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Relativistic energy bands of (010) tungsten thin films
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%e have made the first complete thin-film energy-band calculation including the spin-orbit interaction.
Except for the inclusion of spin-orbit parameters, the method used is identical to the parametrization scheme
we have previously applied to several 3d transition metals. Two of the three surface features observed in
tungsten{001) photoemission are found near I" as well as many other surface states throughout the two-
dimensional Brillouin zone. Spin-orbit induced surface states are found in I, X, and I gaps and an
unexpected spin-orbit splitting of the degenerate surface states on opposite sides of the film is found and
explained.

I. INTRODUCTION

The importance of the spin-orbit interaction in
the surface electronic structure of tungsten has
been a matter of contention' for several years. Of
the two papers to address this question, one cal-
culated only the I', irreducible representation
and found a surface state in a spin-orbit induced
gap. The other calculations was made throughout
the two-dimensional Brillouin zone (2-D BZ), but
included only d basis functions and hence failed to
find all the interesting structure which is due to
s-d hybridization. In particular it did not find any
of the three surface resonance bands around I
found in angle-resolved photoemission by Weng,
Plummer, and Gustafsson at 0.3, 0.8, and 4.2 eV
below F.~.

In this paper we compare the relativistic energy
bands of a 39-layer W(010) film with and without
the spin-orbit interaction. (We choose y as the
normal direction because with the spin quantization
axis perpendicular to the film normal, the secular
equation is real for R along any symmetry line in
the 2-D BZ as shown in the Appendix. } We use the
same linear-combination-of-atomic-orbitals
(LCAO} parametrization scheme that we previous
ly applied to copper' and nickel. ' Unlike the 3d
transition metals, for tungsten we are able to find
a set of parameters which not only fit the bulk
energy bands but which also yield a charge neutra1-
surface without invoking any surface-parameter
shifts. In Sec. II we describe how these param-
eters are obtained and in Sec. III we present the
thin-film energy bands and planar densities of
states, compare our results with the data of
Weng et al. ,

' and discuss an unexpected spin-orbit
splitting of the degeneracy between surface states
on opposite faces of the film.

II. PARAMETRIZATION

We have previously found that we could make
excellent fits of calculated energy bands of 3d

transition metals by parametrizing the Hamiltoni-
an matrix elements between s, P, and d Wannier
orbitals out to the third neighbor in the two-center
approximation. However, when these parameters
were used in thin-film calculations, surface charge
deficits as large as 0.40 electrons jatom (S) were
found in Cu even though the d bands are filled and
do not contribute to the deficit. 5 This was caused
by the fact that the appropriate surface orbitals
have diagonal energies much lower than the bulk
%annier orbitals which have a large kinetic energy
due to their orthogonality to Wannier orbitals on
neighboring sites. Surface charge neutrality was
obtained by lowering the bulk diagonal s and P pa-
rameters sufficiently. This corresponded to using
orbitals that were about half way between Wannier
and atomi. c orbitals but with the inclusion of over-
lap as well as Hamiltonian parameters we were
able to obtain equally good fits for all choices of
the s and P zeroth-neighbor parameters. A simi-
lar set of Ni parameters resulted in an sP surface
deficit of 0.10 5 but a d surface surplus of 0.56 5.
Because we could not fit the bulk bands with an
arbitrary choice of the zeroth-neighbor d parame-
ter, we had to restore surface charge neutrality
by making surface shifts of the zeroth-neighbor d
parameter. The 3d parameters have two peculiar-
ities: the degeneracy of the xy and x'-y' zeroth-
neighbor parameters which should be split by the
cubic crystal field is not, and the d-d and s-d
overlap parameters are identically zero. These
results are a consequence of Anderson's theorem
which states that to first order in the overlap the
potential from the neighboring atoms does not con-
tribute to diagonal Hamiltonian matrix elements
and the overlap does not enter the secular equation,
i.e., there is a cancellation between the attractive
potential and the kinetic energy of orthogonalization
due to neighboring sites.

Our first step in fitting the relativistic energy
bands of tungsten was to make a Wannier fit of the
nonrelativistic energy bands of Petroff and Vis-
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TABLE I. Relativistic set of spin-orbit, zeroth- and nth-neighbor Hamiltonian (H„) param-
eters (Ry), and overlap (S„) parameters for tungsten.

&p = 0.094 66 Cd = 0.029 73 ssp = —0.099 96
H, H, H3

pp, = 0.24342
s( S2

ddp = 0.273 55
S3

sso
pp~
pp7l
ddo'

dd&

dd~

spa
sd&

pda
pd&

—0.13954
0.13041

-0.002 58
—0.138 58

0.051 79
0.000 16
0.174 19

—0.11924
-0.138 87

0.045 91

—0.057 51
0.184 38
0.000 53

—0.068 26
0.000 04
0.006 40
0.099 25

—0.046 07
—0.121 84

0.001 78

—0.003 50
-0.000 00
—0.002 14

0.015 52
—0.006 49
-0.000 00
—0.000 55

0.004 91
0.010 60
0.003 38

0.06943
-0.15740

0.073 76
0.11750

-0.000 20
0.000 01

-0.10345
0.000 77
0.10999

-0.031 92

-0.000 54
0.014 11

-0.009 97
—0.000 34

0.000 26
-0.000 01
—0.01906

0.000 30
0.000 32
0.000 04

0.000 29
0.000 07

-0.01168
0.000 10
0.000 00
0.000 00

-0.000 40
0.000 23
0.000 00
0.000 00

wanthan. ' Because the overlap of the 5d functions
is not small, Anderson's theorem does not hold
and the xy zeroth-neighbor parameter was 0.10
Ry greater than the x -y'. A thin-film calculation
with these parameters led to a surface charge
deficit of 0.466 b and a surplus of 0.243 5 one lay-
er in. We then refit the bulk energy bands with the
inclusion of overlap. Although we were able to re-
quire that the xy and x -y zeroth-neighbor pa-
rameters take the same value, ddp, we could not
obtain a good fit unless we let ddp be a free param-
eter. Because the splitting of the zeroth-neighbor
degeneracy is caused by the potential from neigh-
boring atoms, it was hoped that by letting the
overlap cancel the splitting the effect of neighbor-
ing atoms on the zeroth-neighbor parameters
could b'e remqved' and surface shifts would not be
required. By adjusting ssp and PPp we were able
to obtain both a good fit to the bulk energy bands
and an essentially neutral-charge surfaces; we
had a surface deficit of 0.031 8 and a 0.043 5 sur-
plus one layer in.

Because the main relativistic effects are relative
shifts of the different angular rnomenturn compo-
nents, and the spin-orbit interaction, we made a
preliminary fit of the relativistic bands of
Christensen and Feuerbaeher fixing all the pa-
rameters at their nonrelativistic values except for
three semirigid band shift parameters and two
new spin-orbit parameters fp and &„, for the
gL S term. Then using this set of parameters as
starting values in our rms minimization routine
we were able to rapidly fit the relativistic bands
below 0.50 Ry at 50 points in the ~48 irreducible
BZ with an rms error of 6.57&10 3 Ry. The final
set of relativistic parameters is given in Table I.
A major difference between these parameters and
the nonrelativistic ones is that ssp is lower rela-
tive to ddp by 0.195 Ry in the relativistic case.
Note that the largest third-neighbor parameters
are an order of magnitude smaller than the largest

first-neighbor parameters and many of the third-
neighbor parameters are completely negligible.
Smallness of the third-neighbor parameters is a
criterion for the adequacy of the parametrization.

S S-1 S-2

S-3 S-4 C

C)
—1 —~ 8 —-6 —-5 —~ 2 0 —1 —.8 —~ 6 —~ k —-2 0-1 —~ 8 —~ 6 —~ 'l —~ 2 0

FIG. 1. Planar densities of states for central (C),
surface (S), and next four interior planes (S-n) of rela-
tivistic tungsten including spin-orbit interaction.

III. PDOS AND ENERGY BANDS OF %(010)

Because the secular equation is complex, we
were limited to a 27-layer film when calculating
general points in the 2-D BZ. We performed the
calculation at 91 points in the —,

' irreducible square
2-D BZ. We calculated the planar density of
states (PDOS) using a Mulliken analysis as in Ref.
5 and 6 with a 0.003 Ry half-width Gaussian spread
put on each energy level. Every energy was shifted
by an additional -0.0165 Ry to obtain a Fermi en-
ergy (by integrating the total DOS up to 6 &) of F.„
=-0.3353 Ry in agreement with the work function"
4=4.56 eV. In Fig. 1 we show the PDOS for sev-
eral planes and in Table II the planar charge den-
sity obtained by integrating the PDOS up to F.& to-
gether with the d component of that charge. The
surface deficit and surplus one layer in are seen
to be about five times larger than we obtained in
the nonrelativistic film but taken together they
give 'fairly good surface charge neutrality. A



20 RELATIVISTIC ENERGY BANDS OF (010) TUNGSTEN THIN. . . 3047

TABLE II. Total and d component of charge on sev-
eral planes in units of electrons per atom.

S
$-1
S-2
$-3
$4
C+1
C

5.8294
6.2112
5.9722
6.0371
5.9748
5.9998
5.9886

4.5348
4.2541
4.0605
4.1211
4.0528
4.0768
4.0648

small decaying oscillation is seen to exist from
the second plane in all the way to the central
plane. We.believe a similar oscillation occured
in p in our 3d transition metal calculations but
was an order of magnitude smaller and therefore
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FIG. 2. Energy bands of 39-layer relativistic W{010)

film with spin-orbit parameters set to zero. Where two
symmetries span the same energy range, the left-
pointing arrowhead indicates a surface state of the
lower index symmetry. Surface state bands are repre-
sented by solid lines.

lost in the noise. We did notice in the 3d metals
that the C and C + 2 PDOS tended to be identical
but to have slight differences from the C+1 and
C + 3 PDOS. This long-range oscillation we believe
is a consequence of not having screening in a non-
self-consistent calculation, We also notice (by
subtracting p~ from p) that we have 1.92 s and P
electrons per atom in the center of the film and
only 1.29 on the surface, i.e., there is a transfer
of 0.46 b from s and p to d in addition to the loss
of 0.17 s and P electrons per atom in the surface
plane. We believe some transfer of this sort does
take place but we have no way of knowing how large
it should be. We believe if we reduced it by refit-
ting the bulk bands with lower values of sso and

PPO and by adding repulsive d surface parameters
that the large charge oscillation on the first two
surface planes would also be reduced.
. In Fig. 2 we display the energy bands (shifted
by -'0.0165 Ry) of a 39-layer W(010) film calcu-
lated from the parameters of Table I with g~ and

f~ set to zero. Although many of the features of
these bands differ from the nonrelativistic bands
we have calculated (but do not display), the two
surface state bands observed in photoemission
differ only slightly; hence the similarity in photo-
emission from Mo and W.

There is a surface state band of Z2 and ~& sym-
metry which extends arbitrarily close to I at
-0.40 Ry =F.J; —0.88 eV but which does not exist
at I" even as a weak resonance. This band is found

by Weng et al. at about E~ -0.8 eV from about 2
off normal emission dispersing slightly upward
with k out to about halfway to the 2-D BZ zone
boundary. Using polarized light they determined
that for k in the Ill] direction, the wave function
is odd under reflection in the plane of emission,
i.e., has Z2 symmetry. A recently reported'
self-consistent semirelativistic (i.e. , no spin or-
bit) W calculation as well as a self-consistent Mo
calculation, ~~ both report this surface state band
disperses downward, contrary to our result and
contrary to experiment. Because these calcula-
tions were performed on five- and seven-layer
films, we repeated our calculation for films of
this thickness and still obtained upward dispersing
surface state bands. At —0.055 Ry (E/ —3.44 eV)
there is a I", surface state which extends as a Z,
surface state but as a &, resonance. This surface
state is found at E~ —4.2 eVby Wenget al. with I",
symmetry (it disappears with s polarized light). We
do not have the 1,surface state by Weng et al.4 at
about 0.4 eV below E~. This state was found in the
self-consistent W and Mo calculations. "' There are

many additional surface states to be seen in Fig. 2
in gaps throughout the 2-D BZ. The ~&-X3-F2
surface state band at about -0.64 Ry is only slight-
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ly dispersive, is in a wide gap, has 90Vo of its
charge density on the surface and first interior
planes, and, as can be seen in Fig. 3, is not
strongly affected by the spin-orbit interaction. It
should contribute one of the strongest peaks in
angle resolved photoemission but thus far has not
been observed. This surface state band appears
only as a short dispersive ~&-X3 surface state band
in a narrow gap in our nonrelativistic W calcula-
tion and appears not at all in the Mo calculation';
thus relativistic effects other than spin orbit can
be important.

If we compare suvface state bands in Figs. 2 and
3, we see, except for the one just discussed which
has mainly s character, that they are all spin-or-
bit split. At first sight this is very surprising.
Without spin orbit, surface states which are even,
and odd under y reflection (remember y is the film
normal direction) are degenerate in a film this
thick and can be added and subtracted to obtain the
surface state localized on one surface or the other.
With the inclusion of spin there is a fourfold de-
generacy. It would appear that spin-orbit coupling
could not lift this degeneracy because the fact
that two-dimensional Bloch functions generally
have no angular momentum implies the degeneracy
of the two spin states on one surface and the fact
that the two surfaces are identical and far enough
apart that surface states on opposite surfaces
have negligible overlap implies that surface states
on opposite faces are degenerate in pairs. The
fallacy in this logic is due to our not including spin
ab initio. Consider, for example, the general
point basis functions x„, +ix„-, and i(y„, —fy„-,) (see
Appendix) for n=m and m. The two x (y ) func-
tions go into -i (+i) times themselves under the

y reflection, i.e., they are not even and odd, and
hence cannot be combined to give basis functions
containing only m or rn. Thus the surface states
containing these basis functions cannot be com-
bined to give states localized on a single surface
and the fact that the surface state containing x,
+ix , overla-ps the surface state containing i(y „-,
—iy „,) allows the spin-orbit interaction to split
this degeneracy. There still remains the Kramers
degeneracy, however, and one can combine these
surface states with their Kramers degenerate
partner to obtain the surface states located on one
surface or the other. For example,

-iIT'(x„, +ix ,) =x, ix--
where I and T are inversion and time reversal.
Similar though more comply. cated arguments' may
be made for k along 4, F, or Z. At the symmetry
points I", X, and M, inversion is a member of the
group of the wave vector. Because, unlike the y
reflection, iriversion does nest flip the spin, the
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FIG. 3. Energy bands of a 39-layer relativistic
W(010) film including spin-orbit coupling. At ~ the
left-pointing arrowheads indicate M6 surface states and
the right pointing indicates an Mv surface state. Sur-
face state bands are represented by solid lines.

basis functions and eigenfunctions at these points
are either even or odd under inversion. The even
and odd eigenfunctions, if they are surface state
eigenfunctions, must be degenerate and may be
combined to form surface states on one surface
or the other. The Kramers degeneracy still re-
mains to yield altogether a fourfold degeneracy.
We see in Fig. 3 that the splitting of the surface
state bands disappears at the symmetry points.

A single spin-orbit induced gap exists at each of
the symmetry points in Fig. 3. Each of these gaps
contains a single fourfold degenerate set of surface
states. It appears to be a general rule that spin-
orbit gaps contain a single set of surface states'
and that as one varies the surface parameters to
force the surface states out of the top of the gap
another set of surface states is forced out of the
lower continuum into the bottom of the gap.

Finally, we look at the effect of spin-orbit coup-
ling on the experimentally observed surface fea-
tures. The 4&-Z2 surface state band which pinches
off at I' becomes a fairly strong resonance band
with much less dispersion. The upward dispersion
along 4 is less than 0.20 eV and along Z less than
0.08 eV in good agreement with Weng et al. Our
I'& surface state now becomes a very sharp reso-
nance in both the 4 and Z directions. Along 4 it
broadens (in energy) and disappears about 30/o of
the way to X; along Z it remains very sharp but
spin orbit splits with nonresonant states between
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the split pair which extend almost half way to M.
At k =0.26 A along the Z direction, geng eI; al.
find the resonance at E„-0.8 eV to be very strong
when the vector potential A is perpendicular to k
but to still exist as a weak shoulder when A is
parallel to k. Without spin orbit the resonance
would completely disappear in the latter configura-
tion, but we find that due to spin orbit, the basis
functions that are even under reflection in the
plane of emission are mixed in with about half
the density (in a Mulli). en analysis) of the odd basis

functions on the surface plus first interior planes
of the surface resonant eigenfunctions.

In conclusion, we have calculated the relativistic
energy bands of a 39-layer W(010) film obtaining
surface charge neutrality without making any sur-
face adjustments to the LCAO parameters which
were obtained by fitting the bulk energy bands. %e
obtained two of the three experimentally observed
surface features and explained several important
spin-orbit effects on the surface electronic struc-
ture.

TABLE III. Basis functions at all points in the 2-0 BZ. AtX and Y the upper and lower
signs apply to basis functions on the A and B planes respectively. At M subscripts are used
to indicate the type of plane and elsewhere the same basis functions appear on both A and B
planes. At & and the general point, &~~ «g, whereas elsewhere, N~n ~ 0 for a 2N+ j. layer
film. T is the time reversal operator. Spin is quantized along z and y is the surface normal
direction.

General point: i(s„t + is—„~),(x„t + ix-„~), i(y„t —iy„-~), (z„t + iz„—~),

«ynt —ixyn &). i(xznt +ix n ~» (yz. t —iyzn~» i f(x'-y'), t +i(x'-y')-„~j,
i[(3z —r ) t+ i(3z -r2)n-)j.
A ~ ~ 2 2 2 28: Zsnt&Xnt & ~ynt & Znh &Xynt& ZXZn) &yzn~, f(X —y )nt, i(3Z —r )nt

X6. i(snt s„—t), (x„t +x-„t), i(y„t +y„—t), (z„) +z„—)),(xy„t +xy„-t),

i(xz +xz—)), (yz +yz-)), if(x -y ) t +(x -y )—tl if(3Z —r ) t +(3z -r )-tf .

6 Z(Sn~ Sn k)& (Xn) Xn h)~ Z(yn~ yn h)~ (Znt Zn t»& (Xyng+Xyn $)~

i(xz„t +xz—„t),(yznt +yz —„t), if(x —y )n )+(x —y )„—)], if(3z —r )n)+(3z —r» —„)]

Y6.' X6 +Xe

M6A~ TMYA~ F6: i(snt + sn t)~ i(ynt yn t)B f(xnt xn t) (zn) zn $)~~

f(xy„) +xy—„&)—(yz„) +yz„—)}1, i{MS f(x'-y')„) + (x' —y')„—)1+ f(Bz'- r')„) + (Bz'- r')-„)1} .

Meay TM7+B Fe: i(Sn) Sn f) & $(yn) +yn &) & f(xnan +xn k) + { nt + zn t)~&

[(xy„& -xy„—)}+(yz) -yz„—))J, i{v3 [(x -y )„)—(x -y )-„)J+ [(3z —r )„)—(3z —r )„—)1} .

TMegy M ~g, F& . f(xnt -x-„t)+ (zn~ —z—„))],f(xynt +xy —„t) +(yzn( +yzn~)l,

i(xz„) +xz„-)),i(f(x —y )„)+(x -y )-„)1—v 3 f(Bz —r )„) +(3z —r )„—)1} .

TM 6~, M y~, Fy . x„) + „—) —(znt + z—„t j, f xy„) —y —„)»—y „t —y —„t»,

i(xz„) —xz-„)),i([(x'-y')„) —(x'-y')-„)J-WB[(Bz'-r')„) —(3z' —r')„-)J} .

6' i(snt sn t» ~ i f(snt sn t» (sn) sn )» j~ f(xnt +xn t» (znt + zn t) j~

f(xnt xn t» ( nt zn t» (xn) xn &» ( n$ n )» & f(xn& xn h»

(zn) +zn h»~~ f(xnt xn t» (znt zn t»+(xn) xn &» (zn) zn &»~~
C

i(ynt -y—„t», if(ynt +yn t)-(yny +y-ng»j& f(xynt -xy —„t»+(yznt -yz—„t»j,

f(xynt xyn t» (yznt yzn t) (xyn$ xyn t» (yzn) yzn h» j& f(xyn$ xyn h)

(yzn) yzn f»~ ~ f(xynt +xyn t» (yz. t +y —.t) + (xyn$ +xyn h» (y n$ +yzn t»~~

i(xz„) +xz—„)),i [(xz„)—xz—„()-(xz„)-xz—„))1, i(f(x -y )„)+(x -y')~)J

-&3[(3z —r )„)+(3z —r )„—)J},i([(x -y )„)-(x —y )—„)J-&Bf(3z —r )„)
-(3z —r )„)J+[(x -y )„)-(-x -y )„—)J-&3[(Bz —r )„)—(Bz —r )„—)J},

i(v 3 [(x -y )„)+(x -y )—„)J+f(3z —r )„+(B)z —r )„)J},i(v 3 f(x --y )„)-(x -y )„—)J

+ [(3z —r )„)—(Bz -r )„— )WJ[(3xy )„)-(x -y )„—)1 —[(Bz —r )„)—(Bz —r )„—)J}
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APPENDIX

Because real-space matrix elements between
2-D Bloch basis functions contain a factor
cosk. R; or i sink R; depending upon whether the
basis functions have like or unlike symmetry under
the twofold rotation about the normal axis, one
can make these matrix elements real by including
a factor of i in either the even or the odd basis
functions. On the other hand, spin-orbit matrix
elements between P orbitals and between d orbitals
are real wheny, xz, x -y', and Sz'-r' contain
a factor of i. Thus it appears that if y is chosen
as the surface normal direction with spin quan-
tized in the z direction, the factors of i may be
included to make the real-space and spin-orbit
matrix elements simultaneously real. This turns
out to be the case whenever there is at least one
n ntrivial symmetry operation in the group of the
2-D wave vector, but is not true at a general point

of the 2-D BZ. Even at the general point, however,
the secular equation is somewhat simpler for y
normal.

In Table III we list the basis functions obtained
by using the projection operator and the double
group character tables given by Lax.' At the gen-
eral point where one has only the identity and y
reflection, there are two one-dimensional irredu-
cible representations, degenerate by time revers-
al. The form of the basis functions, e.g. , x„=x„,
+ix~„ insures that the real-space matrix elements
are real and that the matrix elements between,
say, x„and y„& or y„2 are independent of n where-
as without spin that is not the case because of the
overlap of orbitals on the n and n planes when n is
small. Thus the real-space part of the secular
matrix is constructed out of repeated zeroth-,
first-, and second-neighbor plane Bloch function
submatrices. Because of the i multiplying the 0

orbitals, spin-orbit matrix elements between x„
and z„-=z„-,+iz„, are pure imaginary. Along all
symmetry lines and at high symmetry points the
irreducible representations are all two dimension-
al, there are no internal factors of i in the basis
functions, and the secular matrices are completely
real.
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