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In the presence of weak uniform sbperflow, bulk He-A near T, assumes a uniform texture
with l parallel to v, . Below a characteristic temperature T&, however, the temperature depen-

dence of the hydrodynamic free energy can induce a helical deformation. The equilibrium con-
figuration of such helices is investigated, using Cross's weak-coupling gas model with Fermi-
liquid corrections to evaluate the hydrodynamic parameters. This model predicts T& =0.82T,
and that helical textures can be stable at all T ( TI, with suitable adjustment of the apex angle

and pitch.

I. INTRODUCTION II. HYDRODYNAMIC FREE ENERGY

The discovery. that 'He becomes superfluid at
T = 2.7 mk has stimulated extensive theoretical and
experimental investigations of this new condensed
quantum fluid. ' It differs from the more familiar
superfluid 4He II because of the unit angular momen-
ta associated with the p-wave triplet Cooper pairs.
These internal degrees of freedom lead to intrinsic
anisotropies, most notably in the A phase, where the
orbital angular momentum I provides a preferred
axis. For example, the anisotropy of the superfluid
density tends to align v, and I, and a magnetic field
acts through the dipole coupling to align l perpendic-
ular to I-I. For any given geometry, the final confi-
guration represents a compromise between these and
other competing effects, such as the elastic deforma-
tion energy associated with slow spatial variations in
l. In particular, recent theoretical studies based on
the hydrodynamic free energy have predicted a

striking hydrodynamic instability, in which the simple
uniform texture with I parallel to v, undergoes a
spontaneous distortion to a helical structure below a
critical temperature Tt, determined by the hydro-
dynamic parameters. The present paper examines
the stability of this new helical texture with respect to
small-amplitude plane-wave perturbations proportion-
al to e'"' throughout the domain T & T~.

The general hydrodynamic free energy is discussed
in Sec. II, along with the dynamical equations for I.

The equilibrium condition for a static helix is derived
in Sec. III, and its stability is analyzed in Sec. IV,
both analytically and numerically. Throughout this
work, Cross's weak-coupling gas model is used to
evaluate the temperature dependence of the hydro-
dynamic parameters, including the important effect of
Fermi-liquid corrections. The Appendix contains
some practical details of this calculation.

In the hydrodynamic model, the order parameter
of He-A has the form

v, =m 7ri;= —,(m 7n; —n Vm), (2)

where a factor S/2m3 has been absorbed to give v,
the dimension of a wave number. The latter varia-
tions, in contrast, represent an elastic distortion of
the I vector field, analogous to that of a nematic
liquid crystal.

These various spatial variations produce cor-
responding terms iit the hydrodynamic free energy.
First, the superfluid velocity leads to a kinetic energy
density

fk = —v, p, v, +v, c curl I, (3)

where p, and c are uniaxial tensors of the form

p = p 1 —poI I = p 1 + po(1 —I I ),
A A

c =c,1 —col I

(4)

A„;= hd~( m +in );,
where 5 is a temperature-dependent constant, d is a
unit vector perpendicular to the axis of spin quantiza-
tion for the Cooper pairs, and m and n are orthogonal
unit vectors with t —= m x n lying along the direction
of the Cooper pair's orbital angular momentum.
Since the direction of these unit vectors may vary,
the order parameter is specified by giving d, m, and n

at every point in space. Spatial variations of'm and n

may be further classified into two distinct types, in-
volving rotations about the direction I and changes in
I itself. The former alter the phase of the order
parameter and give rise to a superfluid velocity

20 303 O1979 The American Physical Society



304 ALEXANDER L. FETTER 20

and p,"=—p, —po. The associated supercurrent

) = SfklS v

j,= p,v, +e curl f,

(sa)

(Sb)

contains not only the familiar superfluid term but
also one proportional to curl I, analogous to the con-
tribution curlM to the electric current in a magnetic
material. Second, the deforrnations in I and d lead to
an elastic energy

f~=
z K, (div/)'+ —K, (l curl/)z+ 2K'(l xcurll)z+ —,E~(/ '7)d (I '7)d

+ —,
'

/t.'z( l x Q),d„( I x Q ),d.
apart from a total divergence term that does not af-
fect the bulk free energy. Finally, the dipole coupling
between I and d introduces a term of the form

sider an infinitesimal rotation 5A of the triad I, m, n.
This rotation may be expressed by its components
along the original triad according to

(7) 5Q = 5+I +50', (12)

and an external magnetic field H acts on d to give

f~ = —,It~(H d )' .

The total free energy is the sum of the contributions
(3), (6), (7), and (8).

If A =0 and v, is small, the dipole energy predom-
inates. It is then natural to assume that d lies along
I, in which case the elastic energy has the simpler
structure

f ~
=

z /t, (div l )2+
2 E,(/ curll/)2

+ —,E&(/ x curl I )',

8/ " Sfpfx —=—Ix
se -o

and the other involving a rotation about the fixed
direction I

(13a)

with 50j the projection onto the plane of m and n.
These two terms are physically quite distinct: 50&
changes the direction of I by an amount 51 = 5 Qj x I;
it leads to a restoring force with an orbital viscosity
p, ." On the other hand 54 is merely an infinitesimal
rotation about I with no restoring force. Thus the
dynamical equations for the order parameter separate
into two parts' .' one involving the motion of I
without rotation

JCg= JC, + JC2, JC, IC, + JC2, Kb= JCb+ JC) . (10)

where E„JC„and ICb have the "dipole-locked" values
50=-

si-o
(13b)

The present paper will consider only this dipole-
locked regime in zero magnetic field, when- the total
free-energy density becomes

f =fk+fa,
apart from an additive constant. In this case, the
order parameter (1) is equivalent to a rigid orthogo-
nal triad (/, m, ri ) and requires three parameters to
specify its orientation at each point in space. We
shall generally take these to be the conventional
Euler angles'0 (a,P, y), in which P and a are the po-
lar and azimuthal angles of the unit vector f relative
to some fixed coordinate axes and y represents an
additional rotation of m and n about f.

An equilibrium configuration is one that minimizes
the total free energy, which is obtained as the volume
integral of Eq. (11). As in any variational calcula-
tion, it is essential to maintain the proper indepen-
dent variables. Although the Euler angles are known
from classical mechanics to provide a suitable set of
generalized coordinates for a rigid body, the following
physical argument indicates that the present problem
in general requires a slightly different choice. Con-

To interpret these expressions, it is useful to ex-
press the unit vectors in terms of the Euler angles

I =x sinPcosa+y sinPsina+z cosP,

m = m~ cosy+ n~ siny,

n =—m& siny+ n& cosy,

(14a)

(14b)

(14c)

where the auxiliary quantities m~ and n ~ are given by

m~ ——x cospcosa+y cospsina —z sinp,

n~ =—i sinot+y coso. .

(1Sa)

(15b)

Under an infinitesimal rotation characterized by small
changes Sa, Sp, and Sy in the Euler angles, it is easy
to verify that

S4 =cosPSa+ Sy,

SDq=—sinPSam~+SPn~ . (16b)

As expected, Sa and SP wholly characterize the infin-
itesimal change in I, but 54 differs from 5y by the
projection of z5a onto I. This latter dependence may
be handled as follows: If the free-e'nergy density is
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considered a function of the Euler angles and their
gradients, then the variation in the total free energy
may be expressed in the usual form

remaining quantity

v, =-cosp'7a —V'y . (22)

1 't T

Sf Sf
S d3rf =„~ d3r Sa " +SP +Sy

Sa s SP Sy

Note that neither v, nor I contains y, which is there-
fore a cyclic variable. As a result, Eqs. (18) and
(21c) reduce to the simpier relation

where for example,

(17) =0.
a+~ ., (23)

Sf Bf & Bf
BVy

(18)

r

5 d3rf = '» d3r Sa + SP
Sf Sf

Sa S~ SPr,e 84

and the partial derivatives are taken keeping fixed the
remaining variables of the set (a, Va, P, VP, y, Vy)
Equation (16a) relates Sy to the independent varia-
tions Sa and 54, and substitution into Eq. (17) gives
an expression of the form

Ba B
pa sin'p

Br

Bf
8A

+ sinpj, Vp, (24a)

For some purposes, it is preferable to adopt a
slightly different approach that exploits the explicit
dependence of fk on v, and I, evaluating the partial
derivatives in Eq. (21) with the chain rule. A
straightforward calculation with Eq. (5a) yields the
equivalent dynamical equations

where the coefficients are given by

(19) Bp ~ Bf
Br Bgp

1 r

-cosp
Sa p@ Sn

p Sy

(20)
O=V j, ,

—sin p j, '7a,
Bp

(24b)

(24c)

Sf Sf
SP ~ SP

Sf Sf
S4

p Sy

p, sin p
Ba 5

Br Sa
Sf
So;

(21a)

„Bp Sf"
Br

=
Sp ., SP

(2lb)

The general dynamical equations (13) expressed in
terms of the independent variations Sa, SP, and 54
may now be rewritten in terms of partial derivatives
of fwith respect to the Euler angles a, P, and y

where, as indicated, the partial derivatives are now
taken at constant v, . Here, the third equation makes
explicit the expected conservation of current, which
has been used to simplify the last term in Eq. (24a).

These general equations determine the space and
time dependence of an arbitrary dipole-locked tex-
ture. Unfortunately, they are very complicated, and
most analyses have considered only the stability of
static textures with respect to small deformations. In
that case, Eqs. (24) are linearized in the small devia-
tions from equilibrium, and stability requires that the
resulting time dependence is an exponential decay.
Equivalently, the small change in. the free energy
must be positive definite.

0=- Sf Sf
S4

p Sy
(21c)

III. EQUILIBRIUM HELICAL TEXTURES

Here, the right-hand side of Eq. (21a) has been sim-
plified with Eq. (21c). These relations make it evi-
dent that the Euler angles themselves turn out to
provide a suitable basis for the present calculation,
even though the variation Sy has a less direct in-

terpretation than the variation 54 in Eq. (16a).
To proceed further, it is necessary to express f

directly in terms of the Euler angles. The terms in-

volving I and its spatial derivatives follow directly
from Eq. (14a), and use of Eq. (2) readily yields the

The preceding formalism will now be applied to the
particular geometry of uniform superflow with v, = ez
and v„=0. This configuration may be considered a
model for superflow in a large torus with stationary
walls. Bhattacharyya, Ho, and Mermin have shown
that the uniform texture I = z is stable with respect to
small perturbations if poKy ) (co+ 2 p, ); this condi-

tion exemplifies the qualitative arguments from. Sec. I
that large anisotropy po and bending constant K~
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favor the uniform configuration. %hen ppKb
—(cp+ —,p, ) z changes sign, however, an instability

appears with wave number

~kg~
= N (co+ p,—)/Kb .

had at TI, and the superfluid velocity becomes

v = Upz,

where

vp = u cosPp. + $ = w u (I cosI3p)

(28a)

pop —= (co+ , p' ) '/K—b ~ (25)

Subsequent work" showed that this instability sig-
naled not a catastrophic collapse but rather a displa-
cive transition to a helical texture. Furthermore, the
resulting helix has been shown to remain stable in

two distinct cases:
(a) If pp.is only slightly less than the critical value

Note that v, remains uniform and along the original
direction. Its magnitude is no longer quantized, how-
ever, and can differ by arbitrarily large amounts from
the original w, depending on the magnitude and sign
of u. '

Another physical quantity of interest is the equili-
brium supercurrent j„which involves not only v, but
also curll. Use of Eq. (14a) immediately gives

it is always possible to find helical textures that are
stable with respect to arbitrary perturbations of the
form e'"'

(b) If all the hydrodynamic parameters retain their
weak-coupling Ginzburg-Landau ratios, except pp/p„
which is assumed to decrease monotonically from 1

to 0, then for all pp/p„helical textures can again be
found that are stable with respect to restricted pertur-
bations of the form exp(ik, z). As shown in the Ap-
pendix, this generafized Ginzburg-Landau model is not
a particularly good representation of the actual tem-
perature dependence of the hydrodynamic parame-
ters, and it cannot provide more than a qualitative
description of the stability.

In contrast to these earlier investigations, the
present work studies the stability of helical textures
for all accessible temperatures (0.6T, & T & T,) and
with respect to arbitrary plane-wave perturbations
e'~ It is convenient to start with a uniform texture
I llv, in a uniform superflow v, = wz. In this case
P =0, and the remaining Euler angles n and y both
increase linearly with z

w=u+s . (27)

Near T„ the weak-coupling dipole-locked values of
the hydrodynamic parameters imply that the uniform
state is indeed stable. This situation changes with de-
creasing temperature, however, and as T passes
below a critical temperature Tq, a helical texture
gradually dq'velops. Let Pp be the apex angle of this
helix at some fixed temperature T & Tq. Since u and
s are both quantized, they retain the values that they

o. =—uz, y =—sz,

where the minus signs have been introduced to sim-

plify later expressions. Here the constants u and s
are fixed by the condition of single valuedness
around the large torus; more precisely, if L is the cir-
cumference of the torus, then u and s must both be
integral multiples of 2'/L. In addition, Eq. (22)
shows that the magnitude w of the superflow is also
quantized for this uniform texture, with the value

curll =. u sinPp( x cosuz —y" sinuz) = ulj, (29)

where

IJ sinPp(x cosuz —y sinuz)

cpu cosPp sin Pp,

but also a helical component in the x-y plane

(30a)

(3 o4 = [ popo cosPo.

+ u (C —
Cp Sln Pp) ]!1 (30b)

Evidently, j,p is solenoidal, as required by Eq. (24c).
It is now straightforward to evaluate the free-

energy density for the helical texture. The kinetic
and elastic contributions become

fk = &o(p + posin2Po) —&oucocosPosinzPo (31a)

f I= —,u'sin'I3p(Kbcos pp K+qsin pp), (31b)

with vp given in Eq. (28b). As a result, the total
free-energy density for a static helix has the form

fp = —'[w —u (I —COSPp)]1(p, + po sin1Pp)

—[w —u (1 —COSPp)] ucp cosPp sin Pp

+ —,u'(Kb sin'Pp cos'Pp+ K, sin~Pp) . (32)

For given values of the hydrodynamic parameters
and fixed a and u, fp must be minimized with
respect to the remaining variable Pp. This calculation
leads to the requirement that a product of two factors
must vanish. Thus we demand that Pp satisfy either

A

is the projection of I onto the x-y plane. In addition,
I curll is just u sin~Po. Equation (5) shows that the
total supercurrent j,p not only has a uniform axial
component

(j,p), = up(p, ' + pp sin'pp)
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of two equilibrium conditions:

sinPp =0

[w —u(l —cosPp)]'ppcosPp —[w —u(1 —cosPp)]u [p, +2cp+ (pp —3cp) sin'Pp]

(33)

+ u cosPp[K& + (2K, —2K& + cp) sin Pp] =0 . (34)

The first solution sinPp =0 is just the uniform texture: it always represents a possible static configuration. For
certain values of u and the hydrodynamic parameters, however, Eq. (34) provides new helical solutions, which
will be analyzed in detail below.

In the original uniform texture (Pp =0), there are no barriers for transitions between states with different u be-
cause the free energy in Eq. (32) is independent of u. Hence only the superfluid velocity w = u + s remains
quantized. For Pp %0, however, fp becomes a quadratic form in u, and u presumably takes on the quantized
value u;„ that minimizes the free energy at the point where Pp first differs from 0. Direct differentiation of Eq.
(32) for fixed nonzero Pp gives the result

w[cpcosPp(1+cosPp) + pz + ppsln Pp]

(Kp cos Pp+K, sin Pp)(1+cosPp) +2cpcos@p sin Pp+ (p, '+ ppsln Pp) (I —cosPp)
(35)

X
po AI po

Pox
(36)

where

ppp
=—[(cp+ ,

'
p,")'/Kb]r„, —

up = w [(cp+ 2 p, )/Kb] r

(37a)

(37b)

and the equation

Pp(Tp) = Ppp (38)

determines the Tq. The hydrodynamic parameters in

the coefficient of Eq. (36) should be evaluated at the
temperature Tq, but its order of magnitude may be
estimated as

4 by using the weak-coupling

6inzburg-Landau values because strong-coupling ef-
fects are thought to be small. ' Note that small-angle
helices can be in static equilibrium for a range of
parameters

Suppose that the sample is cooled at fixed pressure
from the normal phase into the A phase. Since
T, & Tj„only the uniform state (Pp =0) occurs until

Eq. (34) first has a solution at the transition tempera-
ture Tq. A general analysis for arbitrary T & Tq and
u would be prohibitive, but an expansion of Eq. (34)
for Tq —T « Tq readily yields the expression

Kb(cp+ —,
'

p,ii)

(2K, ——p, ) (cp+ —p, ) ——Kp p,

limit Pp 0 and T Tp For low. er temperatures,
however, u retains the quantized value uq, but this
value in general differs from u;„. An expansion of
Eq. (3.5) for small Pp gives

1

w(cp+
2 p, ) Ki+cp+

& p,
u min K

I Po
b b

} Po+ 4 ps
, (40)

2co + pg

and, as a qualitative estimate, the weak-coupling
Ginzburg-Landau values yield —„ for the coefficient

of Pp2. Note that the solution to Eq. (35) depends on
temperature through the hydrodynamic parameters;
thus any subsequent change in the temperature at
fixed quantized u means that u no longer minimizes
the free energy. Consequently, a complete analysis
of the equilibrium configurations should involve not
only a range of T but also values of u far from u;„.

To investigate the static equilibrium of such helical
structures, the Cross weak-coupling gas model has
been used to evaluate the hydrodynamic parameters
for all T ~ T„ including Fermi-liquid corrections.
The Appendix describes the procedure and the princi-
pal numerical conclusions. In particular, these calcu-
lations predict the value Tq =0.82 T, as the tempera-
ture at which small-angle helices first appear. Furth-
ermore, the corresponding critical values of Eq. (37)
are

pox
—po

POA

ppp
= 1.147p,iit

0 72)
' at T = TI, =082T, .

Qp
(41)

which determines a parabolic region in the u —
po or

u —T plane.
It is evident from Eq. (35) that up = u;„ in the

It is also interesting to compare these values with
those of the generalized Ginzburg-Landau model, '
which allows pp/p, to vary between 0 and 1, keeping
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the remaining parameters fixed at the dipole-locked
ratios

co = ps, Ks = K, = Eb =2.5 ps . (42)
0.9

Such a model cannot fix the onset temperature Tq,
but it predicts poqlp,

"=0.9 and uq =0.6 w, both of
which differ appreciably from the values in Eq. (41).

Since u will not generally minimize the free energy,
the equilibrium configuration of the helix is deter-
mined solely by Eq. (34). Given the temperature-
dependent hydrodynamic parameters, this relation
determines a surface in the three-dimensional space
with axes u, Po, and T. In addition, Eq. (34) is qua-
dratic in u, so that a given value of Po and T
corresponds to at most two values of u. Figure 1 ex-
hibits this surface evaluated with the weak-coupling
gas model including Fermi-liquid corrections for the
dipole-locked bending constants. Also sho~n are the
intersections with planes of constant T and constant
u. For T ) Tq =0.82T„only large-angle helices can
occur; in the interval 0.63T, & T ( TI„small-angle
helices also can occur, but a forbidden range of inter-
mediate Po remains. Below T =0.63 T„ in contrast,
equilibrium helices can occur for all Po by suitably ad-
justing u. It should be noted that this situation is

quite different from that predicted by the generalized
Ginzburg-Landau model, when a forbidden region of
intermediate Po persists for all positive po/p, .'

In any physical situation, the value of u will be set
by the initial conditions, and subsequent changes in
the temperature will maintain that value of u. Thus
the actual form of the helix will be determined by the
intersection of this surface with a plane u =const.

I.O
T/Tc

0.9

0.8

T/Tc
0.8

0.7

0.6

0.5
0 7T/ 4

Pp

FIG. 2. Projection of the three-dimensional surface from
Fig. 1 onto the Po-T plane. The region of stability {shown
shaded) extends just over the ridge and slightly down the far
side. Also shown {curve a) is the projection of the intersec-
tion with the plane u = u& =0.721m corresponding to the
minimum free energy at the transition temperature T~,

As a specific example, consider the intersection with
the plane corresponding to the critical value
u =uq ——0.721wat Tl, , for small 'Po, the curve (la-
beled a in Fig. 2) runs very near the "ridge" until

Po = 0.7, when it moves onto the near side of the
surface shown in Fig. 1.

The preceding discussion has considered only the
condition for static equilibrium, with no reference to
stability. Since not all of these equilibrium configura-
tions are expected to be stable, it is essential to
analyze the dynamics of various small deformations
about the helical structure. This investigation, which
is presented in Sec. IV, confirms that helices are
stable only in a limited region of the surface in Fig. 1.
Nevertheless, the domain of stability extends to all
temperatures belo~ TI„so that stable helices could in
principle be found for T ( Tq with appropriate ad-
justment of the initial parameters.

0.7

0-6
$0 Pp

FIG, I. Surface of static equilibrium helical configurations
for He-3 in zero magnetic field evaluated from Eq. {34)
with the temperature-dependent dipole-locked hydrodynamic
parameters from Figs, 3, 4, and 6, including Fermi-liquid
corrections. Here 2m/u is the spatial period of the helix and

Po is the apex angle. Also shown is the intersection with the
planes T/T, =1.0, 0,9, 0.8, 0.7, and 0.6, and the planes

2ISp/m =0,0.1,0.2, . . . ,0.9,1.0.

IV. STABILITY OF HELICAL TEXTURES

vg =vgp+5vg, (43)

As discussed in Sec. III, helical textures in He-A
may be characterized by the Euler angles 0.0=—uz,

Po = const, and yo= —sz. The stability of such a con-
figuration may be investigated by considering the
small distortions of the helix. These variations can
be parameterized by the local changes in the Euler
angles Sa, 5P, and Sy, but it is preferable to use the
related but more physical set [see Eq. (16)] Su, SP,
which together characterize the change hl in I, and
the rotation 54 =cosPSo. + Sy about I Equivalently, .
Sy may be written 54 —cosd85a, and an expansion of
Eq. (22) to second order yields the corresponding su-
perfluid velocity
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where [see Eq. (28)]

V p= upz = [w Q(1 cospp)]z (44a)

Sv, =—uz [sinPpSP+ z cosPp(BP)']

—sinPpSa'75P —V54 . (44b)

Together with the relations o. = oo+ ha and

P = Pp + SP, these expressions suffice to evaluate the
free energy through second order in Sa, BP, and 54.

To proceed further, it is helpful to expand the
small variations in Fourier series

Sa(r) = V 'i &e'"'Sa-,
k '

k

(45)

with similar series for BP and By. Here Vis the
quantization volume, the allowed wave numbers k.
are determined by periodic boundary conditions, and

reality requires that So.-„=So. -„. Since the helical

texture is invariant under translations in the x-y
plane, modes with different transverse wave vectors
are expected to uncouple; in contrast, the periodicity
along z with axial wave number u mixes modes with

k, differing by integral multiples of u. - An expansion
to second order gives the following form for the in-

tegrated free energy:

F= ' d r f =Fp+SF, (46)

where the zero-order term is just V times fp given in

Eq. (32). The remaining contribution SF contains
terms of second order in the small variations as well
as a single first-order term proportional to SP-„~
(note that u, Pp, and s are here explicitly fixed by the
equilibrium configuration). The coefficient of this
linear term is just (Bfp/BPp) „„,so that it vanishes
not only for the trivial case of Pp =0 [see Eq. (33)]
but also for the equilibrium helical texture [see Eq.
(34)] determined by the hydrodynamic parameters
and the topological constants w and u. As a result,
only the second-order terms remain, and a lengthy
analysis eventually leads to an expression of the form

spatial derivatives in the free energy. The exact form
of F-„-„ is very complicated, but it has several notable
features.

(i) The coupling among wave numbers k, k + u,
and k + 2 u makes explicit the effect of the spatial
periodicity along the z axis. A detailed examination
shows that the element~ F-„-„-„ar—e proportional to

q+ —= q„+iq», and that F-„-„+,-„ is proportional to q $,
where q is the projection of k onto the x-y plane.
Thus the coupling of commensurate wave vectors oc-
curs only for q & 0 and is wholly omitted in treat-
ments restricted to perturbations of the form
exp(ik, z).

(ii) Since F-„p is Hermitian, all of its eigenvalues
are real. A stable helical structure requires that these
eigenvalues also be positive for every k, ensuring that
SF is a positive-definite quadratic form.

(iii) It is sometimes preferable to consider the
linearized dynamical equations of motion obtained
from Eqs. (13) and (47). The solutions necessarily
have an exponential time dependence of the form
exp( —a.t), and the corresponding amplitudes satisfy
coupled equations

a.p, MS'Pq = X Fq pB+p,
k

where M is a diagonal matrix with elements sin Pp, 1,
and 0. This problem is formally identical with that of
a coupled mechanical system undergoing small oscilla-
tions' with a mass matrix p, M and a potential matrix
F. As in that case, the quantity o- is just the cor-
responding (real) eigenvalue, and stability here re-
quires that o- )0 for all k. Note that this linearized
description can never lead to oscillatory behavior, be-
cause the dynamical equations are first order in the
time derivatives. Thus any periodic time depen-
dence" can arise only from nonlinear contributions
or from a more general form for the dynamics.

Before considering the solution of these equations
for a general apex angle P, it is helpful to briefly
study the limiting behavior for T = Tp and small Pp.
In this case, the appropriate linear combination of
variables is expected to be the same as in the uni-
form state

BF = $ 5+-„F-„p5%-„, (47) +i aBl„+iSl» =sinPe+-' sinPpe—

where 5%"-„is a three-component column vector with

elements Sa-„, SP-„, and 54-„. In addition F-„-„,is a

3 x 3 Hermitian matrix with nonzero elements for
k'=k, k+u and k+2u, where u=uz. This particular
off-diagonal structure reflects the presence of second

= e+'"*(SP + i PpBa) .

If only the leading contributions for Pp 0 are kept,
the equation for the variation in the phase variable
may be written

54-„=(p,"k,'+ p, q') '[ iq (ppup+cpk )( P—pB—+ +i PpBaz+-„) —
z iq+(ppup —

cpk ) (BP„-„—iPpSat, =„)l . (49)
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up

h ~ 1 pOA p0

pox
(50)

This range of u is more restrictive than that for static
equilibrium given in Eq. (39). When the stability
condition (50) is just violated, the instability of the
helix occurs at long wavelengths with q =0 and k
along z. If the helix is prepared with u having the
value uI, corresponding to the instability temperature
Tl„ then Eq. (50) shows that it will remain stable for
small Tq —T, because of the quantization condition
on u.

The same approximation of retaining only the am-
plitudes 54-„, Se-„, and SP-„has also been studied
numerically at all T & TI„using the weak-coupling
hydrodynamic parameters from the Appendix. As in
the. case of a uniform texture, the stability condition
becomes a quadratic form P in k', with coefficients
that depend on the polar angle arctan(q/k, ) of k with
respect to z. These coefficients also depend on the
equilibrium parameters of the helix, which necessari-
ly lie on the surface shown in Fig. 1. For each T, I

This relation shows that 54-„for small Pp couples
only to the modes with k + u. Furthermore, the
equilibrium condition (36) requires that u = ul„and
substitution of Eq. (49) into the dynamical equations
for Su-„and SP-„reduces them to.coupled equations
for SP-„+-„+i PpSu „+„--T.he associated eigenvalue
condition for o- turns out to be the same as in the
uniform texture, ' which indicates that the helical
state with l3p 0 and the uniform state are both mar-

ginally stable at Tq. In particular, this marginal sta-
bility with o- =0 occurs for k along z and q =0.

The behavior just below Tq requires the inclusion
of correction terms of order Pp2. An approximate
analytical treatment of this small-Pp regime has al-

ready been reported and will be mentioned briefly
below. Since it encounters the same difficulties that
arise from arbitrary Pp, it is first preferable to treat
the general situation.

The off-diagonal elements of F in Eq. (48) lead to
an infinite set of linear equations for the coupled am-
plitudes. This structure requires the use of some ap-
proximation scheme, and the existence of a variation-
al basis for Eq. (48) suggests a truncation that retains
only a finite number of amplitudes. The simplest ap-
proximation keeps only 54-„, Sn-„, and SP-„; it

should be suitable for modes with small q', for, as
noted previously, the coupling to modes with k + u
and k + 2 u vanishes at q =0. In addition, the onset
of instability for the uniform state occurs for q = 0, '
so that this variational approximation may be expect-
ed to include the most important modes for deter-
mining the stability of the helical texture. For small

Pp, an expansion of the resulting truncated dynamical
equations predicts that the system is stable for

first set q = 0 and determined the points on this sur-
face where P vanishes for small k, ( « w). I then
systematically increased k, and q, which always
turned out to make I' positive. Consequently, the
boundary of stability is again determined by long-
wavelength perturbations with q =0 and k along z.

The corresponding normal modes of the helix involve
a torsional motion at fixed Pp, for the ratio SP-„/Sa-„
vanishes as k, 0.

Figure 2 shows the projection of the three-
dimensional equilibrium surface (Fig. I) onto the

Pp
—T plane, with the region of stability shaded. The

solid portion of the marginal stability curve lies on
the near side of the ridge in Fig. 1, the dashed por-
tion lies on the far side, and it crosses the ridge near
u =0.67w, Pp=0. 8, and T=0.63T, For T .&0.5T„
the model predicts that the region of stability extends

1
down to T =0 near u = w and Pp = —vr on the near

side, and that a second small region of stability also
appears on the far side for T & 0.06T, near u =0
and Pp =

2
vr; since these configurations are experi-

mentally inaccessible, they will not be considered fur-
ther. In addition, Fig. 2 shows the projection (la-
beled a) of the intersection with the plane

. u = uq =0.721~, As the sample is cooled through
the transition temperature Tq, u presumably assumes
this value to minimize the free energy. It then re-
tains this value for T & TI„so that curve a represents
the locus of equilibrium helices on further cooling.
In particular, helical textures should remain stable
until T =0.62T, and Pp =0.87, when curve a leaves
the region of stability. Thus it should be feasible to
study stable helices throughout the temperature inter-
val 0.62T, & T & TI, =0.82T, . Although Fig. 2
shows that stable helices can, in fact, occur at still
lo~er temperatures, it may not be possible to prepare
them even if the A phase can be supercooled suffi-
ciently, or if the AB transition can be suppressed with
a magnetic field. This last case involves an additional
complication, for the field itself affects the equilibri-
um form and stability of the helix. '

The preceding discussion was based on a reason-
ably realistic model that. included the numerically im-
portant Fermi-liquid corrections (see the Appendix).
Two simpler models were also studied: The first was
the weak-coupling gas model without Fermi-liquid
corrections, which predicted a behavior similar to that
in Figs. 1 and 2, except that the region of stability
was narrower and closed off at a finite temperature.
Thus the inclusion of Fermi-liquid effects enlarges
the stable region for helices, both near the onset T~

and in the unphysical low-temperature domain. The
second model considered was the generalized
Ginzburg-Landau model, in which pp/p,

' replaced
T/T, as the independent. variable. The resulting
domain for static equilibrium differs qualitatively
from Fig. I, for the two branches (small Pp and Pp
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near —m) remain separate for all pp/p . Only the

small-angle branch has a stable region, and our calcu-
lated boundary curve reproduced that found by
Kleinert, Lin-Liu and Maki. This agreement serves
as a check on the present numerical procedures. On
the other hand, the evident difference between the
predictions of the generalized Ginzburg-Landau
model and the (more realistic) weak-coupling gas
model with Fermi-liquid corrections suggests that the
former cannot serve as even a qualitative guide to the
behavior .expected in plausible physical situations.

The preceding analysis treated only three coupled
amplitudes 84-„, Sn-„, and 5P-„, and it is important

to consider the effect of enlarging the set of trial
functions. Motivated by the form of Eq. (49), the
basis was extended to include the two "first-
harmonic" amplitudes 54-„+„,producing a set of 5

coupled variables. Eliminating the three phase ampli-
tudes 54-„, 54-„+-„,and 5C -„-„leads to a pair of
equations for Sak and 5Pk, whose solution again

yields a quadratic equation for the decay constant cr.

A numerical analysis similar to that described for the
simpler truncation scheme yields essentially identical
numerical results with those in Fig. 2. In particular,
the instability again occurs in all cases for q =0 and
k = k,z 0. This last fact explains why the two cal-
culations predict equivalent behavior, for the cou-
pling between modes with different k vanishes identi-

cally at q =0. Thus the expanded basis (including the
amplitudes 54-„+&) turns out to be irrelevant in

determining the stability, although the special role of
q =0 could not have been predicted beforehand.

V. DISCUSSION

This paper has analyzed the stability of helical tex-
tures in He-A in the presence of uniform superflow.
The study used Cross's weak-coupling values, includ-
ing Fermi-liquid corrections, to determine the tempera-
ture dependence of the dipole-locked hydrodynamic
parameters. As seen in the Appendix, these values
differ considerably from those without the Fermi-
liquid corrections and from the (still less physical)
generalized Ginzburg-Landau model. This work
therefore represents the first realistic attempt to study
the stability of helical textures in 3He-A. Although
the present approximation still omits strong-coupling
effects, these are not thought to be important. '

Thus our calculations should provide a reasonable
guide to actual experimental situations. In particular,
if weak uniform superflow wz can be prepared for T
near the onset temperature TI„ then the parameter u

should assume a quantized value sufficiently close to
the critical value uq that the resulting helix would be
stable throughout an extended range of temperature
below Tq. The specific values depend on the Fermi-

liquid parameters, but there is no reason to expect
qualitative changes in the predictions.

Given the existence of stable helices, it becomes
very interesting to consider how they might be
detected. One relatively direct approach is to employ
probes that are sensitive to I, . In that case, the
change in the apex angle Pp with decreasing tempera-
ture below T~ could yield an unambiguous indication
of the onset of helical deformation. Kleinberg has
recently reported such an observation with ultrasonic
attenuation. 2p

An alternative technique might utilize the anisotro-
py of the negative-ion mobility2" in superfluid
He-A to study the effect of the helical texture on the

ion s motion. If the ion-mobility tensor is written

p p sinPp COSPp
Pp=

(p, —p, p cos'Pp) u
(52)

Since small u implies a large spatial period, this radius
increases for small u because the ion then can move
farther in the transverse direction before experienc-
ing the curvature of the helix. Detection of such
periodic transverse motion would provide clear evi-
dence for the helical texture and might also allow a
direct measurement of the spatial periodicity 2m/u.
Typical flow velocities are of order v, =10
cm/sec, and the corresponding up [see Eq. (41)l has
the value 0 7(2m3v, /g) =.66 cm ' near Tp The.
corresponding spatial period becomes 2'/up
=9 x 10 cm. Furthermore, the anisotropy in the
mobility is of order 15/p, so that Eq. (52) implies a
value rp

= 2 x 10 ' cm for the radius of the associat-
ed circular trajectory.

NMR presents another and very interesting possi-
ble approach for studying the helical textures. Since
NMR experiments usually employ relatively large
magnetic fields (H & 25 Oe), the magnetic field en-
ergy is at least comparable with the dipole energy,
and both contributions to the free energy must be
considered. For small magnetic fields and small an-
gles Pp, Ref. 16 has studied both the equilibrium con-
figuration and the associated NMR, but the general
behavior remains to be investigated. In particular,
strong magnetic fields may produce still more compli-
cated periodic textures that could alter the NMR ab-
sorption spectrum considerably. Indeed, the induced
spin density in the presence of an inhomogeneous
texture is known to satisfy a Schrodinger-like equa-
tion. " ' Thus the NMR in a spatially periodic confi-
guration might have several allowed frequencies,

(51)

analogous to that in Eq. (4), it is easy to see that an
ion released from rest in a helical texture with an axi-
al field E =Ez will follow a helical trajectory with a
spatial period equal to that of the l vector (2m/u) and
with a circular projection on the x-y plane of radius
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analogous to the electron bands in a one-dimensional
crystal. Such NMR satellites conceivably could ex-
plain the observed structure in the flow experiments
of Mueller, Flint, and Adams. ' This possible in-

terpretation is particularly interesting, for it might
provide yet another probe that is sensitive to the spa-
tial periodicity of the helix.

A related question is the stability of the uniform
texture in more complicated situations involving flow
and magnetic fields at arbitrary orientations. Investi-
gation of several special cases has uncovered an in-
stability proportional to exp(ik, z) with k along the
direction of superflow. " ' In the large-field limit
and with H II v„however, preliminary studies sug-
gest an instability with ki v„which indicates the im-

portance of allowing for general three-dimensional
spatial perturbations. This intriguing problem re-
quires further study, as does the form of the result-
ing nonuniform equilibrium texture for general mag-
nitude and orientation of H and v, .

ACKNO%LEDGMENTS

I am grateful to D. J. Bromley and M. R. Williams
for helpful comments on a preliminary draft of this
paper. Research was sponsored, in part, by the NSF
Grant No. DMR 75-08516.

APPENDIX

This Appendix summarizes the studies of the hy-
drodynamic parameters based on Cross's weak-
coupling gas model. s Central to all the calculations is
the A-phase energy gap A(T), which satisfies the ap-
propriate BCS gap equation. '

and the polar angle 8 is measured from the direction
I. The transition temperature has the same value as
for an isotropic gap (for example, the B phase of 'He
or an s-wave superconductor)

ks T, = me "e,exp[ —1/gN(0)], (A3)

where 7 is Euler's constant (=0.5772). An expan-
sion of Eq. (Al) near T, gives the approximate A-

phase gap

[a(T)]'= (~k, T,)' '

which differs from the isotropic phase by a factor —.
At low temperature, the gap parameter has the form

h(T) = 60 l—7 eke T
60 4p

(AS)

where the zero-temperature limit is given by

60=
z

rr exp(6 —y)ksT, =2029ksT, .1 5
(A6)

This value exceeds that for an isotropic gap by a fac-
tor =1.15. Furthermore, the algebraic temperature
dependence of the correction in Eq. (AS) arises
directly from the nodes in the energy gap, in contrast
to the exponential temperature dependence familiar
in an isotropic superfluid. For intermediate tempera-
tures, Eq. (Al) has been evaluated directly as a dou-
ble numerical integral. This procedure yields the
values shown in Table I, and the corresponding graph
is indistinguishable from that found by Combescot. 2~

To proceed with the evaluation of the hydrodynam-
ic parameters, it is next necessary to consider three
auxiliary quantities introduced by Cross'

3 gQ . 2, 'c
sin 8& dg

Etanh
2k' T

E

Here the excitation energy is given by

F. = (g'+ 5'sin'8)' '

. (Al)

(A2)

m/2

n(T) =
8

d8sin38qh(8),
~ ~/2

P(T) = —, d8sin8 cos'8$(8),

cos4e
y(T) =3„d8 . @(8),

(A7a)

(A7b)

(A7c)

TABLE I. Temperature dependence of the parameters used in weak-coupling gas model.

a(r)/k, r,

0.9
.0.8
0.7
0,6
0.5
0.4
0.3
0.2
0.1

1.0411
1.4105
1.6492
1.8113
1.9185
1.9834
2.0160
2.0275
2.0297

0.0488
0.0946
0.1367
0.1739
0.2050
0.2284
0.2428
0.2487
0.2499

Q.0514
Q. 1054
0.1622
0.2216
0.2829
0.3448
0.4039
0.4543
0.4&82

0.1623
0.3538
0.5842
0.8686
1.2316
1.7154
2.4011
3.4663
5.4440
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where

rtr(itr) = 1 —
J d g (2ks T) ' sech'(E/2ks T)

is essentially the Yoshida function. Near T„ it is
straightforward to verify that @(t0 has the form

'I

( ) 7((3)
4

(A8)

2

sin 8
~ 2

5 ~ 2 Tc T= —sin28
2 T

T TC

. C

(A9)

7((3)a=p= —y=
20 eke T,

1 Tc T T- T.
2 T.

(A 10)
At low temperature, in contrast, rtr(8) differs from 1

only within an angular interval of order T/T, near
the nodes in the energy gap. An approximate evalua-
tion yields

4'
uk' Ta(T) = —1—

4 (A11a)

2
mkg T

p(T) = —1—
2

t

y(T) =3ln(T, /T) ——,

(A11b)

(A11c)

where Eq. (A6) has been used to simplify the last re-
lation. Once again, values for intermediate tempera-
tures were calculated by double numerical integra-
tion, with the results shown in Table I.

and Cross's functions have the corresponding limiting
behavior

Given these quantities, it is not difficult to deter-
mine the hydrodynamic parameters. In the A phase,
for example, direct comparison of Eq. (6) with
Cross's expressioris omitting Fermi-liquid corrections
gives the following identifications'.

po- (It'2)0 =4a(t/2m3)'p,

(p,") =2c -(co) -(Er) =2P(@2m ) p

( K,)0 = a(ir/2m, )'p,

(rC,)0= -''(a+2p) (fi/2m3) p,

( E„)'= (p+ -,'y) (t/2m, )'p,

(A12)

where the superscript 0 denotes the value without
Fermi-liquid correction and the bar denotes the value
without dipole locking. In this approximation, we
note that (p,')0= (co)0 at all temperatures, and that
the relative anisotropy in the superfluid density ten-
sor may be written

r r p
Po 2a —p

II p
(A13a)

It falls monotonically from 1 at T, and has the fol-
lowing low-temperature behavior. '

T(( Tc.
rP r 12

(A13b)
pll

These temperature-dependent quantities are shown in

Figs. 3—6.
The inclusion of Fermi-liquid corrections is

straightforward, for they involve only odd-I Landau
parameters and the temperature-dependent functions

I.O
I.O

0.8
0.8

0.6
0.6

0.4
0.4

0.2
0.2

0'
0 0.2 0.4 0.6

T/Tc
0.8 l.O 0

0 0.2 0.4 0.6
T/Tc

0.8 I.O

FIG. 3. Elements of the superfluid density tensor calcu-
lated with the weak-coupling gas model, in units of
p( h/2m3) . The superscript 0 indicates the value without
Fermi-liquid corrections.

FIG. 4. Elements of the tensor c calculated with the
weak-coupling gas model in units of p( 0'/2e3) . The super-
script 0 indicates the value without Fermi-liquid corrections.
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p, =4
I+ Ff(I —4 ) m 2Nl

u, P, and y. In this way, for example, the hydro-
dynamic parameters in fk become

and that po exceeds p, for T &0.3T,. Thus the
Fermi-liquid effects enhance the anisotropy in the su-
perfluid density tensor throughout the whole A

phase. This last observation indicates that the gen-
eralized Ginzburg-Landau approximation cannot be
accurate even near T„ for the ratio pp/p,

" actually in-

creases with decreasing temperature reaching the
value =1.44 at T =0.5T, .

In a similar way, the bending constants become

C =

I + ' F~(1 2P) m" 2m3

( Il)0

1+ Ft (1 ——2P)

1 + —F~i

F~ (I 4~) m 2m3.P

(A14)

1F
p1+ F't (1 ——2p) ™3

Fg

1+ 'Ff(1 4~) 2m,

c'
I + Ff (1 —-4a)

co=c +
2 pg

1 + —F~&

m 1 + F'(1 —2—P)

where m "/m =1+
3

FI. For specific numerical work,

I have followed Cross in using the approximate
values —F~ =5.22 and —F&' =—0.18. The resultings 1

3 3

quantities are shown in Figs. 3 and 4, in comparison
with the values omitting Fermi-liquid corrections.
Near T„ the only effect of these corrections is the
overall reduction factor m/m", which decreases the
hydrodynamic parameters considerably. At zero tern-
perature, in contrast, the denominators in Eq. (A14)
all reduce to 1, reproducing the uncorrected values.
Note, particularly, that co typically differs from p„

1.0

where the dipole-locked values follow directly from

1.4

1.2

1.0

0.8— 0.8

0.6— 0.6

0.4— 0.4

0.2

0 0.2 0.4 0.6 0.8 1.0
0.2 0.4

T/Tc
0.6 0.8 I.O

T/Tc

FIG. 5. Unlocked bending constants calculated with the
weak-coupling gas model in units of p( t/2m3) . The super-
script 0 indicates the value without Fermi-liquid corrections.

FIG. 6. Dipole-locked bending constants calculated with
the weak-coupling gas model in units of p( t/2m3) . The
superscript 0 indicates the value without Fermi-liquid correc-
tions.
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Eq. (10). Unlike the previous hydrodynamic parame-
ters, the Fermi-liquid corrections here suppress these
quantities at all temperatures, as seen in Figs. 5 and 6
for both the unlocked and locked cases. Since the
onset temperature Tl, for the appearance of a helical
deformation in zero magnetic field is determined by

the condition poKt, = (co+ 2 p,")', it is not immediate-

ly evident how the corrections will affect Tq. With
the present choice of Landau parameters, I find
Tt, =0.88T, without corrections and Tq =0.82T, with
them, so that the net effect is actually to stabilize the
uniform texture.
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