmetric and
outside it is constant. The largest possible value
is used for 7;. The regions inside and outside
the MT spheres are labeled S and R, respectively.

The muffin-tin calculation used the Liberman®!
potential, in which the charge density is taken to
be spherically symmetric in region S and constant
in region R. This leads to the electrostatic po-
tential
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where Z5 and Zy are the total number of electrons
in the regions S and R. For a face-centered-cubic
lattice of lattice constant a the required average
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values are

(1/7% =1/0.37832a, (1/|%, ~T,rr=1/0.38157a.

The total effective crystal potential is obtained
by adding to the electrostatic potential an approp-
riate exchange potential. For this exchange po-
tential we have used the k-dependent potential
given by Harford.!? Correlation is included in this
potential by using a screened Coulomb interaction.
In atomic units this exchange potential is

e _ €kp(r) k_ Ks)
v == S o 455) @

Here k is the modulus of the crystal momentum,
with a reciprocal-lattice vector added to put it into
the appropriate Brillouin zone. The potential is
derived from a free-electron model, so that the
other parameters are values for a free-electron
gas of density p. Here kr is the Fermi momen-
tum

ke = (37%0)*/°, @)
and Kg is the Fermi-Thomas screening parameter
Ki=(4/m)kg . (5)

The function Q(7, 0) is given by

1 L2 g2
N 9)=1*Zﬁl-n2+92>1n<%1{%%7>

—O[tan‘l(lgn>+tan“<1;n>], (6)

and for 11=0 has the limiting value

Q(0,6)=2-26tan"t6"". (7)

The same approximation is made here as was
made for the electrostatic potential; the density

~ is spherically symmetric inside the MT sphere
and constant outside. Since the exchange potential
depends upon 7 only through the density, this ap-
proximation puts the exchange potential into the
MT form. The complete MT potential is

Var) =)+ Ve ). (8)

The potential is shifted by a constant amount so
that it vanishes throughout the outer region.

The initial MT potential was generated from the
free-atom charge density.'®* The relativistic KKR
method was then used to find the wave function
and energy for any point in 2 space. The states
with energy below the Fermi energy will be oc-
cupied and a new charge density is found from

PE)= D vl EWL(E), ©)

summed over all the occupied states. This in turn
is used to generate a new potential and the pro-
cess is repeated until some criterion of conver-

gence is satisfied. In practice, after the first
iteration the average of the old charge density
and the new was used to generate the next poten-
tial. Before the sum is taken each wave function
is normalized and the electron density is made
spherically symmetric.

In the relativistic KKR method the wave function
inside the MT sphere is expanded in spherical
wave solutions to the Dirac equation

U= Y Cou¥b (@), (10)
. Kol
with
2L P)
gk = NE (11)
SeSufc XL )

where S, and S, are the sign of ¥ and K, respec-
tively. The angular dependence is given by the
two component spinors xk (7).

The electron number density is not spherically
symmetric, but the spherical average is easily
found: '

P = 3 S 1C o L8300 + 73] (12)
KR

Each wave function is normalized separately, us-
ing the method suggested by Ham and Segall.**
The self-consistent calculations were carried
out for 89 points in 1/48 of the zone, correspond-
ing to 2048 points in the full zone, and for a num-
ber of bands. The wave function was expanded in
the form of Eq. (10) to include all terms through
1=3. Self-consistency of the energy eigenvalues
was obtained to 2x 107°% Ry. The resulting energy
bands are shown in Figs. 1 and 2. The bands are
typical of free-electron behavior and are similar
to those given by Anderson and Gold,* van Dyke,*
and Loucks.® The bands calculated by Neto and
Ferreira® show considerably more structure.
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FIG. 1. Self-consistent muffin-tin energy bands for
lead. The energy is given in units of (27/a)?.
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FIG. 2. Self-consistent muffin-tin energy bands for
lead. The energy is given in units of (27/a)?%. .

Some results of the different calculations are com-
pared in Table I. The calculated Fermi surface

is compared with the experimental surface in the
next section.

TABLE I. Comparison of band calculations for lead.
The energies are in rydbergs and have been shifted to
- agree at point W in the first zone.

Point Calculation Zone 1 Zone 2 Zone 3 Zone 4

T scMmT? -0.4519
AOS® —0.4241
NF ¢ —-0.4164
Loucksd —0.34
sJs® -0.40

w SCMT 0.0000 0.2861 0.3685 0.4413
AOS 0.0000
NF 0.0000 0.2171 0.5394 0.5621
Loucks 0.00 0.28 0.42 0.50
SJS 0.00 0.31 0.39

X SCMT —0.0198 0.1779 0.5717
AOS —0.0181
NF -0.0139 0.2804 0.4818
Loucks —-0.01 0.22 0.59
SJS -0.02 0.21 0.59

K SCMT —0.0203 0.2444 0.3337
AOS -0.0217
NF -0.0139 0.1761 0.2661
Loucks -0.01 0.37 0.28
SJS -0.01 0.27 0.38

L SCMT —0.1388 0.0916
AOS —-0.1391
NF —0.1239 0.0261
Loucks -0.13 0.15
SIS -0.13 0.14

2 Present calculation (self-consistent muffin tin).
b Four-parameter pseudopotential model (Ref. 2).
€ Relativistic KKR method (Ref. 8).
d Relativistic APW method (Ref. 6).
¢ Relativistic KKR method (Ref. 7).

NON-MUFFIN-TIN CALCULATIONS

Non-muffin-tin calculations with the KKR method
have been done in the past using the discrete-
variational method.***® In this method, the crystal
potential is evaluated numerically at any point by
a direct superposition of overlapping atomic po-
tentials and the necessary integrations are per-
formed numerically by sampling a large number
of points. The method used here derives the po-
tential from the actual crystal charge density as
determined by the electron wave functions found
in the self-consistent MT calculation described
in the preceding section. This charge density and
the resulting crystal potential are written in terms
of lattice harmonics and the non-MT part of the
potential is used in a perturbation calculation to
correct the energy bands and the Fermi surface
found in the MT calculation. )

In order to carry out the non-MT calculation an
expression is needed for the wave function outside
the MT spheres. To obtain this expression we
start with the standard relation in terms of the
Green’s function G (¥, T'):

() = f GG, T)VEWE)dF . (13)

This is transformed to a surface integral over the
inscribed sphere

zp(f)%fr_

=7

GE, T )ca n'¢{')ds’. (14)

Equations (10) and (11) with » =7; can be used for
$(r) on the surface. The Green’s function G(T, ')
can be expanded in the standard manner,!° taking
care that the expansion is appropriate to the reg-
ion » >7;. This leads to the following expression
for the wave function in the outer region:

V)= =1} 3 Conglefu i &)
KiK'
=S (BK/2m)g . (r; )i (Kr,)]

71 (Br)xk (F)
X FK“,KIMI

S, (EK/2mc)j, (Kr)xE . (T)

ny (Kr)xk (F)
+ GKK'émJ'me
S, (K /2me n (Kr )X (F)

(15)

Here the F,, ., are the usual structure constants
[see, for example, Eq. (A13) of Ref. 9].

Nothing has been said about how the coefficients
Cyy in Eq. (15) are to be found, only that an ex-
pansion of the form of Eqs. (10) and (11) is made
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for the wave function on the MT sphere. One way
of determining these coefficients is by the varia-

tional method. An alternative method was used by
Neto and Ferreira,® which does not use the varia-
tional approach. All that needs to be done is to

. nK
Cru&c =~ mr} Z CK,“,<ch,],, -Sy T
K

We equate the lower components to obtain

- . nK .
Cxuskspfx == ﬁrlz‘; CK']J'<CfK']l’ _SKI%gK’]l_'><FK‘J.K’M’S

k2me

require the wave function to be continuous at »

=7;. Equation (15) is used for the wave function
for » >7; and Eqs. (10) and (11) for » <7;. We
evaluate both expressions at » =7; and set the upper
components equal to each other to obtain

gK’jT’) (FKu, K’u'jl + 6& K’ épu’ menz) . (16)

hK hK
o Jit GKK’omilmeSP M nT) : (17)

Multiplying the first of these by f and the second by S, S, g, and subtracting gives, after multiplying

through by c,

. nK . . nK . nK
‘(Z‘J;CK.W(CfK’]t’ "SK’EnTgK’]T'> [F:q.t.x’u' (Cf,(], _SKWJI_) +0 KK'épu'2n1K<chnl —SKWgKnT)] =0. (18)

This leads to exactly the same secular equation
[see Eq. (2.32) of Ref. 9] that is obtained by re-
quiring the wave function in the inner region to
satisfy the KKR variational equation. Thus, the
same energy E and coefficients C,, should be used
to construct the wave function inside and outside
the MT spheres so that the wave function will be
continuous and will be the best solution, in a
variational sense, to the integral equation (13).

The construction of the nonspherical crystal
charge density and the resulting non-MT potential
is described in the Appendix. The electrostatic
part of the potential is formed using the final self-
consistent MT wave functions and is written in the
form of an expansion in Kubic harmonics*’

oF) = 2 ¢,0NK, (7). (19)

This potential is defined throughout the entire cell.

Since the MT wave functions were expanded to in-
clude all terms through [ =3, this potential will
include terms through [ =6. This results in three
terms in the expansion (19). No attempt was made
to expand the exchange potential in this form, but
the actual value at each radius in the outer region
was calculated, instead of just the average value
which is used in the MT potential.

The difference between this potential and the
final self-consistent MT potential was used to
perform a perturbation calculation for each state.
The energy shift is given by

AE= [ aF@[VE) - TR . (20)

T

Expanding the functions in Kubic harmonics, we
obtain for this energy shift

AE= ; J;rm PV () = 8,0 oV ™ ()] 4172

< | do KK 7), 21)

where V,(r) includes the k-dependent exchange
part of the potential. The angular integration is
discussed in the Appendix. The P,(r) arises from
an expansion of the charge density for a single
state ¥,(T), normalized to a single cell. This
single particle density need not have the full crys-
tal symmetry, so that it may include Kubic har-
monics of type other than . However, only those
of type o make a contribution to Eq. (21).

Some representative non-MT energy shifts as
calculated with Eq. (21) are given in Table II,
which shows also the individual contributions to
the total energy shift arising from the different [
values in the sum. Table III gives for a number
of states the non-MT energy shifts together with
the fraction of the total charge for the state that
lies outside the MT sphere.

It can be seen from Table III that there is a good
correlation between the energy shift and the frac-
tion of the total charge for the state that lies out-
side the MT sphere. This is not surprising, since
the more charge the state has in the outer region
the greater is the perturbation. However, it points
out a defect that is inherent in the MT potential.
The perturbing potential is the difference between
the actual potential and the MT potential, which



TABLE II. Some representative non-muffin-tin energy
shifts. The individual contributions from the different ]
values in the charge density of the state are shown. En-
ergy values are in units of (27/a)?. The points a, e, and
m refer to points on the Fermi surface. The wave vector
k is given in units of 7/4a.

State (AE),

k Zone 1=0 1=4 1=6 Total
000 1 0.06320 0.000 00 0.00000 0.06320
440 1 0.04254 -0.00044 -0.00009 0.04201
480 1 0.01362 -0.00001 -0.00045 0.01316
480 2 0.04284 -0.00133 -0.00007 0.04143
480 3 0.04933 —-0.00186 —0.00007 0.04740
480 4 0.05636 —0.00330 0.00010 0.05977
a 2 0.02270 0.00040 -0.00001 0.02231
e 3 0.04897 0.00089 -0.00034 0.04953
m .3 0.04550 —-0.00148 0.00016 0.04418

has been averaged in the outer region and is the
same for all states. A more satisfactory method
to obtain the MT average would be to weight the
outer region according to the fraction of the charge
for that state that lies in the outer region. This
could be done most easily by choosing the zero-
point MT energy shift to be different for different
states and to depend upon the fraction of the state
that lies outside the MT sphere. Simply put, a
reasonable approximation to the effect of the non-
MT potential can be obtained by neglecting all the
terms in Eq. (21) except the term for =0 and by
taking the perturbing potential for this term to be
independent of ». This procedure could be easily
incorporated into a standard MT calculation.
Some calculated Fermi surface diameters for
both the MT and non-MT calculations are given

TABLE III. Some representative non-muffin-tin energy
shifts and the fraction of the state outside the muffin-tin
sphere. The value of the energy shift is given in units of
(27/a)?, with the fraction of the state outside the muffin-
tin sphere following in parentheses. The wave vector &
is given in units of 7/4a.

State AE

k Zone 1 Zone 2 Zone 3

000 0.0632 (0.1633)

220 0.0595 (0.1573)

440 0.0420 (0.1247) 0.0378 (0.1996)

660 0.0148 (0.0516) 0.0449 (0.2043) 0.0539 (0.2723)
480 0.0132 (0.0418) 0.0414 (0.1899) 0.0474 (0.2192)
280 0.0134 (0.0544) 0.0465 (0.2054)

080 0.0134.(0.0649) 0.0483 (0.2094)

060 0.0383 (0.1250) 0.0297 (0.1429)

040 0.0535 (0.1502)

020 0.0610 (0.1606)

000 0.0632 (0.1633)
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TABLE IV. Some calculated Fermi surface diameters
for lead. Values are given in units of 27/a and the nota-
tion is that of Ref. 1.

Diam Van Dyke ? scMT® non-MT ©
aa 1.301 1.349 1.334
cc 1.145 1.161 1.154
ee 0.4591 0.4262 0.4370
hh 0.6032 0.6119 0.6234
mm 0.8330 0.8443 0.8341
nn 0.4724 0.4514 0.4514

2 Pseudopotential model (Ref. 4).
b present self-consistent muffin-tin calculation.
¢ Present non-muffin-tin calculation.

in Table IV. This table compares the Fermi-sur-
face diameters found here with those calculated
using the model of Van Dyke* which is based on a
parametrized fit to the measured de Haas-van
Alphen data and which reproduces the data well.
The table shows an improved agreement with the
experimental results for the non-MT Fermi sur-
face as compared with the MT results.

Another approach to including a non-MT poten-

" tial in the KKR method is to include the non-MT

effects directly in the KKR matrix elements, in-
stead of including them only as a perturbation.

We are currently developing such an approach.

If the potential is written as a sum of MT and non-
MT parts, the KKR matrix elements can be sepa-
rated in the same way:

_ AMT non-MT
Ak'kl—Ak'kl +Ak'kl .

The MT part of the matrix element is already
known and the non-MT part can be found by using
the method for volume integrals developed in the
Appendix. This calculation is made easier by the
results shown in Table II. These results show
that the effect of the nonspherical (I =4, 6) part of
the potential is much smaller than the effect of
the nonflat but spherically symmetric (I=0) po-
tential in the interstitial region. This is impor-
tant since if only the /=0 term of the potential is
significant there will be no coupling between radial
functions of different basis states, which is not
the case if higher [ values are significant.

APPENDIX

In this appendix we discuss the construction of
the potential used in the non-MT calculations.
The electron number density p(T) is given by

pE)= 29l B (A1)

summed over all the occupied states k. This will
have the symmetry of the lattice point group and
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can be expanded in Kubic harmonics K, (7):

p(E)= Y p, 0K, (7). (A2)
n
For a cubic crystal, the only harmonics that sur-
vive the summation are those of type a. The fixed
atomic core density is included in the first term
of this expansion.
The electrostatic potential energy is

(1)(7‘):—262‘2‘1‘:»1%
e EJ‘ p(F)

'—'ﬁ (A3)

The integration over 7 means intergration over
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the cell centered at.R;. We can write this as an
expansion in Kubic harmonics of the form
dE) =Y ,0)K, () (A4)

n

Again, the only harmonics that occur in this sum
are those of types «. This expansion can be made
with the help of the identity

(A5)

1 4
= 2l7:_1 7’”“ K,(r)K,(r ).

We consider in detail the first term (R; =0) in the
electronic contribution to the potential energy.
Using the expansion (A5) this term is written

? p(f ’ 12 ’ 4‘" A rll
P,
fd J;r dr,,,,2l+1’(y'r’+1.
174 ’ o 4 2 m 12 47
X fdw K, (K, P)K,(?') +e f r'2dr! 2y 2l+1 o )—,('ITD' fdw K, (P)K,P)K,(®') .
r ’
(A6)
-
Here 7, is the maximum value of 7 in the cell Ay (#)=08,,, forr<w
(r.=3a for a face-centered-cubic lattice). . .
{ he f

principle, the expansion (A5) includes Kubic har- We define the functions
monics of all types; however, only those of type f’ 1 2

: 1 = 4y’ Ay ()P (r')dr’ A8
a give any contribution to Eq. (A6). The angular My ) e ,Z: w )Py ') d (a8)
integration on the right of this expression must be and
done carefully. For 7 less than the radius of the Tm 4qyp? , N oo
inscribed sphere the integration will be over all Ni(r)= [ Y CESY ; INTH bl R o (A9)
angles and the orthogonality of the Kubic harmon- i )
ics can be used. However, in the outer regions of We may then write Eq. (A6) in the form
the cell not all angles are included. Nevertheless, p( )
the integrals can be evaluated at any radius, nu- Id”' —7]
merically if necessary. For now, we define, for 1 1
7 inside the cell, =ezzl: T l(rm M;(r) +7'N, (V))K;( ), (A10)

)= [ do K@), ). (A7)
These functions are evaluated later for a face-
centered-cubic lattice. Clearly, however,

J

¢ (F)=e? Z 211+I< M

1 - = - = -
X(WM;( =R+ [F=-R|'Ni(IT

Since there are Z electrons in a cell
MO )=z forr=v,

This means that outisde the circumscribed sphere

M,(¥) +r'N,(V))K1 (7) +e?

—ﬁ,-l))K,(f -R).

which is just a multipole expansion in terms of
Kubic harmonics. The other terms in the elec-
tronic contribution to the potential are evaluated
in a similar manner, giving

Ri#0 1

1
Z 24+1

(A11)

r

the contribution of the nucleus is exactly canceled
and only the higher multipole moments are left.
We can incorporate the nuclear contribution to
the potential energy in the integral M,:
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Mr)=MD¥)-Z.
Then, forr=7r,,

M,»)=0, N,(»r)=0 (r=7,).

(A12)

The electrostatic potential energy can now be put into the desired form of Eq. (A4), with

1

¢,(V)=2le;+-i<7:1M,(T)+’)’1N,(’}’))

1 1 - = T - = - N
+622 RiZ#O_z'ZTI_lfdw(me’(lr_Ril)'*lr_RillNl'(r—Ri]))Kl’(—f-Ri)Kt('r)-

7

The second part of this is difficult to evaluate
exactly. However, it can be approximated as fol-
lows: In view of the relations (A12), if /=0 the
sum over R; will contain only a single term that
represents the contribution from the nearest neigh-
bor. For I’+#0, other than for this nearest neigh-
bor, only the terms with M,(|r — R;|) contribute,
and these contain factors of [¥ - R;|™*'*¥. Since
the lowestnonzero values of I’ are I’=4 and I’ =6,
these terms will decrease rapidly. Thus we replace
the sum over R; # 0 by the single term that gives the
contribution from the nearest neighbor only. A
simple method can be used to evaluate this con-
tribution. On the cell boundary, the direct term

(A13)

"and the overlap term are exactly equal. Also,

on the boundary K;(#)=K,(t - ﬁ,-). Thus, on the
cell boundary
2¢? 1
o,(r)= m(;,—qM,(r)+V‘N,(7)>. (A14)

This expression is exact (assuming nearest-
neighbor contribution only) on the cell boundary

~and can be used for all points in the cell with »

>7;.
For 7 <7; a similar method can be used, except
that the overlap is evaluated for points along the

' line parallel to R;. Again, since this is a sym-

metry direction for Kubic harmonics of type a,

TABLE V. Angular integrals of Kubic harmonics in the outer region of the cell for a face-
centered-cubic crystal. The value of v is given in units of the lattice constant a. The radius
for n=1 is the radius of the inscribed sphere and for » =21 corresponds to the maximum value

in the cell.
A”'(‘V)
n Vn (1,1) (1,2) (1,3) (2,2) (2, 3) (3,3)
1 0.353553 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
2 0.360876 0.878257 0.062875 0.201984 0.965141 —0.103133 0.656528
3 0.368198 0.761358 0.111099 0.313682 0.931759 -—0.138268 0.536075
4 0.375520 0.649016 0.147233 0.360257 0.889843 —0.129552  0.494 981
5 0.382843 0.540972 0.173397 0.360739 0.834590 —0.094054 0.466 008
6 0.390165 0.436984 0.191351 0.329475 0.764465 ~0.043715  0.422429
7 0.397487 0.336827 0.202558 0.277240 0.679895 0.013238  0.3571758
8 0.404810 0.240293 0.208236 0.212070 0.582419 0.071257  0.274619
9 0.412132 0.158480 0.203162 0.147667 0.478722 0.121297 0.185450
10 0.419454 0.110250 0.179741 0.104731 0.386788 0.143625 0.119599
11 0.426776  0.078374 0.149989 0.075974 0.308515 0.141819  0.079279
12 0.434099 0.057268 0.117991 0.058531  0.244451 0.121964  0.061222
13 0.441421 0.041926 0.088978 0.045540 0.189353 0.097198  0.050051
14  0.448743 0.029912 0.064930 0.034050 0.141130 0.074115 0.038982
15 0.456066 0.020571  0.045429 0.024273 0.100385 0.053672 0.028716
16 0.463388 0.013423 0.030030 0.016275 ' 0.067200 0.036429  0.019754
17  0.470710 0.008098 0.018290 0.010017 0.041316. 0.022629 0.012 396
18 0.478033 0.004306 0.009791  0.005402  0.022265 0.012285 0.006778
19  0.485355 0.001813 0.004142 = 0.002296 0.009460 0.005244  0.002 908
20 0.492677 0.000431 0.000986 0.000548  0.002257 0.001255 0.000697
21 0.500000 0.000000 0.000000 0.000000 0.000000 0.000000  0.000 000
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K,(7)=K,(t - ﬁi) and the potential along this line
can be written

e? 1 1
¢;(1’)=EH——I(WMKV)W'N:(VHWWM:(V’)

+r"N,(1f’)) , (A15)

where, for a face-centered-cubic lattice,

r'=a/N2 -7.
This expression can be used for all points in the
cell with » <7;.
The electrostatic potential in the form of Eq.
(A4) with the radial functions given by (A15) will
satisfy exactly the boundary condition

n-veo=0 (A16)

on the surface of the cell. It should be noted also
that if terms arising from other than the nearest
neighbor are included in the evaluation of Eq.
(A13) a potential can still be formed which will
satisfy this boundary condition exactly and the
radial functions can still be evaluated by a method
similar to that which led to Eqs. (A14) and (A15).
The functions A;;-(») defined by Eq. (A7) have
been evaluated numerically for a face-centered-
cubic lattice and the results are given in Table V.
These functions can be used to perform any volume
integration in the cell, as long as the function to be
integrated is written in the form of a Kubic har-
monic expansion. These functions are used in the
calculation for the effects of the non-muffin-tin
potential on the energy bands and Fermi surface.

*Submitted by one of the authors (W.J.L.) in partial ful-
fillment of the requirements for the degree of Doctor
of Philosophy.
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CA 91520.
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