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The scaled room-temperature res)stivity [p(p)/p(p = 0)] of crystalline aluminum is calculated as a function
of pressure p. Initially the resistivity is determined as a function of'volume from the standard variational
treatment in which the required electron levels and distortions to the Fermi surface are described in a two-
plane-wave model. To obtain the resistivity as a function of pressure, the results of this calculation are
combined with a previously computed equation of state aluminum. The calculated scaled resistivity then
shows a minimum at a pressure of about 25 GPa. This minimum is largely attributable to the increasing
importance of distortions of the actual Fermi surface as pressure increases.

I. INTRODUCTIO&

The electronic structure of aluminum is rela-
tively simple. Its bands have a largely free-elec-
tron-like character and can be interpolated quite
accurately by a spatially local pseudopotential.
On the other hand its Fermi surface is a complex
multiply connected object that is sensitive to the
choice of the pseudopotential components used to
interpolate the band structure. Since the trans-
port coefficients, and in particular the resistivity,
are related to integrals over the Fermi surface,
one might expect this sensitivity to become ap-
parent if, as through the application of pressure,
the pseudopotential coefficients are altered. As
we shall see below, this is indeed partly the case,
though in crystalline aluminum the pressure de-
pendence of resistivity turns out to be an aggre-
gate of some partially compensating effects. This
compensation is very much a property of the me-
tal itself (in Pb, for example, the effects we dis-
cuss should be more prominent) and also of its
state (in solid aluminum the effects are far more
noticeable than in the liquid state').

We are concerned in this paper (as in Ref. 1)
with the scaled room-temperature resistivity
p(p)/p(p =0) of crystalline Al, at a pressure p.
The natural quantity to calculate is the ratio
p(V)/p(V, ), where Vis the volume of a sample
at pressure p (and V, its value at p =0). The start-
ing point of this calculation is the mell-known var-
iational expression' for a bound on p(V), as de-
scribed in Sec. II. For metals with complicated
Fermi surfaces, the necessary computations gen-
erally require numerical procedures of matching
complexity, even for relatively simple choices of
the variational trial function. The result for p(V)
can certainly be expected to depend on this choice
as well as on approximations made necessary for
wholly numerical reasons. Much of the consequent
uncertainty can, however, be reduced by focusing
attention on the scaled quantity p(V)/p(V„) and, as

discussed in-Sec. II, it is largely for this reason
that we find it convenient to use the simplest form
of trial function. Within this approximation it
still remains to determine the behavior of the
pseudopotential v~, the band structure, and the
Fermi surface as functions of volume. This is de-
scribed in Sec. III. The piecewise two-plane-wave
approximation that we use in evaluating the varia-
tional integrals is described in Sec. IV. The ma-
trix elements app'earing in the integrand also re-
quire the phonon frequencies and their volume de-
pendences, a question that is taken up both in
Secs. IV and V. The additional approximations
we make in order to complete the numerical pro-
cedures are described in more detail in Sec. IV.
They involve certain simplifications in the Fermi-
surface geometry and in the description of the
electronic levels associated with that geometry.
The results are discussed in Sec. VI.

The calculations we report could be performed
in principle for all simple metals. We have se-
lected aluminum- for the reasons given earlier, '
namely that its high electron density and small ion
core imply an ability to sustain a high pressure
without core contact. In addition, the equation of
state of Al has been calculated to pressures in
excess of 300 GPa (3 Mbar). This information al-
lows us to convert from p(V)/p(V, ) to p(p)/p(p = 0)
and hence arrive at the curves described in
Sec. V.

II. RESISTIVITY OF SIMPLE METALS

For- a metal of valence Z, the standard varia-
tional reduction of the Boltzmann equation yields
for the resistivity at high temperatures the ex-
pression'

acS 2n'Z
e' a,u [Jdsx/v/v, (v/v~)e(x) j'

where
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IEg(x2-x, )'(x, Ivse Ix,) I'
sinh [-.pe~~(x. —x,)]

Here 4 is the trial function used in obtaining the
bound for p, k~ is the magnitude of the Fermi
wave vector, . v~ is the Fermi velocity, 8~ is the
Fermi energy, P = 1/ks T, M is the mass of an ion,
and co„and e~ refer to the frequency and polariza-
tion of phonons with reduced wave vector x. We
use scaled wave vectors x=k/2k~ and a scaled
pseudopotential w = v~/-,'g~, where --', g~ is the
known long-wavelength limit of the pseudopoten-
tial form factor. The quantity a,h/e' is the atomic
unit of resistivity and has the value 21.7 p,Acm.

In the one-plane-wave approximation the quantity
I in (1) can be written

2pg I= Jt- —' Jt '
[C (x,) —C (x,)]'

x igv (x, —x,) i'S(x„x), (2)

where S(x„x,) is the one-phonon structure which
takes the form

S(x) =S(x, —x,) =2pS~—Q f~~(x).x]'~M

x sinh'[-,'P6'(u~(x)].

(3)
The sum in (3) is over the possible polarizations
), and the integral is over the actual Fermi sur-
face which in the case of the alkali metals, for ex-
ample, can be very well approximated by a. sphere.
For the polyvalent metals, however, the shape of
the Fermi surface must be taken into account
since a substantial fraction of the free-electron
Fermi surface can actuaDy be lost.

It has been shown" that for the calculation of
high-temperature resistivity the effects of aniso-
tropy in the choice of trial functions are of dimin-
ishing importance. As a consequence of this ob-
servation we have used a trial function of the form

C (x)~v(x) g, (4)

(where g is parallel to the electric field) rec-
ognizing that although the calculated resistivity
must necessarily be in excess of the actual value,
the effect of the approximation on p(P)/p(0), as
noted earlier, will be much reduced. Although this
choice for 4 greatly simplifies the numerical
work, a generalization to more complex forms for
4 is quite straightforward.

Given (4) as the trial function then for a cubic
system, (1) becomes

~ 2Z(. 'l

(6)

m fdsT, v(k)

mppt SpVg
(6)

defines the optical effective ma, ss which can be
calculated directly. ' In (6) s, is the area. of the
free-electron Fermi surface (s,=4vk~). Atten-
tion then reverts to the remaining double surface
integral in I, which we sha, ll treat in a two-plane-
wave approximation. Were the Fermi surface
spherical, a one-plane-wave treatment would suf-
fice and the identity

dsg dsI e
4

S~ S~

reduces the problem to a single volume integral
over q =k —k'. With these simplifying features the
ca.lculation of the resistivity in the alkali metals
is itself relatively simple. In the polyvalent metals,
however, transformation (I) will not correctly
treat transitions involving parts of the Fermi sur-
face that depart from a simple spherical charac-
ter. On the other hand (as we shall see) there are
portions of the actual Fermi surface that remain
very spherical and contributions from these can
be transformed into a corresponding volume inte-
gral. The remaining (nonspherical) portions
must, however, be treated by evaluating (1) direct-
ly.

Here ~, is the parameter usually referred to a.s

III. PSEUDOPOTENTIAL AND FERMI-SURFACE

GEOMETRY

In the two-plane-wave approximation to be dis-
cussed in Sec. IV, the electronic energy $ for level
k is given near zone planes by the solutions of

bt;- g V, (K)
(8)

V,(K) 8-„-„-8
where K is the reciprocal-lattice vector under
consideration and hg = (k'/2m)k'. V~(K) is related
to the screened pseudopotential v~(K) by V~(K)
= 00'v~(K), where 0, is the volume of the primitive
cell: by choice V~(0) =0.

In order to calculate the resistivity we need to
know the form of the pseudopotential v~(k) through-
out the range 0 & k&2k~. For aluminum, a. one-
para, meter empty-core potential serves adequate-
ly. ' In k space it can be written (with x= k/2k+
and s =2k+x, )

Z'
v~(x) = . . . , cos(sx) .
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the "empty-core radius. " The value of r, should
be close to the size of the ion core on physical
grounds and is around 1.12g& for aluminum. For
the dielectric function e(x), we take'

e(x) =1+a(x)[1—G(x)j,
with

and

H(x) = (wa, 0~x') ' —+ ln
1 1 —x' 1+g l

4x 1-x &

G(x) = x'/(2x'+$) .

(10)
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FIG. 1. Pseudopotential form factor of aluminum for
V+0 = 1.0 and V/Vo = 0,7 Screening by conduction elec-
trons tEq. (10)J the appropriate densities is taken into
account. the empty-core radius ~~ is 1.12ao. The
arrows mark the location of the reciprocal-lattice vec-
torsK= (1, 1, 1) and (2, 0, 0).

The exchange-correlation parameter g is given by'

$ =1/(1+ay, ),
where r, is the electron spacing radius defined by
Q =+3mZr,', and e =0.025.

The screened pseudopotential form factor for
aluminum is plotted in Fig. 1. In the same figure
we also show the corresponding quantity for the
compressed metal with V/V, = 0.7. On plotting w

as a function of x we see that the node (where ur

=0) moves to lower reduced wave vector as the
metal is compressed. Correspondingly the Fourier
coefficients V~(111) and V~(200) are seen to in-
crease. While pseudopotential theory suggests
that r, should be energy dependent, ' the energy

dependence is expected to be small since r, re-
flects the size of the ion core which should not
change greatly with pressure-induced changes in
its environment. Holding r, fixed is tantamount
to ignoring such small additional energy depen-
dence.

With the "new" values of V~(111) and V~(200)
(for the compressed metal) we can use (8) again
to map out the Fermi surface. Because of the dif-
ferent values of the new Fourier coefficients, the
geometry of the Fermi surface of the compressed
metal can be different from that of the metal under
normal conditions. We take this into considera-
tion.

k2- k~ =q —K (12)

with q in the first Brillouin zone. Some umklapp

IV. TWO-PLANE-WAVE APPROXIMATION

The evaluation of the double surface integral in
(1) has been a major numerical obstacle in most
of the calculations of the resistivity of polyvalent
metals. Because of the complex geometry of the
Fermi suface of these m tais a large number of
surface-area elements i necessary to charac-
terize the surface accurately. ' " For the high-
temperature transport coefficients the problem
of the Fermi-surface anisotropy is less,"and in
view of this we have chosen to carry out the cal-
culations by means of a two-plane-wave approxi-
mation which has also been used by other authors
in similar model calculations. ""Although at
some points on the Fermi surface three or even
four orthogonalized plane waves are needed to give
an adequate description of the finer distortions, "
the amount of surface requiring this more detailed
description is small compared with the total Fer-
mi-surface area. Essentially, our approximation
treats each of the many Bragg planes in turn and
calculates the contribution to the resistivity with
the electronic levels described by the linear com-
bination of plane waves

@1;(r)= sin81;e'~' + cos81;e' ' (11)

The total resistivity is then the sum of the um-
klapp contributions of the individual reciprocal-
lattice vector (K) and the normal contribution.
Our numerical calculations show that the normal
contribution is only a small part of the total re-
sistivity and for this it is quite adequate to use
the simple one-plane-wave treatment.

Consider the umklapp processes made possible
by transitions involving a particular reciprocal-
lattice vector K. The umklapp processes are
those for which the initial leve1s k, originate on
the Fermi surface and the final levels k, end on the
remapped surfaces, i.e. ,
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Ip

BP

tha
Brillouin zone of the cubic structures guara tr n ees

at throughout the zone the phonons have polari-
zations that are usually quite close to being purely
longitudinal or purely transverse. It thus seems
reasonable to replace the phonon dispersion curves
with one longitudinal branch and two identical
transverse branches with dependence on the mag-
nitude of q alone, these branches being appro-
priately weighted averages of the frequencies
along the major symmetry axes. Impli t ' th'

is the subsequent replacement of the zone by the
Debye sphere. The individual phonon frequencies
are calculated from an eight-shell axially sym-
metric model with exPeximental force constan-ts
obtained from experiments at. 300 'K ' This ro-
cedure inevitably introduces errors into the final
result, but the uncertainties are not expected to
be large, especially if the main interest centers
on the way resistivity changes as a consequence
of the variation of the frequencies themselves.

With this approximation, the scaled longitudinal
and transverse matrix elements (squared) are
then given by

FIG. 2 Two possible umklapp processes are shown
here in the single-Bragg-plane (BP) approximation (k&

k&, k( kf). Note that the Fermi surface is divided
up into three parts for computational purposes as de-
scribed in the text.

(2k ) (—g„)'M (k, k, )

=&q v, (q)(s,s, + c,c,)+~ v, (q —K)s,c,
+q V&(q+K)S~C2+q K[V&(q+K)S~C2

—V (q —K)S,C, ]')' (l4)

and

processes are pictured in Fig. 2 where we also
see that the Fermi surface is split into two sec-
tions because of the finite value of vK.

The parameter 8 describing the electron levels
in (11) is given by

tan81; =)1+ sgn(v K) ()7'+ 1)')"

with

)i = [4g~/) v (K) )]

x [x (K/2k~) ——,'(Jf/2k~)'], x= k/2k~.

The (+) in (13) signify the band index, with (+) for
the second band and (-) for the first.

The matrix element M required in (1) is in gen-
eral given by

-i~, (x, —x,) ~ (x,~Vu) jx,)
when the wave functions are normalized. Before
we consider this further we will first describe the
approximations we make concerning the phonon
frequencies and polarizations. With the excep-
tion of those along the major symmetry axes, the
phonons have polarizations that are neither pure.
longitudinal nor pure transverse. However, . the
large. number of symmetry axes present in the

(2k„)'(-,*(i )' $M', (k„f,)

=K'[1 —(q K)'][V~(q+K)S,C,

—v, (q —K)s,c,]',
where S,. =sin8,. and C,. =cose, with i=1,2. Given
the trial function (4) the quantity [4(k,) —C (k,)]' ap-
pearing in (1) is determined by

(2k„)'[C (k,) —C (k,)]'

=q'+2q K(C,'—C',)+ K'(C', —C,')'. (15)

If th e band gaps are small (as in aluminum) then
only a small region of the Fermi sphere needs
to be described in the two-plane-wave formal'

e rest being essentially free-electron-like. Con-
siderable computational effort can be saved if we
divide up the first band into two parts (see Fig. 2),
I, and I» in which I, is the part of the first band
where a one-plane-wave description would be ade-
quate while I, is the part that requires the two-
plane-wave description (as determined by a suit-
ably chosen criterion"). The processes involving
initial states on I, and final states on the remapped
part of I, are essentially free-electron-like and
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will be dealt with separately. Contributions from
processes involving II and I, will then be computed
by directly evaluating the double integral.

The double Fermi-surface integrals required for
the evaluation of (1) thus have contributions from
the normal processes (which a.re small in the
case of aluminum), umklapp processes in the two-
plane-wave single-Bragg-plane approximation,
and umklapp processes that can be considered as
involving free-electron-like levels.

V. APPLICATION TO COMPRESSED ALUMINUM

As mentioned above, the phonon frequencies at
normal conditions (300'K and zero pressure) are
generated by an axially symmetric force-constant
model. The effects of the volume change on the
phonon frequencies themselves) can be calculated
in a straightforward manner from the dynamical
matrices. "'" In the polyvalent metals it is well
known that such a calculation is computationally
time consuming as a large number of terms is
needed for the dynamical matrices to converge.
We choose instead to scale all the frequencies with
the bulk experimental Gruneisen parameter y
(2.35 for aluminum" ), i.e. ,

ds&
(V2 —V& I .. .

Vy & V2
(17)

where the rest of the integrand has a somewhat
weaker dependence on the location on the Fermi
surface. The ratio of

to a corresponding quantity for the free-electron
case is thus an approximation of the correction
factor required. Using inversion symmetry, we
ha.ve

f (ds, /v, )f(ds, /v, ) i v, —v, i'

J ( ds,'/v, ')J (ds,'/v, ') Iv,' —v,'I'
t(ds/v) fdsv

f(ds'/v') fds'v'

where fds v/fds'v' is just m/m, ~, while (fds/v)/
(fds'/v') is commonly referred to as the specific-
heat effective mass m~/m. Combining this with
the factor (m,p, /m)', we arrive at a total correction
factor f= (m„,/m)(m~, /m). In the two-plane-wave
model m, ~, and m, h can be obtained without further
approximation in closed form':

(16)

In (16) &u(q, V) is the phonon frequency of the wave
vector q at the compressed volume V and e, is
the observed frequency at the zero-pressure vol-
ume Vo. Though a crude approximation for the
changes in.the frequencies themselves, it should
be satisfactory for the quotient p(V)/p(V, ) involv-
ing ratios of integrals accompanying such changes.
A more realistic approach is to take into account
the changes in the elastic constants in the evalua-
tion of the changes in the phonon frequencies. "

The numerical evaluation of Eq. (1) also involves
the computation of the factor (m,~, /m)'. From Eq.
(6) we see that this factor is a measure of the dis-
tortions in the Fermi surface. On the other hand,
we note that in evaluating the umklapp contributions
to the double surface integral, the Fermi surface
used is not the actual fully distorted Fermi sur-
face. For each particular Bragg plane (at, say,
—,'K) only the distortions associated with a given
V~(K) are taken into account. This amounts to
using a Fermi surface with an area larger than the
actual one (in our two-plane-wave model, the ac-
tual Fermi surface would have distortions re-
sulting from 14 Bragg planes). We can estimate
the combined effects of the necessary further re-
duction in Fermi-surface area as follows. " We
note that, with the trial function given by (4), the
double surface integral in (1) takes the form

where

2$~ 2(4)~ 2(do (gpo)

and

(u, = 2[8»8»+ V~(E)]'~' —8» (19)

&u, = 2[8»8~+ V~(R)]'~'+ g».
Further,

where A'=K/2k». These formulas then serve as an
indication of the accuracy of our numerical proce-
dure within the two-plane-wave model. The re-
sults are listed in Table I. We note also tha.t the
scaled correction factors, i.e. , f(r,)/f(x„), com-
pare very well. The resistivity of aluminum as a
function of compressed volume is plotted in Fig. 3.
Here we display the results using both the correc-
tion factors from the closed form solutions (f,)
and those from the numerical calculations (f„).

The equation of state of aluminum has been ob-
tained by Friedli and Ashcroft. ' They examined
most of the common crystal structures and con-
cluded that for the pressure range they considered
(up to and above 300 GPa) the fcc structure is that
of lowest calculated energy. We can numerically
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TABLE I. Quantities m, t/m an.d m»/m evat. uated in the two-plane-wave model. Both
closed-form (analytical) and numerical results are listed. The quantity f is defined by

f (mopt/m) (m»/m) .
I
(Note; & p

=2 073 )

m„,/m m, „/m f6'g)/f(rgp) '

w~(a ) V/'t/" AnaI. ytical
I

Numerical Analytical. Numerical Analytical. Numerical.

2.073 1.00
2.001 0.90
1.924 0.80
1,841 0.70

1,370
1.644
2.070
2.819

1.305
1.561
1.910
2.552

0.985
0.976
0.964
0.947

0.987
0.979
0.966
0.949

1.00
1.19
1.48
1.98

1,00
1.18
1.43
1'.88

eliminate x, between this equation of state and the
resistivity variation we obtain in this calculation
to arrive at a scaled resistivity curve which is
shown in Fig. 4. Unfortunately, we have not been
able to locate experimental data on the pressure
variation of the resistivity of crystalline alumi-
num. The data of Bridgman summarize the mea-
surement of relative resistance rather than the
relative resistivity. ""However, we can get an
estimate of the experimental value of

[~(p/p, )/~(V/ V,)]„„,
from the Bridgman data by using the approximate
equation for an isotropic cubic crystal (roughly
applicable to the experimental arrangement of

I.OO

Bridgman):

(20)

VI. DISCUSSION AND CONCLUSION

Our calculations, though they describe quite well
the qualitative trend of the behavior of resistivity
under pressure (as compared with experiments at
low pressures), do not yield particularly a.ccurate
numerical: results for the resistivity itself. At
normal conditions the resistivity p(0) is overesti-
mated by 50%%uo (the computed values are 4.2 and 4.0

a(p/po) I g(R/R, ) 1
~(V/Vo)

~ vga, =i a(V/Vo) ~~„, , 3
'

With this equation we get 2.3 for the experimental
value" of h(p/p, )/b, (V/V, ) and this should be
compared with the theoretical result of 2.5 ob-
tained here.

I.O

p(P)

p(p=o)

0.90

0.90

/

/~ fn
r

0.80
I.O 0.9 0.8 0.7

vo

FIG. 3. Scaled resistivity of aluminum as a function of
compressed volume at T = 300 K in the single-Bragg-
plane two-plane-wave approximation. The curve labeled
f is obtained by applying the Fermi-surface-area cor-
rection factor in closed form: the f„curve is obtained
with the correction factor obtained numerically (see
text).

0.80
0 30l0 20 40 50 60

P(G Pa)

FIG. 4. Scaled resistivity of aluminum as a function
of pressure. The curves are obtained by numerically
eliminating the volume between the curves shown in Fig.
3 with the equation of state of aluminum. The equation
of state is obtained by the procedure described in Ref.
3.
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p 0 cm with the correction factors f, and f„, re-
spectively) and is characteristic of the errors en-
countered in the equivalent calculation in the liquid
state. ' The discrepancy can be attributed to the
approximations we have made and to the choice of
trial function. The Fermi surface over which we
perform our double surface integral is at best a
rough approximation of the real Fermi surface
which has a much more complex geometry. Our
approximation of a single Bragg plane allows for
more transitions to be included as the Fermi sur-
face thus generated has a larger area than the real
Fermi surface. This additional surface is only
approximately accounted for:in our treatment of
applying the correction factor (18). Another source
of error can be traced to the replacement of the
phonon frequencies by three branches (one longi-
tudinal and two identical transverse) and the re-
placement of the first Brillouin zone by a Debye
sphere. This simplifies the problem but at the
same time discounts all the effects of phonon an-
isotropy. The errors introduced by using a single
Gruneisen parameter to describe the phonon fre-
quency changes will be averaged out to a certain
extent (at least for small volume changes) as an
integral is performed to arrive at the resistivity.
Furthermore, we note that the two-plane-wave
approximation is not adequate for some electronic
levels, especially those near the zone edges and
corners. The electronic levels near the symme-
try point S', for instance, require four plane waves
for an adequate characterization. A realistic de-
scription of the electronic levels is attempted only
near the Bragg plane under consideration —and
this is only done crudely —a simplification that in-
evitably introduces errors into our results. We
note, however, that the fraction of the Fermi sur-
face that is close to a Bragg plane is already
small. Thus, we can expect that the fraction that
lies near the intersection of two or three of these
Bragg planes to be smaller still. Further Bragg
planes [the next class is (220)] are excluded from
our consideration as they lie outside the Fermi
sphere. The inadequacy of the trial function we
use necessarily leads to overestimation of the re-
sistivity. '

However, we believe our results for the scaled
quantity have quantitative validity in the descrip-
tion they give of the changes in the resistivity as
pressure is applied, the previous objections not-
withstanding. The reason is that when we consider
the changes brought about by the application of
pressure then the relative uncertainties in each of
the considerations should be considerably re-
duced.

The results of our calculation are somewhat in-
teresting in that the resistivity of aluminum shows

TABLE G. Reduced Fourier coefficient v&(111)/23&~ and
v&(200)/~~&+ and the reduction in Fermi-surface area as a
function of compressed volume. The two-plane-wave
model is used to compute the Fermi-surface (FS) area
reductions.

r~(+,) V/V~ v~(111)/3&& v&(200)/3&& FS Reduction

2.073 1.00
2.001 0.90
1.924 0.80
1.84 0.70

0.0080
0.0322
0.0585
0.0870

0.0949
0.1144
0.1350
0.1564

14 &o

22%
29 &o

38 Wo

a minimum as the metal is compressed. The
mechanisms that cause this minimum are not the
same as those believed to account for the resistiv-
ity minima in the alkali metals. In the latter case
the admixture of d states in the levels at the Fer-
mi energy is believed to be responsible, """
while in the case of aluminum the minimum ap-
pears to be a manifestation of changes in the Fer-
mic-surface geometry. In our simple model of
the electron-ion pseudopotential under compres-
sion we see that for all the compressed volumes
considered the reduced Fourier coefficients
v~(111)/Sz and v~(200)/gz increase as the metal is
compressed. These increases cause the reduc-
tion in Fermi-surface area (as compared to the
free-electron sphere) to increase from about 14%
to about 38% when the volume of the sample is re-
duced by 30%%up. The values of the reduced Fourier
coefficients and the Fermi surface area reduc-
tions are lasted xn Table II.

It is quite clear that a more careful treatment
of the resistivity variation requires that the Fer-
mi-surface distortions be f+lly taken into account.
If the Fermi-surface effects are included (as de-
scribed in Sec. V), we see that the simple picture
of a one-plane-wave treatment needs to be modi-
fied. In addition to the (main) effect of reductions
in resistivity stemming from increases in phonon
frequencies" we have an offsetting effect from the
increase in the distortions of the Fermi surface
which ultimately reverses the trend. The net cor-
rection factor that should be applied for these dis-
tortions should be

y= (m,pt/m)(m~/m)

instead of the (mo,&/m)' appearing in Eq. (1) be-
cause of a corresponding reduction in the region
of integration for the double surface integral in
Eq. (1). As m+/m remains near unity for all the
values of r, considered. we see that the correction
factor is reflected by the increase (as a function of
compression) of the optical mass. The two effects
together cause a resistivity minimum at V/ V,
=—0.8 which wouM be absent in the one-plane-wave
treatment.
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While the validity of the simple one-plane-wave
treatment can be justified for high temperatures
and zero pressure, we have found that in dealing
with the compressed metal a more realistic treat-
ment taking into consideration the Fermi-surface
distortions is plainly required. As discussed
above, this differs from the situation in the alkali
metals where the distortions in the Fermi surface
are second-order effects. As another example of
a polyvalent metal we may consider Pb whose
Fourier coefficients (or rather their magnitudes)
are expected to decxease as the metal is com-
pressed. " Therefore, both the Fermi-surface
distortion (as reflected in the optical mass) and
the increase in phonon frequencies cause the re-

sistivity to decrease as a function of pressure
and we would expect the pressure coefficient of
Pb to be larger than the result from a one-plane-
wave calculation. Thus, for the polyvalent metals
our single-Bragg-plane and two-plane-wave ap-
proximati. on is a first step in taking these distor-
tions into account and already shows that among
the simple metals some qualitatively different ef-
fects can be expected.
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